DWQI – Cyanotoxin Round Robin Update

09/08/2022

ROB NEWBY, PH, D.

NJDEP DIVISION OF SCIENCE AND RESEARCH

Background

- The overgrowth of photosynthetic microorganisms is known as a harmful algal bloom (HAB)
 - Species that can form HABs include true algae, diatoms, and cyanobacteria
 - There are recreational and drinking water risks associated with HABs, particularly when HABs dominated by cyanobacteria species
 - Cyanobacteria can sometimes produce toxins during bloom events
 - These toxins include microcystin; which has in excess of 200 congeners
 - Detection of microcystin is usually performed using one of two methods:
 - EPA 546 <u>Enzyme Linked Immunos</u>orbent <u>Assay</u>
 - EPA 544 LC-MS/MS

Round Robin Project Development

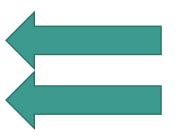
- DWSG requested DSR to evaluate and draft drinking water values for commonly detected cyanotoxins following UCMR-4
 - Toxicologists within DSR developed a draft drinking water value for microcystin of 0.07 μg/L
 - Testing Limitations for commonly used quantification/detection of microcystin
 - EPA 546 MRL 0.3 μg/L
 - ADDA-OH Kit Detection Limit 0.1 µg/L
 - Discussions with utilities of the draft number lead to the proposed use of an enhanced sensitivity kit, which was not an approved modification of EPA 546
 - EPA has since allowed this kit as an approved substitution/modification to 546
 - SAES test kit uses different detection chemistry to have a lower detection limit; 0.016 μg/L
- Discussions with DWSG, DSR, and OQA lead to a formal request to DSR for a proposed project to look at the validation of the SAES kit, the lower-level detection limit of microcystin in finished drinking water, and to look at ways to increase testing capacity for either 546 and/or 544

Previously Presented - Round Robin

- Work was only done for microcystin
 - No other analytical concern for the other cyanotoxins in finished water
- EPA Health Advisory 0.3 µg/L Microcystin FDW
- DSR Draft Health Advisory Number 0.07 µg/L FDW
- EPA 546 MRL 0.3 μg/L
- ELISA looks at total microcystin; at time when the draft DSR number was first being discussed DEP was made aware of newer detection chemistry which was being used, but had not yet been approved as a certified modification of EPA 546
 - SAES test kit uses different detection chemistry to have a lower detection limit; 0.016 μ g/L
 - ADDA-OH (validated for EPA 546) detection limit is 0.1 μ g/L

Previously Reported – Round Robin

Objective 1


- Compare the performance of the SAES kit to ADDA-OH at low levels to measure reliability for precision and accuracy.
 - NJDEP lab was in process of obtaining OQA certification for 546 at the time and has since completed certification.
- Objective 2
 - Send out spiked samples with known concentrations to utilities routinely performing microcystin analysis to see real world recovery and data at low levels
 - A concept like how Abraxis (ELISA kit vendor) performs proficiency testing with known concentrations
- Objective 3
 - Compare the SAES kit at low levels to EPA 544 with spiked finished drinking water to measure sample recovery

Updated Report - Round Robin

- Objective 3 Method Comparison
 - Based on data obtained from the first two objectives, selected concentrations were chosen and a utility with known blooms in source water, but no known breakthrough in finished drinking water, was asked to provide finished water samples.
 - These water samples were spiked with the following concentrations:
 - 0 µg/L (spiked with deionized water)
 - 0.07 µg/L
 - 0.1 µg/L
 - 0.3 µg/L
 - All samples were run in duplicate with method 546 controls using the SAES kit
 - "Raw" samples were quenched with the appropriate quenching agent/preservative (EPA 546 and 544 require different conditions); then spiked with the concentrations of microcystin and processed according.

Updated Report – Round Robin

	Expected	Reported	Recovered
Sample 1-0.07	0.07 µg/L	0.09 µg/L	128.57%
Sample 2-0.1	0.1 µg/L	0.134 µg/L	134.00%
Sample 3-0.3	0.3 µg/L	0.389 µg/L	129.67%
Sample 1a-Spike	0.07 µg/L	0.079 µg/L	112.86%
Sample 2a-Spike	0.1 µg/L	0.137 µg/L	137.00%
Sample 3a-Spike	0.3 µg/L	0.363 µg/L	121.00%
Sample 0	0	0	N/A

Samples spiked before extraction

Samples spiked after extraction

	Nod-R	MC-YR	MC-RR	MC-LR	MC-LA	MC-LY	MC-LF	
Sample 0	0	0	0	0	0	0	0	
Sample 1 - 0.07	0	0	0	83	0	0	0	Ţ
Sample 2 -0.1	0	0	0	130	0	0	0	ng/L
Sample 3 -0.3	0	0	0	390	0	0	0	

	micrograms/L	EPA 546	EPA 544	Expected	Difference EPA 546/544	Difference EPA 546/Expected	Difference EPA 544/Expected
	0.07	0.09	0.083	0.07	108.43%	128.57%	118.57%
	0.1	0.124	0.13	0.1	95.38%	124.00%	130.00%
ſ	0.3	0.389	0.39	0.3	99.74%	129.67%	130.00%
	0	0	0	0	N/A	N/A	N/A

Conclusions from Round Robin

- From Objective 1 and 2
 - Detection at values less than the MRL are possible with the standardly used kit ADDA-OH, though consistency and operator training will likely play a big factor in the success of extrapolating below the lowest standard. This would not be a recommended approach based on lab experiences
 - The SAES kit generally reported values "higher" than spike-in at lower levels, this could be due to plotting issues with the curve, biological interference, or any number of factors which affect the way log plotted values show.
- From Objective 3
 - When microcystin is detected at low levels (below 0.3µg/L) with the SAES kit, EPA 544 is in good detection agreement of reporting values with the kit data for detection based on microcystin-LR, which is the most commonly occurring congener produced by cyanobacteria

• Thank you to all the utilities who took part in the Round Robin!