Stakeholder Meeting

Anticipated Updates Surface Water Quality Standards (N.J.A.C. 7:9B) Toxics Human Health Criteria – August 2023

Department of Environmental Protection

Division of Water Monitoring, Standards and Pesticide Control

Bureau of Environmental Analysis, Restoration and Standards

NEW JERSEY DEP Division of Water Monitoring, Standards and Pesticide Control

General Housekeeping

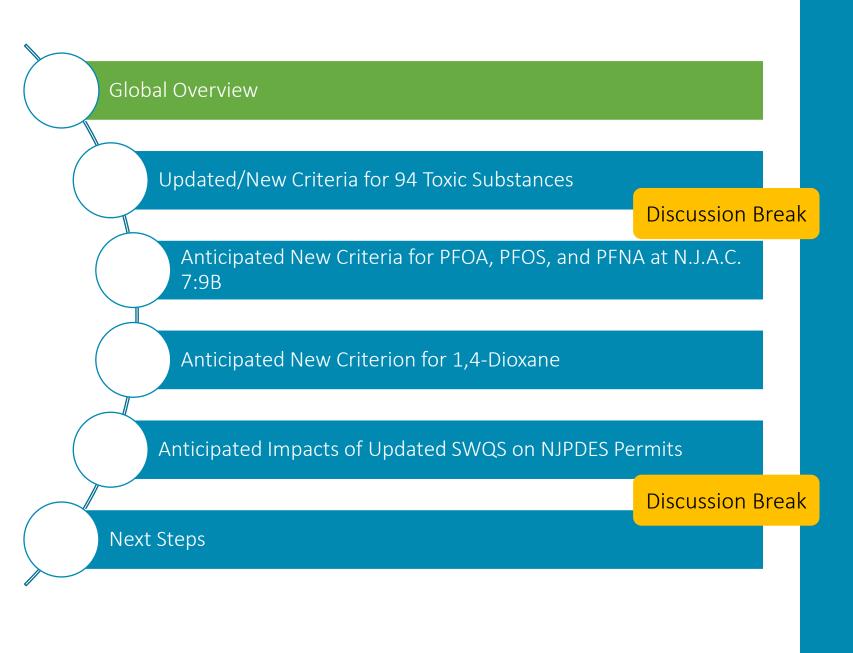
Meeting Audio

- ✓ For best results, use Computer Audio
 ✓ Everyone but the speaker will be muted during oral testimony
- \checkmark If you have trouble with computer audio:
 - Check your device settings in Teams
 - Check master computer audio is turned up and not muted

•••• More

Oral Testimony

 Please indicate that you will provide testimony by providing your full name, organization, and email in the chat box, if not already submitted to swqs@dep.nj.gov.


Maximize Presentation

✓ Close Participants List

- ✓ Close Chat Window
- ✓ Zoom in/out of presented content
 - Control + mouse wheel while hovering over the content

Stakeholder Meeting Agenda

New Significant Figures and Rounding Policy

Reason for change:

- Reduce inconsistencies between:
 - Safe Drinking Water Act (SDWA) Rules,
 - Ground Water Quality Standards (GWQS),
 - Surface Water Quality Standards (SWQS),
 - and Site Remediation Program (SRP) Rules

Solution:

• Establish a consistent significant figures/rounding policy in each of the upcoming rulemakings for the SDWA, GWQS, SWQS, and SRP rules.

Significant Figures Policy

Every new/revised numeric criterion will be expressed in **<u>two</u> significant figures**, **EXCEPT...**

When factors (including toxicity factors and exposure factors, but not uncertainty factors, conversion factors, and cancer risk levels) used for numeric criterion are not available in two or more significant figures, the final criterion will be rounded to <u>one</u> significant figure.

Two significant figures examples: 3.1 μg/L, 68 μg/L, 220 μg/L, 0.00014 μg/L, 60. μg/L*

One significant figure examples: $0.06 \ \mu g/L$, 400 $\mu g/L$

* Final zeros considered to be significant are followed by a decimal point.

Rounding Policy

Most science and technology-based standards [USEPA 304(a) criteria and American Society for Testing and Materials (ASTM)] use a similar rounding policy called the **"five even" rule.**

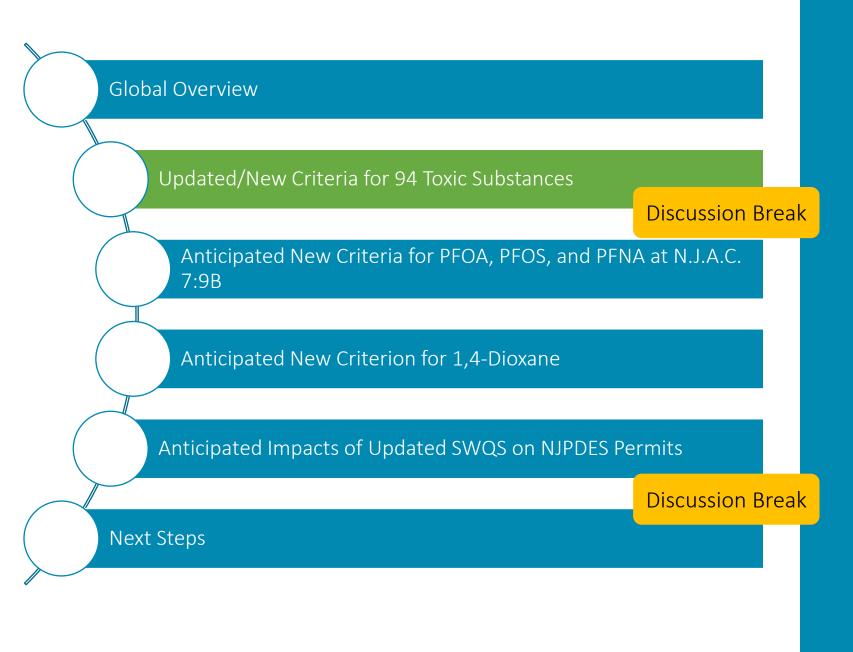
> Rule: If the digit 5 is dropped, then the preceding digit is increased if it is odd, and kept the same if it is even.

Examples:

- 2.35 -> 2.4 (rounding up)
- 2.25 -> 2.2 (preceding digit stays the same)

Updated "Carcinogen" and "Non-Carcinogen" Definitions

Reason for change:


• Adds a reference to USEPA's 2005 carcinogen descriptors, which were used for several parameters.

Deleted text in brackets [], new text in **bold**:

"Carcinogen" means a toxic substance capable of inducing a cancer response, including **those classified as** Group A (human carcinogen), Group B (probable human carcinogen) or Group C (possible human carcinogen) [categorized]in accordance with the **1986** USEPA Guidelines for Carcinogen Risk Assessment, 51 Fed. Reg. 33992,[1986] **as well as those described as "carcinogenic to humans", "likely to be carcinogenic to humans", or "suggestive evidence of carcinogenic potential", in accordance with the 2005** USEPA Guidelines for Carcinogen Risk Assessment, **70 Fed. Reg. 17766,** incorporated herein by reference, as amended or supplemented.

"Non-carcinogen" means a toxic substance not categorized as a carcinogen, including **those classified as** Group D (not classifiable as to human carcinogenicity) or Group E (evidence of non-carcinogenicity for humans) [categorized]in accordance with the **1986** USEPA Guidelines for Carcinogen Risk Assessment, 51 Fed. Reg. 33992,[1986] **as well as those described as "inadequate information to assess carcinogenic potential" or "not likely to be carcinogenic to humans" in accordance with the 2005 USEPA Guidelines for Carcinogen Risk Assessment, 70 Fed. Reg. 17766**, incorporated herein by reference, as amended or supplemented.

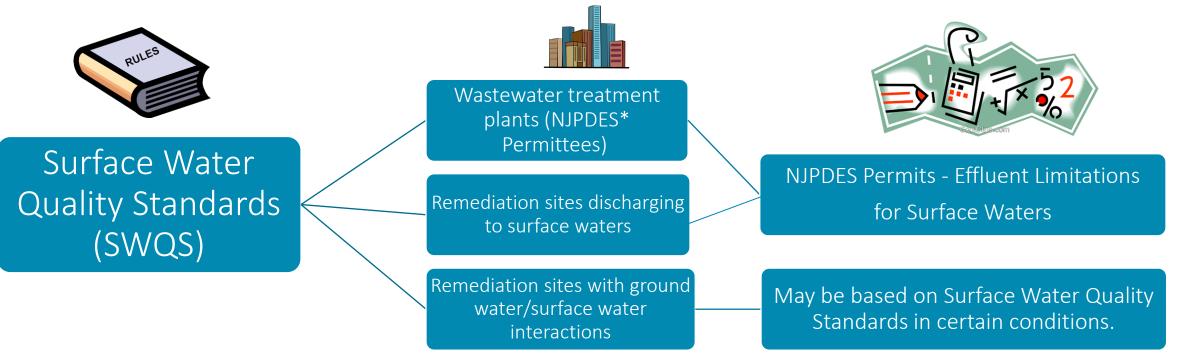
Stakeholder Meeting Agenda

What are Federal and State Goals for Toxic Substances?

Goals of the Clean Water Act §1251(a):

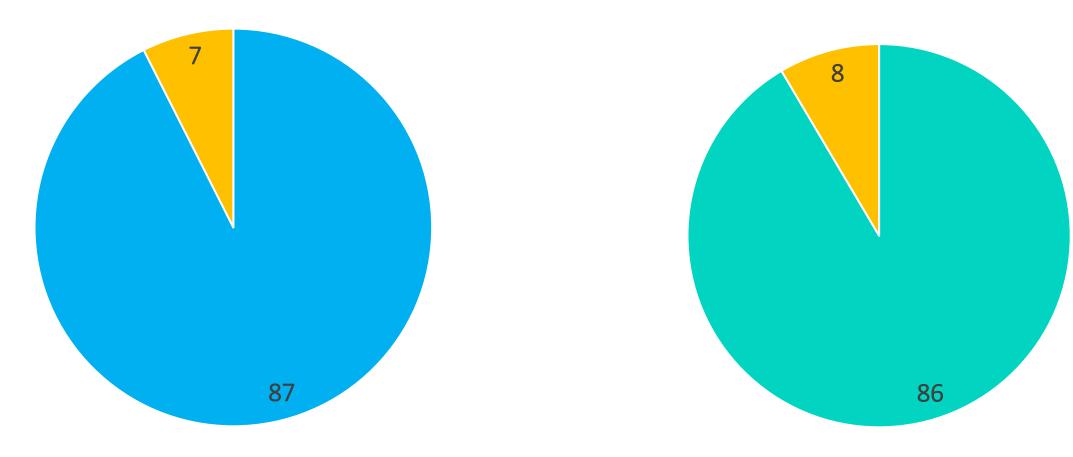
- "It is the national goal that the discharge of pollutants into the navigable waters be **eliminated** by 1985..."
- "It is the national policy that the discharge of toxic pollutants in toxic amounts be **prohibited**..."

Policy of the NJ Surface Water Quality Standards (N.J.A.C. 7:9B-1.5):


"Toxic substances in waters of the State shall **not** be at levels that are toxic to humans or the aquatic biota, or that bioaccumulate in the aquatic biota so as to render them unfit for human consumption."

What are Toxic Substances?

- Substances that are carcinogenic, mutagenic, cause developmental malformations, or other adverse health effects are assigned water quality criteria based on health effects studies relevant to human exposure.
- Human health criteria are established for **fresh** waters and **saline** (estuarine and coastal) waters.



Summary of Revisions to SWQS for 94 Toxic Substances

Fresh Water

Saline Water

Number of substances with revised fresh water criteria
 Number of substances with new fresh water criteria

Number of substances with revised saline criteria

New Substances/Criteria Added to the SWQS (Anticipated)

New Fresh Water Criteria (7)

New Saline Water Criteria (8)

Chemical Name	USEPA 2015 Recommended Fresh Water Criteria (µg/L)	Anticipated Fresh Water Criteria (µg/L)	
Bis(Chloromethyl) Ether	0.00015	0.00015	
Chlorophenoxy Herbicide (2,4-D)	1300	60.	
Chlorophenoxy Herbicide (2,4,5-TP)	100	130	
Dimethyl Phthalate	2000	500	
Hexachlorocyclohexane - Technical	0.0066	0.0066	
3-Methyl-4-Chlorophenol	500	500	
Dinitrophenols	10	10	

Chemical Name	USEPA 2015 Recommended Saline Criteria (µg/L)	Anticipated Saline Criteria (µg/L)		
Bis(Chloromethyl) Ether	0.017	0.017		
Chlorophenoxy Herbicide (2,4-D)	12000	560		
Chlorophenoxy Herbicide (2,4,5-TP)	400	380		
Dimethyl Phthalate	2000	500		
Hexachlorocyclohexane - Technical	0.010	0.010		
Methoxychlor	0.02	0.02		
3-Methyl-4-Chlorophenol	2000	2000		
Dinitrophenols	1000	300		
		NEW JERSE		

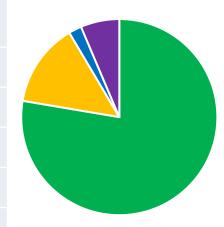
Using USEPA's Recommendations and Significant Figures

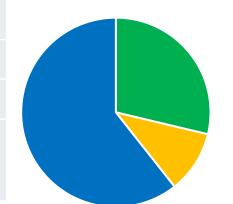
If NJDEP's significant figures and rounding policy results in a criterion calculated to be **higher** or **"less stringent"** than USEPA's 304(a) recommended criteria, then...

NJDEP will use USEPA's recommended criterion.

Note: This will be NJDEP's policy for SWQS rulemakings in the future.

Fresh Water Criteria


Comparing NJ Recommended Criteria With Existing NJ SWQS Criteria


Number of constituents more stringent	72
Number of constituents less stringent	13
No difference	2
Number of new constituents	7

Comparing NJ Recommended Criteria With USEPA Recommended Criteria

Number of constituents more stringent	27
Number of constituents less stringent	10

No difference

57

Comparisons (continued)

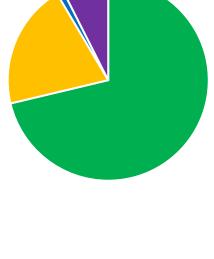
Saline Water Criteria

Comparing NJ Recommended Criteria With Existing NJ SWQS Criteria

66 Number of constituents more stringent 19

Number of constituents less stringent

No difference

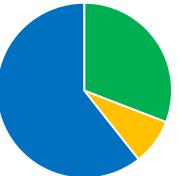

Number of **new constituents**

Comparing NJ Recommended Criteria With USEPA Recommendations

Number of constituents more stringent

Number of constituents less stringent

No difference


1

8

29

8

57

Background on Revisions to SWQC for 94 Toxic Substances

Approach used by NJDEP scientists to update human health criteria

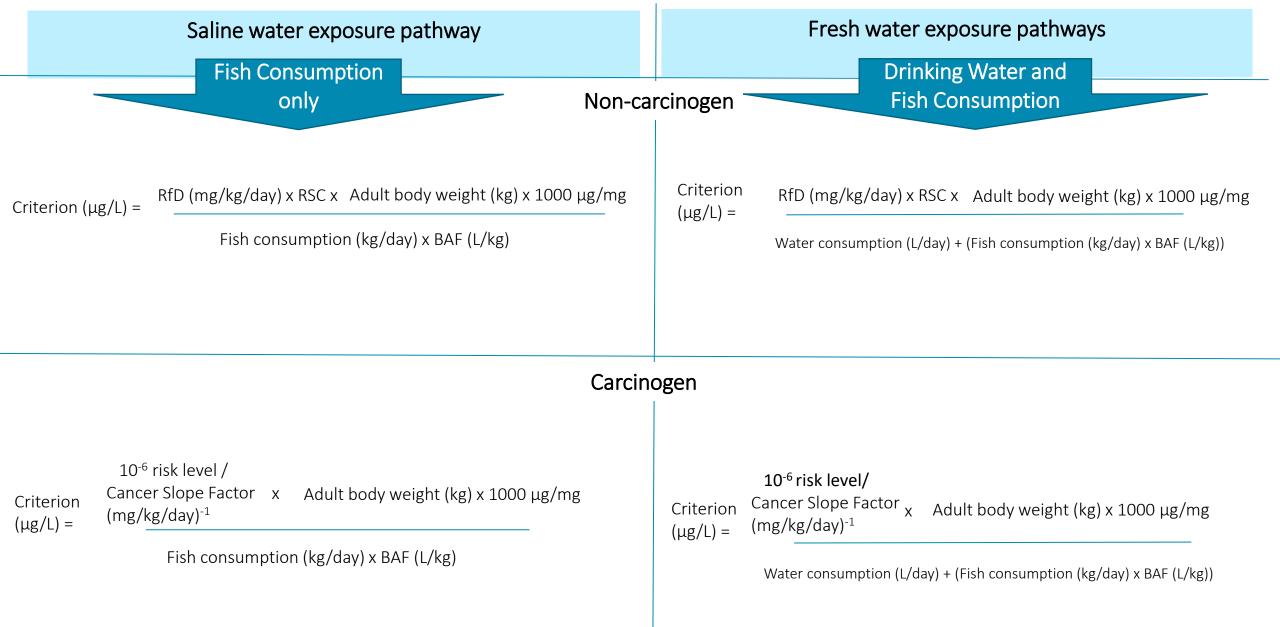
- Generally consistent with USEPA risk assessment guidance documents and practices.
- Similar to USEPA 2015 approach for updating Human Health Ambient Water Quality Criteria (HHAWQC) for 94 toxics.
- NJDEP reviewed basis of USEPA's recommended criteria.
 - NJDEP has the authority to adopt criteria that differ from USEPA 304(a) recommendations if there is scientific justification.
- Human health criteria:

Background on Revisions to Surface Water Quality Criteria (SWQC) for 94 Toxic Substances

Factors used in deriving SWQC

Toxicity factor (chronic exposure)

- Reference Dose (RfD) for non-carcinogens
- Cancer Slope Factor for carcinogens


Exposure factors

- Body weight (adult)
- Daily drinking water intake (adult)
- Fish consumption rate (adult)
- Bioaccumulation factor (BAF)

Additional factors

- Relative Source Contribution (RSC) factor for non-carcinogens accounts for exposure sources not considered in criterion
- Cancer risk level for carcinogens
- Age-dependent adjustment factors for mutagenic carcinogens
- Uncertainty factor for potential carcinogenicity of carcinogens for which a slope factor is not available

Note: for presentation purposes the denominators are simplified to be representative for a single trophic level of fish. In deriving criteria for chemicals with information for multiple trophic levels (i.e., for trophic levels 2 through 4), each trophic level-specific bioaccumulation factor and fish consumption rate are multiplied together, and that product is then summed with the products (i.e., bioaccumulation factor x fish consumption rate) for the other trophic levels.

Background on Revisions to SWQC for 94 Toxic Substances Toxicity Factors

	USEPA (2015) HHAWQC	Updated criteria (NJDEP)		
Value Reference Dose (mg/kg/day) or Cancer Slope Factor (mg/kg/day) ⁻¹	Chemical-specific	Chemical-specific (differ from USEPA in some cases)		
Sources	 Based on information available as of 2015 from: USEPA IRIS database Other USEPA programs (NCEA, OPPT, OSWER, OW) US DHHS/ATSDR Health Canada CalEPA 	 Based on information available as of 2017 from: USEPA IRIS database NJ DWQI USEPA 2015 updates to HHAWQC Other USEPA programs (NCEA, OPPT, OSWER, OW) US DHHS/ATSDR CalEPA 		
How value selected	Most recent available toxicity factor	Best available toxicity factor based on scientific judgement		

Abbreviations: ATSDR, Agency for Toxic Substances and Disease Registry; CalEPA, California Environmental Protection Agency; HHAWQC, human health ambient water quality criteria; IRIS, Integrated Risk Information System; NCEA, National Center for Environmental Assessment; NJDWQI, New Jersey Drinking Water Quality Institute; OPPT, Office of Pollution Prevention and Toxics; OSWER, Office of Solid Waste and Emergency Response; OW, Office of Water; US DHSS, United States Department of Health and Human Services

Background on Revisions to SWQC for 94 Toxic Substances Exposure Factors

	USEPA (2015) HHAWQC	Updated criteria (NJDEP)	Current criteria (NJDEP)
Body weight (adult)	8	70 kg	
Daily drinking water intake (adult)	2.	2 L/day	
Fish consumption rate (adult)	22.0 g/day*		17.5 g/day
Bioaccumulation factor or bioconcentration factor	Chemical-specific (Trophic level-specific for many chemicals)		Chemical-specific

*To better reflect human consumption of fish and shellfish, trophic level-specific fish consumptions rates were used for many chemicals. Specifically, the trophic level-specific fish consumption rates were: trophic level 2 (benthic feeders) = 7.6 g/day; trophic level 3 (forage fish) = 8.6 g/day; trophic level 4 (predatory fish) = 5.1 g/day.

Background on Revisions to SWQC for 94 Toxic Substances Other Considerations

	USEPA (2015) HHAWQC	Updated criteria (NJDEP)				
Additional factors						
Relative source contribution	Chemical-specific Range from 20% (default) to 80%	Same as USEPA				
Age-dependent adjustment factors for mutagenic carcinogens	Not applied	Applied when appropriate				
Uncertainty factor for potential carcinogenicity for carcinogens with no available cancer slope factor	Not applied	Applied when appropriate				
	Other considerations					
Significant figures	 Significant figures of criterion based on factors used in derivation: If factors available as 1 significant figure, then criterion reported as 1 significant figure If factors available as at least 2 significant figures, then criterion reported as 2 significant figures 	 Same as USEPA However, NJDEP evaluated whether toxicity factors presented as 1 significant figure could be recalculated as 2 significant figures 				

Handout for Stakeholder Meeting NJ Criteria being Considered for Proposal August 2023

Table 1

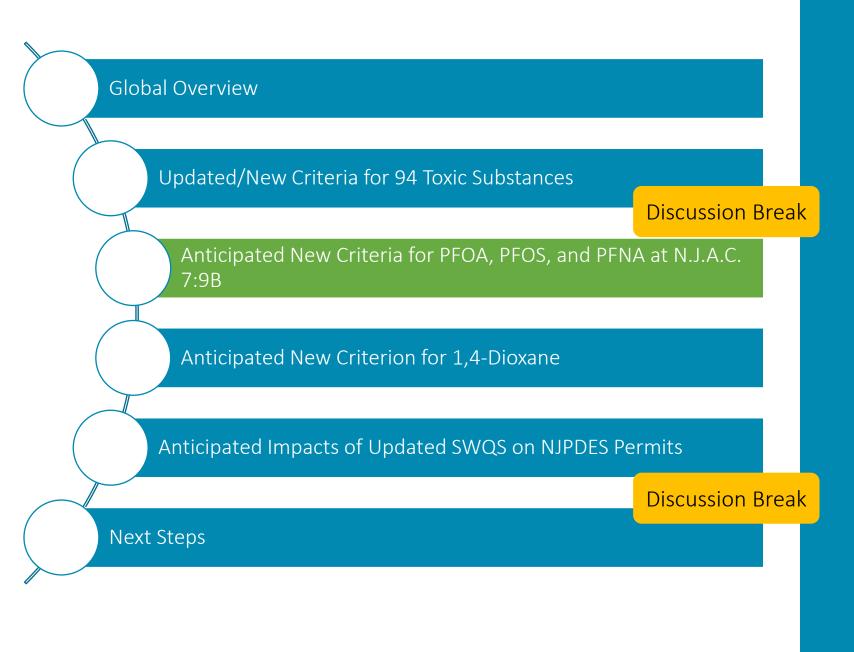
	2023								
			EPA 2015 Recommended Criteria Current NJ Criteria		NJ Criteria being Considered for Proposal		Rationale for difference between NJDEP and EPA		
	Chemical	CAS Number	Water + Organism (Fresh Water) (µg/L)	Organism Only (Saline) (µg/L)	Water + Organism (Fresh Water) (µg/L)	Organism Only (Saline) (µg/L)	Water + Organism (Fresh Water) (µg/L)	Organism Only (Saline) (µg/L)	
1	Acenaphthene	83-32-9	70	90	670	990	68	83	Numerical difference due to NIDEP using same toxicity factor but with 2 or more significant figures
2	Acrolein	107-02-8	3	400	6.1	9.3	3	400	No difference
3	Acrylonitrile	107-13-1	0.061	7.0	0.051	0.25	0.061	7.0	No difference
4	Aldrin	309-00-2	0.0000077	0.00000077	0.000049	0.00005	0.00000077	0.00000077	No difference
5	alpha-BHC (alpha-HCH)	319-84-6	0.00036	0.00039	0.0026	0.0049	0.00036	0.00039	No difference
6	alpha-Endosulfan	959-98-8 (mixture: 115-29-7)	20	30	62	89	20	30	No difference
7	Anthracene	120-12-7	300	400	8300	40000	300	400	No difference
8	Benzene	71-43-2	0.58 - 2.1	16 - 58	0.15	3.3	0.11	3.1	NJDEP used a singular cancer slope factor as opposed to a range of cancer slope factors
9	Benzidine	92-87-5	0.00014	0.011	0.000086	0.0002	0.00014	0.011	No difference
10	Benzo(a) Anthracene	56-55-3	0.0012	0.0013	0.038	0.18	0.006	0.006	NJDEP used more recent cancer slope factor (for BaP) and applied ADAFs
11	Benzo(a) Pyrene	50-32-8	0.00012	0.00013	0.0038	0.018	0.0006	0.0006	NJDEP used more recent cancer slope factor (for BaP) and applied ADAFs
12	Benzo(b) Fluoranthene	205-99-2	0.0012	0.0013	0.038	0.18	0.006	0.006	NJDEP used more recent cancer slope factor (for BaP) and applied ADAFs
13	Benzo(k) Fluoranthene	207-08-9	0.012	0.013	0.38	1.8	0.06	0.06	NJDEP used more recent cancer slope factor (for BaP) and applied ADAFs
14	beta-BHC (beta-HCH)	319-85-7	0.0080	0.014	0.0091	0.017	0.0080	0.014	No difference
15	beta-Endosulfan	33213-65-9	20	40	62	89	20	40	No difference
16	Bis(Chloromethyl) Ether	542-88-1	0.00015	0.017	ND	ND	0.00015	0.017	No difference
17	Bis(2-Chloroethyl) Ether	111-44-4	0.030	2.2	0.03	0.53	0.030	2.2	No difference
18	Bis(2-Chloro-1-Methylethyl) Ether (previously Bis(2-Chloroisopropyl) Ether)	108-60-1	200	4000	1400	65000	200*	3200	Numerical difference due to NIDEP using sam taxicity factor but with 2 or more significant figures. NIDEP calculated a fresh water criterion of 220 µg/l, but will use EPA's ecommended fresh water criterion of 200 µg/L because it is more protective.
19	Bis(2-Ethylhexyl) Phthalate	117-81-7	0.32	0.37	1.2	2.2	0.32	0.37	No difference
20	Bromoform	75-25-2	7.0	120	4.3	140	7.0	120	No difference
21	Butylbenzyl Phthalate	85-68-7	0.10	0.10	150	190	0.10	0.10	No difference
22	Carbon Tetrachloride	56-23-5	0.4	5	0.33	2.3	0.33	3.6	NJDEP used a different cancer slope factor
23	Chlordane	57-74-9	0.00031	0.00032	0.0001	0.00011	0.000041	0.000041	NJDEP used a different cancer slope factor
24	Chlorobenzene	108-90-7	100	800	210	2500	37	270	NJDEP used a different reference dose
									No difference, but note: NIDEP used the same cancer slope

Revisions to SWQC for 94 Toxic Substances

Please refer to handout containing information on all revised and new criteria.

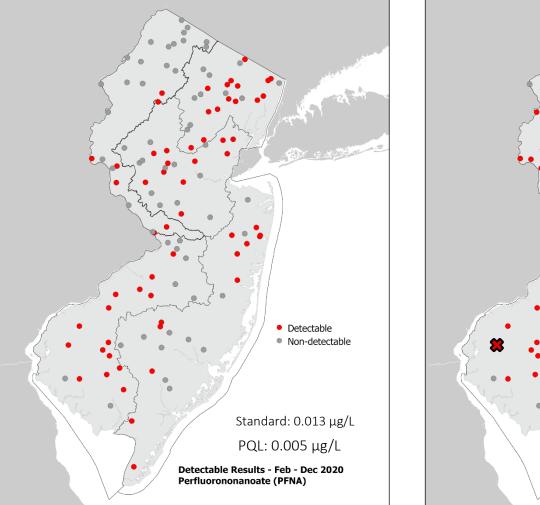
Example: Polycyclic aromatic hydrocarbons (PAHs):

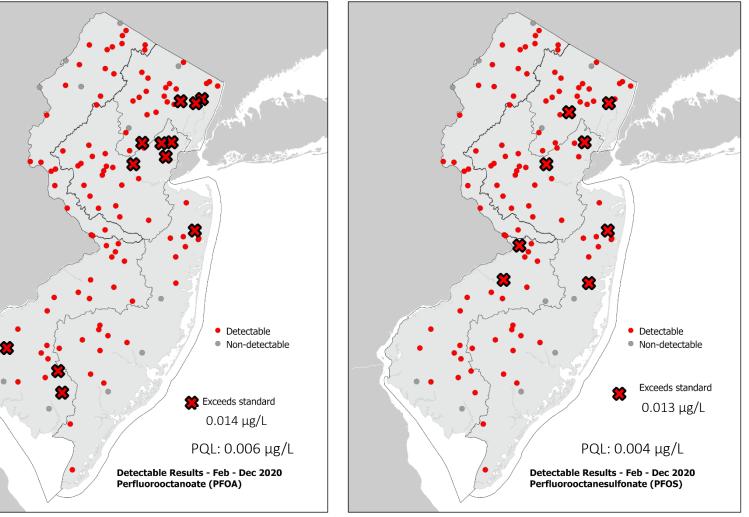
- Includes benzo[a]pyrene and six other PAHs.
- Anticipated NJDEP criteria for PAHs less stringent than USEPA recommended criteria because NJDEP used a more scientifically appropriate cancer slope factor not available to USEPA in 2015.


NJPDES Permits routinely require Waste Characterization Report requirements

Typically, the 87/86 parameters with updated Standards are not present in wastewater effluent. Monitoring for most of the 94 Toxics is already required in NJPDES Permits

87/86 are updated standards – current requirement


7/8 are new standards – new requirement


Anticipated Impacts of Surface Water Quality Standards Rule on NJPDES

Stakeholder Meeting Agenda

PFAS Have Been Found Throughout NJ (Ambient Surface Waters)

Note: All data used in this map will be available at: <u>https://www.waterqualitydata.us/</u>once quality assurance checks are completed and data is uploaded.

Source: NJDEP Bureau of Freshwater and Biological Monitoring, 2020

Timeline of New Jersey Rulemakings for PFAS

Drinking Water Quality Institute Recommends Maximum Contaminant Levels (MCLs)

- MCL of 0.013 μg/L for PFNA
- MCL of 0.014 μg/L for PFOA
- MCL of 0.013 μg/L for PFOS
- These MCLs are set at Health-based MCLs.

January 16, 2018

- GWQS of 0.01 μg/L for PFNA
- PFNA added to list of Hazardous Substances (N.J.A.C. 7:1E)

September 4, 2018

 Drinking Water MCL and GWQS of 0.013 μg/L for PFNA

June 1, 2020

- Drinking Water MCL and GWQS of 0.014 μg/L for PFOA
- Drinking Water MCL and GWQS of 0.013 μg/L for PFOS
- PFOA and PFOS added to List of Hazardous Substances (N.J.A.C. 7:1E)

Why are PFAS in surface water of particular concern?

- Unique as persistent, bioaccumulative, and toxic (PBT) drinking water contaminants.
 - Do not break down in the environment and are water soluble.
- Multiple toxic effects in laboratory animals, some at very low doses.
- Evidence for multiple human health effects from low exposures.
 - Including in general population without additional exposure from contaminated drinking water or other local contamination sources.
- **PFOA, PFOS, and PFNA** have human half-lives (time for half of the amount in body to be excreted) of several years.
 - Build up in the body over time and remain in the body for many years after exposure ends.
- Drinking water is major exposure source, even at low concentrations (i.e., at the human health criteria/MCL levels).
- Higher exposures in infants than older individuals when drinking water is contaminated.
 - From breast milk via mother's exposure, or formula prepared with contaminated water.
 - Sensitive subgroup for PFAS health effects.

Basis for New SWQC for PFNA, PFOA, and PFOS

- Fresh water criteria for these PFAS are NJ Health-based Maximum Contaminant Levels (MCLs).
 - The MCLs are set at Health-based MCLs.
- Criteria consider exposure only through drinking water, and not through fish consumption.
 - Saline water criteria are based on fish consumption exposure; not yet developed due to need for bioaccumulation factors.
- Animal toxicology data are primary basis.
- Multiple health effects in humans at exposures below doses causing toxicity in laboratory animals.
 - Support use of health-protective approaches in developing criteria based on animal data.
- Animal-to-human extrapolations account for much higher blood PFAS levels in humans than animals from the same dose of PFAS.
- Primary basis of criteria is non-cancer effects (Reference Dose):
 - Most sensitive effects that are well established, adverse/precursor to adverse, and relevant to humans.
- Carcinogenic effects also considered (next slide).
- Stated to be "based on an approach intended to be protective for lifetime (chronic) exposure."
 - However, Reference Doses for these PFAS are also applicable to less-than-lifetime exposures.
- "Chemical-by-chemical" approach did not consider potential additive toxicity of co-occurring PFAS.
 - Consistent with DWQI approach for previous MCL recommendations for other contaminants.

Basis for New SWQC for PFNA, PFOA, and PFOS

- PFOA 14 ng/L (0.014 μg/L):
 - Liver toxicity in mice (primary basis).
 - Delayed mammary gland development in mice at very low doses.
 - Accounted for by uncertainty factor for potentially more sensitive effects.
 - If used as primary basis, Health-based MCL and SWQC would be < 1 ng/L.
- PFOS 13 ng/L (0.013 μg/L):
 - Decreased immune system response in mice analogous to decreased vaccine response in humans.
- PFNA $13 \text{ ng/L} (0.013 \mu \text{g/L})$:
 - Liver toxicity in mice.
- Cancer risk from lifetime exposure also evaluated:
 - PFOA and PFOS: "Suggestive evidence of carcinogenicity."
 - Cancer slope factors based on animal tumor data.
 - MCLs based on non-cancer effects determined to protect for 1-in-1 million lifetime cancer risk.
 - PFNA: Cancer effects have not been studied.
- Used older USEPA default adult body weight (70 kg) and drinking water ingestion rate (2 L/day).
- Default relative source contribution factor of 20% (most stringent choice).
 - Partially accounts for higher exposures in infants.

Current USEPA Activities Relevant to PFAS SWQS

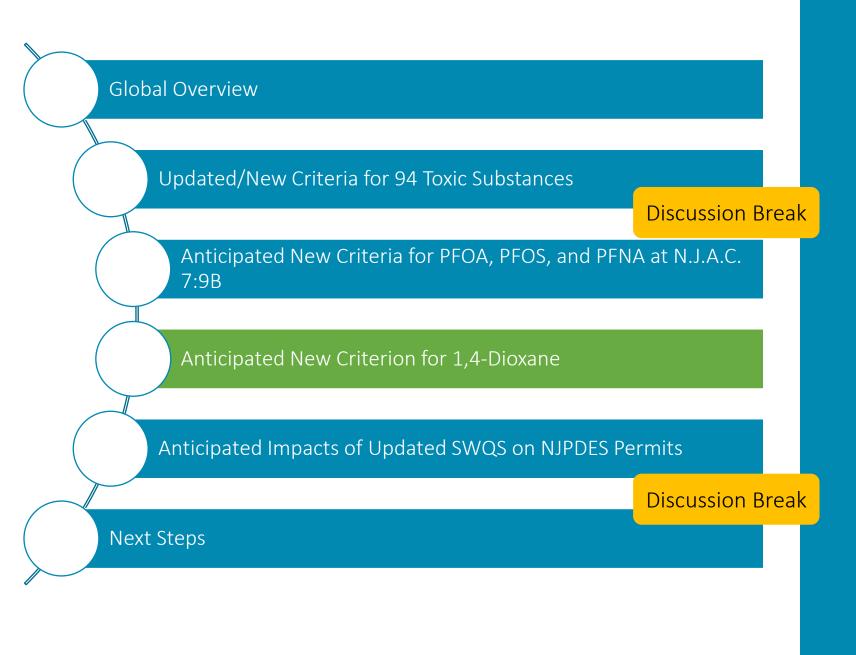
- *April 2022* Draft USEPA acute & chronic freshwater **aquatic life criteria** and chronic tissue-concentration criteria for PFOA and PFOS.
 - Much higher than values based on human health effects (e.g., NJ MCLs).
- *March 2023* Proposed **USEPA MCLs** of 4 ng/L for PFOA and PFOS:
 - Based on analytical limitations (USEPA Minimum Reporting Levels).
 - Maximum Contaminant Level Goals (MCLGs; health-based levels) of zero for both PFAS, in accordance with USEPA policy for likely human carcinogens.
 - USEPA previously categorized PFOA and PFOS as suggestive human carcinogens.
 - Also proposed MCLs and MCLGs for mixtures of four other PFAS (PFNA; perfluorobutane sulfonate [PFBS]; perfluorohexane sulfonate [PFHxS]; GenX) based on Hazard Index of 1.
- At request of NJDEP Commissioner, DWQI Health Effects Subcommittee reviewed draft EPA PFOA and PFOS health effects assessments and other relevant information.
 - *December 2022* Conclusion: Current scientific information supports Health-based MCLs below the current NJ analytical Practical Quantitation Levels (PQLs) of 6 ng/L for PFOA and 4 ng/L for PFOS.
 - Current status DWQI Testing and Treatment subcommittees are reviewing PFOA and PFOS PQLs and treatment removal limitations.

Development of NJ-Specific PFOA, PFOS, and PFNA Bioaccumulation Factors (BAFs)

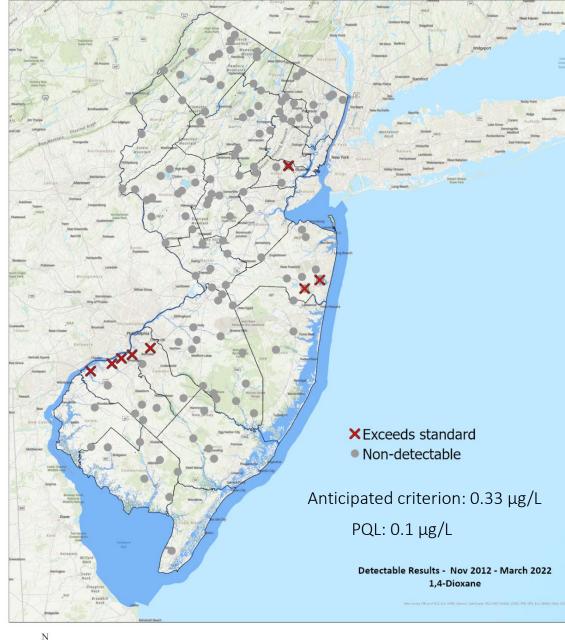
- NJDEP is collecting data to develop field BAFs for PFOA, PFOS, and PFNA in New Jersey saline and freshwater fish. Data to be collected include:
 - Fish tissue PFAS concentrations
 - Isotope analysis to confirm fish trophic levels
 - Water column PFAS concentrations
 - Water quality characteristics that may impact PFAS partitioning
- BAFs derived from field data are generally preferred to account for all interactions between fish and their environment (sediment types, food/prey availability, etc.)
- BAFs estimated from octanol:water partition coefficients (K_{ow}) are not applicable to PFAS because PFAS do not bioaccumulate in lipids.
- Generally, the impacts of PFAS partitioning in the environment are not as well understood as for other traditional and legacy contaminants. This comprehensive field sampling will provide the data for NJ-specific BAF development.

Summer 2022

• Sampling of saline fish and water


<u>Summer 2023</u>

• Sampling of freshwater fish and water


Summer 2024

• Final report anticipated to be available

Stakeholder Meeting Agenda

1,4-Dioxane in NJ (Ambient Surface Waters)

Note: All data used in this map will be available at: <u>https://www.waterqualitydata.us/</u>once quality assurance checks are completed and data is uploaded.

0 5 10 20 30 40

Data Sources: NJDEP Bureau of GIS Water Quality Portal

Timeline of New Jersey Rulemakings for 1,4-Dioxane

January 16, 2018 GWQS of 0.4 μg/L for 1,4-dioxane

September 2021

Drinking Water Quality Institute recommends MCL of 0.33 µg/L for 1,4-dioxane

Information Relevant to Human Health Criterion for 1,4-Dioxane

- Water soluble and stable in water.
- Drinking water is the primary exposure pathway.
- Human epidemiology data are limited and not informative for risk assessment.
- Non-carcinogenic effects in laboratory animals include toxicity to liver and kidney.
 - Less sensitive than carcinogenic effects; not driver for risk assessment.
- Caused tumors in multiple organs in studies in rats, mice and guinea pigs.
 - Carcinogenicity is basis of risk assessment.

Basis for New SWQC for 1,4-Dioxane

Fresh water human health criterion is Health-based MCL of 0.33 µg/L developed by NJ DWQI.

- MCL recommended by DWQI is set at Health-based MCL.
- MCL recommendation accepted by NJDEP Commissioner, but MCL not yet proposed.

Not bioaccumulative; therefore, appropriate to base fresh water criterion on drinking water exposure only.

Classified as likely human carcinogen by:

- USEPA Integrated Risk Information System (IRIS) 2010 and 2013.
- NJDEP Ground Water Quality Criterion (GWQC) 2018.
- USEPA Office of Chemical Safety and Pollution Prevention (OCSPP; responsible for implementing TSCA) 2020.
- NJ DWQI 2021.

Based on USEPA IRIS (2010, 2013) cancer slope factor of 0.10 (mg/kg/day)⁻¹.

- Based on liver tumors in female mice.
- Most sensitive of numerous available cancer slope factors for other tumor types and other studies.
- Also used as basis of NJDEP GWQC.

More recent USEPA OCSPP (2020) slope factor of 0.12 (mg/kg/day)⁻¹ confirms earlier IRIS conclusions.

- Reviewed more recent scientific literature.
- Slope factor is almost identical numerically to earlier IRIS value.
- Based on same female mouse liver tumor data and slightly different modeling approach.

Basis for New SWQC for 1,4-Dioxane

Fresh water human health criterion of 0.33 μ g/L based on:

- Cancer slope factor of 0.10 (mg/kg/day)⁻¹.
- One in one million (1 x 10⁻⁶) cancer risk level.
- Updated USEPA exposure assumptions (body weight 80.0 kg; drinking water ingestion rate – 2.4 L/day).

NJ Ground Water Quality Criterion (GWQC) of 0.4 μ g/L (rounded from 0.35 μ g/L) is based on:

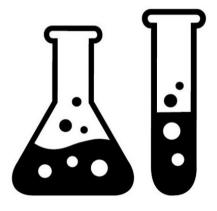
- Same cancer slope factor and risk level as new SWQC.
- Older USEPA exposure assumptions (body weight 70 kg; drinking water ingestion rate – 2 L/day).

Anticipated Impacts to Labs and Remediation Sites due to:

- Updated criteria for 94 toxic substances
- New criteria for PFNA, PFOA, PFOS, and 1,4-dioxane

Anticipated Impacts to Laboratories

94 Toxic Substances:

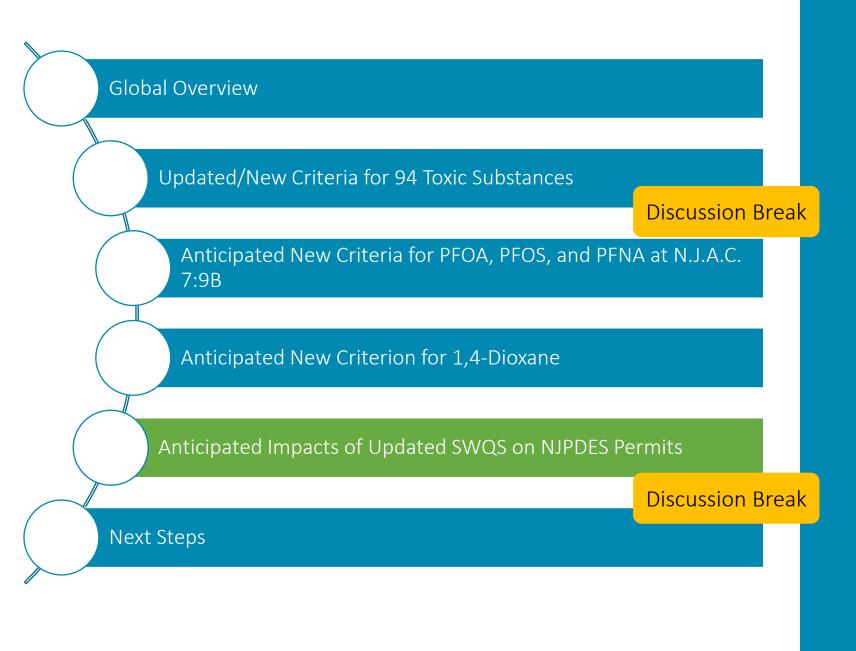

- Many parameters are already present in the Ground Water Quality Standards (GWQS), and permittees are already monitoring for said parameters.
- Analytical methods and PQLs for surface waters are similar to what is currently in use for ground water monitoring.
- Always refer to the applicable 40 C.F.R. Part 136 for the list of approved methods for a parameter.
- May require a grace period for laboratories to obtain certification, in the event that the number of certified labs for an allowable method is limited.

PFAS:

- Currently there are six laboratories certified for PFAS NPW testing by <u>Draft Method 1633</u>, the preferred analytical method.
- All PFAS would need to be analyzed using:
 - USEPA Draft 1633, or
 - A user-defined, laboratory-specific Standard Operating Procedure (SOP) method reference, if not certified for USEPA Draft 1633.
- Recommend laboratories to obtain for certification to ensure consistency.

1,4-Dioxane:

- No analytical method for non-potable water listed in 40 C.F.R. Part 136
- Possible methods to use:
 - SW-846 8260D, or SW-846 8270E with SIM, or
 - A user-defined, modified option for USEPA Method 522


Anticipated Impacts to Remediation Sites

The **new** Surface Water Quality Standards will be applied at all active site remediation sites involving a ground water to surface water pathway.

- Site Remediation projects would have six months to comply with new standards from the effective date of adoption.
- Site Remediation has three years to review a submittal by the Licensed Site Remediation Professional (LSRP) and to invalidate the submittal if it does not meet NJDEP regulations or standards.
- May result in additional evaluation of potential surface water impacts. May include additional monitoring wells, additional sampling, and additional treatment of groundwater discharging to surface water bodies.
- For closed sites, sites with Final Remediation Documents (No Further Action or Response Action Outcome), or sites with Remedial Action Workplan approvals:
 - May trigger additional remediation of contaminated sites for constituents becoming more stringent by an order of magnitude.

Closed sites with Classification Exception Areas (CEAs) will need to be reevaluated at the time of biennial certification. Closed sites without CEAs may be reevaluated if the site should be remediated again.

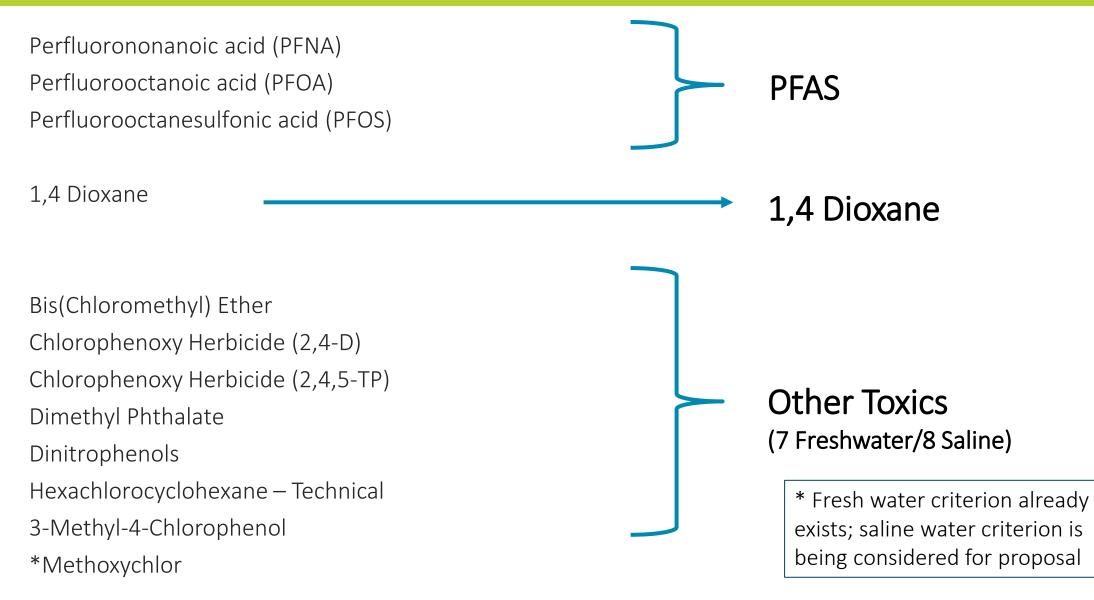
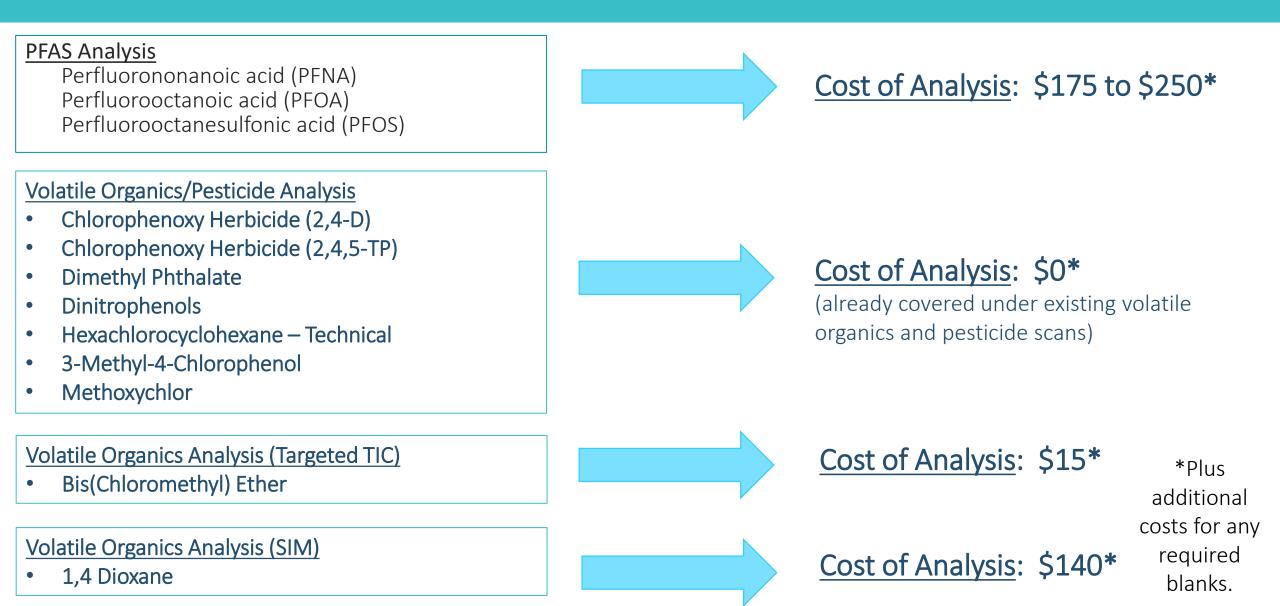
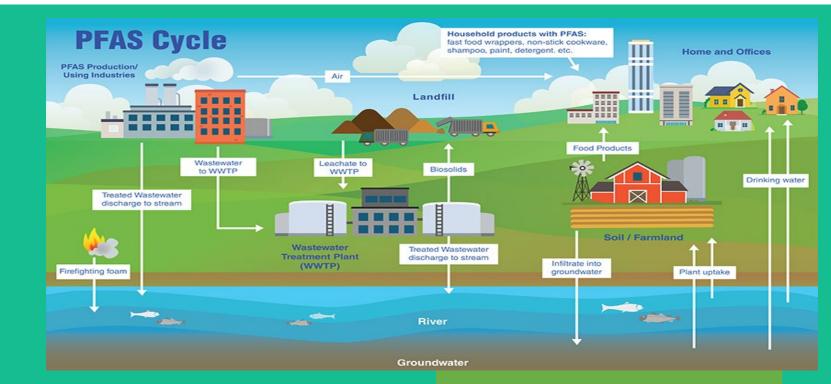

Stakeholder Meeting Agenda

Table VI in Subchapter 4 to apply to bothSurface Water and Ground WaterApplication Requirements

Narrative language that clarifies the Department's ability to require monitoring in the application for parameters that have no numeric SWQS


Anticipated Impacts of Updated SWQS on NJPDES Permits

12 Anticipated New Surface Water Quality Standards for Toxics

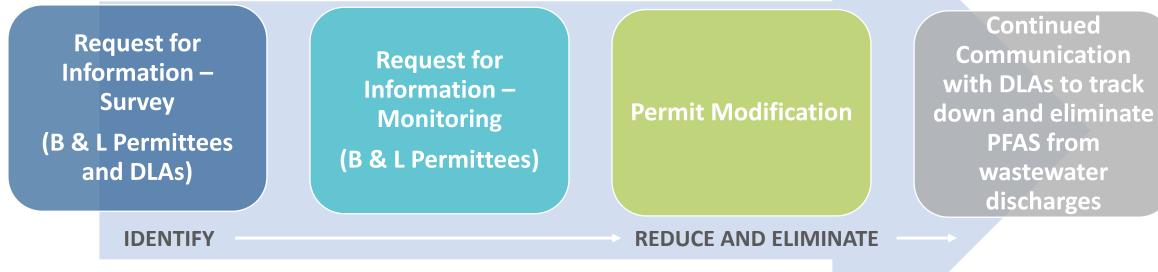


Estimated Cost of Analysis for 12 New Parameters

Addressing PFAS in NJPDES Surface Water & Pretreatment Permits

Reduce Eliminate Identify TARGET THE SOURCE

GOAL OF THE PFAS STRATEGY


Publicly Owned Treatment Works (POTWs) do not typically use or generate PFAS

Conventional Treatment Technology is not designed to remove PFAS

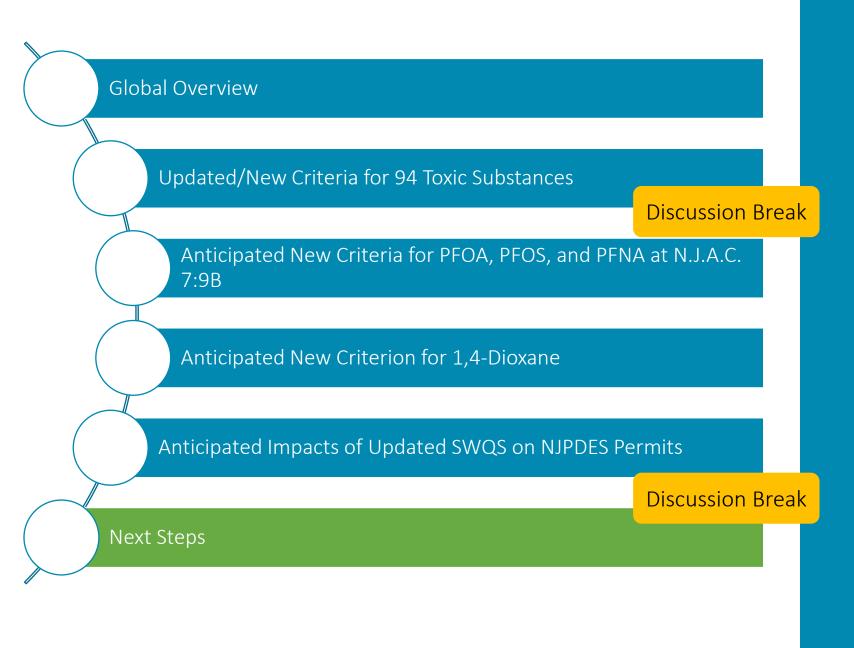
Treatment technology for PFAS at POTWs may not be viable at this time Treatment technology at POTWs is emerging, but more research is needed

Why Target the Source?

TARGET THE SOURCE

- Industrial Facilities that discharge directly to surface water (B)
- Industrial Facilities that discharge to a wastewater treatment plant (L)
- Delegated Local Agencies (DLA)

DLAs are local agencies with an industrial pretreatment program approved by the Department. The 17 DLAs in NJ regulate over 650 industrial users throughout the state.



Focus on Identifying, Reducing and Eliminating PFAS

Monitoring will inform where PFAS is and at what levels

Goal is removal of PFAS at the source

Stakeholder Meeting Agenda

Next Steps for Anticipated SWQS Rulemaking

Goals:

- Finalize rule proposal by Fall 2023.
- Anticipate publication of rule proposal by end of 2023 or early 2024.

Victor Poretti, Director	Division of Water Monitoring, Standards and Pesticide Control
Kimberly Cenno, Bureau Chief	Bureau of Environmental Analysis, Restoration & Standards
Tracy Fay, Standards Coordinator	Director's Office
Biswarup "Roop" Guha, SWQS/GWQS Rule Manager and Lead	SWQS@dep.nj.gov
Kelly Mascarenhas, SWQS/GWQS Rule Team	<u>SWQS@dep.nj.gov</u>
MaryAnne Kuserk, Assistant Director Jennifer Willemsen, Ph.D., Research Scier Celine Cumming, Geologist	Contaminated Site ntist Remediation & Redevelopment Program
Susan Rosenwinkel, Assistant Director	Division of Water Quality
Kerri Standowski, Environmental Specialis	st Division of Water Quality
Nick Procopio, Ph.D., Director	Division of Science and Research
Gloria Post, Ph.D., Research Scientist Dan Millemann, PhD., Research Scientist Michele Potter, Manager, Office of Quality Assurance	

Contact Us