

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Prepared for the New Jersey Department of Environmental Protection Division of Water Supply & Geoscience

2018

Daniel J. Van Abs, PhD, PP/AICP Principal Investigator Rutgers – The State University of New Jersey School of Environmental and Biological Sciences Department of Human Ecology 55 Dudley Road, New Brunswick, NJ 08903

e: vanabs@sebs.rutgers.edu

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Cover photo credits: Van Abs

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Please cite this study as:

Van Abs, Daniel J., Jiayi Ding and Eric Pierson. 2018. Water Needs through 2040 for New Jersey Public Community Water Supply Systems. Rutgers University, New Brunswick, NJ.

Disclaimer

This report has been reviewed and accepted by the NJDEP as the final product of Contract GS14-008 (NJDEP). The results and conclusions of this study are those of the authors and do not represent the view of Rutgers University or the New Jersey Department of Environmental Protection.

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Contents

Table of Figures	vii
Table of Tables	viii
Acknowledgements	ix
Executive Summary	xi
1. Project Purpose and Methodology Considerations	1
2. General Project Methodology	5
Population Projections/Forecasts Analysis Method	5
Current Water Demand Rates Method	6
Future Water Demand Method	7
3. Population Projections and Forecasts	9
Statewide and Regional Population Projections	9
NJ Department of Labor & Workforce Development	9
Metropolitan Planning Organizations	10
Comparison of Available Projections	10
Evaluation of Sensitivity to Variations in Critical Variables	11
Approach	11
Sensitivity Test 1: Mortality Rates	12
Sensitivity Test 2: Fertility Rates	14
Sensitivity Test 3: Mortality and Fertility Rates	17
Sensitivity Test 4: Net Migration	19
County Level Sensitivity Analyses	23
Sensitivity Tests C1 and C2: Fertility Rates	24
Sensitivity Tests C3 and C4: Mortality Rates	26
Conclusions	28
4. Evaluation of Current Water Demands	29
PCWS Service Areas, Populations and Land Use	29
Service Area Population Results	31
Sources of Population Uncertainty	32
Per Capita Residential Water Demands by Housing Category	33
Data Acquisition and Analysis	34
Characterization of Case Example Water Systems	36
Residential Annual Average, Non-growing Season and Growing Season Demands	39
Commercial and Industrial Demands	44
Case Study Water Losses and Total Water Demands	47
Extrapolation to Other PCWS Systems	48

Non-Revenue Water and Water Losses	48
Residential Demands	53
Commercial and Industrial Demands	56
Comparison of Model Estimates to Reported System Demands	60
Sources of Uncertainty for Baseline Water Demand	62
5. Water Demand Projections	65
Water Demand Trends	65
Literature Survey for Residential Demands	65
New Jersey Water Conservation Requirements	67
New Jersey Water Demand Trends	67
Water Demand Trend Scenarios	71
Residential Demand Scenarios	71
Commercial and Industrial Demands	73
Water Loss Projections	73
Application of 2040 Population Forecasts to PCWS Service Areas	74
2040 Water Demands by PCWS	75
Recommended Projections from Current Demands	77
6. Recommendations for Further Evaluation	81
References	83
Cited References	83
Data References	84
Appendices	87
Appendix A. Methodology for 2010 and 2040 PCWS Population Estimates and Per Capita	
Water Demand Calculations	89
Part 1 -Data download & Acquisition	90
Part 2 – Dasymetric Population Distribution	90
Part 3 Assigning Residential Density to Water Use Data Points	98
Part 4 Assigning Population to All Water Use Data Points	104
Appendix B. Residential Demands Model Construction	111
Appendix C. PCWS System Demands Model Construction	115
Appendix D. Case PCWS System Per Capita Residential Rates and Seasonal Ratios	129
Appendix E. Project Methodology	177

Table of Figures

Figure ES-1. Public Community Water Supply System Service Areas, 2017	xiii
Figure 3-1. NJDOL Population Projections by County: 2012 to 2032	10
Figure 3-2. U.S. and NJ Population Pyramids (Cohort by Percent)	12
Figure 3-3. Sensitivity Test 1 (Mortality Rate) from 2010 Census Population	13
Figure 3-4. Fertility Rate by Mother's Age for Sensitivity Test 2	14
Figure 3-5. Fertility Rate by Mother's Age (NJ vs. U.S.)	15
Figure 3-6. Sensitivity Test 2 (Fertility Rate) from 2010 Census Population	16
Figure 3-7. Age-adjusted Death Rate by Year, NJ and U.S. (1990-2010)	17
Figure 3-8. Total Fertility Rate per 1,000, NJ and U.S. (1990-2012)	18
Figure 3-9. Sensitivity Test 3 from 2010 Census Population	19
Figure 3-10. New Jersey Population Annual Growth Rate (1981-2014)	20
Figure 3-11. Calculated Net Migration, New Jersey (1990-2011)	21
Figure 3-12. Net Domestic Out-Migration per 1000 from New Jersey and the Northeast, 1991-2007	21
Figure 3-13. Sensitivity Test 4 for Net Migration Rate from 2010 Census Population	24
Figure 3-14. 2012 Fertility Rates in United States and New Jersey (per 1000 women)	25
Figure 3-15. 2013 US & 2011 NJ Survival Rate	27
Figure 4-1. Example Relationship of Water Use Data Points and Land Use/Land Cover	35
Figure 4-2. Example Ratios of Summer to Non-Summer Per Capita Per Day Water Use	40
Figure 4-3. Non-Revenue Water as a Percent by Volume of Water Supplied for 276 Systems Reporting Water A	udit
Results to the Delaware River Basin Commission.	49
Figure 4-4. Aggregate Summary Graphic for 276 Systems Reporting Water Audit Results to the Delaware River	
Basin Commission	50
Figure 4-5. Water Losses for PCWS Systems (Scattergram)	51
Figure 4-6. Water Losses for PCWS Systems (Box and Whisker Plots)	52
Figure 4-7. Water Demands Effects of Tourism for Coastal and Near-Coastal PCWS Systems	55
Figure 4-8. Percentage of PCWS Service Area in Commercial Land Uses	56
Figure 4-9. Generalized Relationship of Commercial Demands to: (a) Commercial Land Area, (b) Residential	
Demands, (c) Residential Land	. 59
Figure 4-10. Generalized Relationship of Industrial Demands and Land Area	59
Figure 4-11. Comparison of Demand Differences to Commercial Land Areas	63
Figure 5-1. New Jersey Water Demands by Use Sector, 1990 to 2015, Excluding Power Generation	68
Figure 5-2. New Jersey Consumptive Water Losses 1990 to 2011 by Use Sector, 1990 to 2015, Excluding Power	ſ
Generation	68
Figure 5-3. New Jersey Population and Major Growth Periods	. 69
Figure 5-4. Newark Population and Major Growth and Loss Periods	. 69
Figure 5-5. Historic Production and Use of Water Pipe by Material, With Selected Estimated Ages	70
Figure 5-6. Percentage of Houses Built Prior to 1990 by Census Block	. 70
Figure 5-7. Water Losses for PCWS Systems (Box and Whisker Plots)	. 74

Table of Tables

Table ES-1. Residential Per Capita Demands by Housing Density and Season	xi
Table ES-2. 2040 Water Demand Projections from 2008-2015 Average Demands for the Largest 37 PCWS Syst	ems
Based on NJWaTr 2008-2015 Average Demands	xvii
Table 1-1. Residential Water Use Rates in 1975 (gpcd).	2
Table 2-1. Variables Use to Identify Case Example PCWS Systems (Step D-3)	6
Table 2-2. Population Trend Scenarios (Step D-10)	7
Table 3-1. Projections of Total Population by Projection Model	9
Table 3-2. MPO Population Projections	10
Table 3-3. Comparison of NJDOL and MPO Population Projections	11
Table 3-4. State Population Variability Scenarios	. 11
Table 3-5. Results for Sensitivity Test 1 from 2010 Census Population:	. 14
Table 3-6. Results for Sensitivity Test 2 from 2010 Census Population	17
Table 3-7 Results for Sensitivity Test 3 from 2010 Census Population	19
Table 3-8 SOI Tax Statistics Migration Data New Jersey (IRS)	22
Table 3-9 Estimates of the Components of Resident Population Change (U.S. Census Bureau)	23
Table 3-10 Results for Sensitivity Test 4 from 2010 Census Population	23
Table 3-11. County Population Variability Scenarios	20
Table 3.12 Sensitivity Tests C1 and C2 Modifying Fertility Pates	24
Table 3.13. Sensitivity Tests 3 and 4. Modifying Mortality Pates	25
Table 4.1. New Jersey Deputation Density Paties	. 21
Table 4.2. New Jensey Water System Denulation by Desidential Development Density (Ten 500/)	
Table 4-2. New Jersey water System Population by Residential Development Density (10p 50%)	31
Table 4-5. Geographic Variables of Water Deniand	54
Table 4-4. water Utilities Providing Residential water Demand Data	34
Table 4-5. Relationship of PCwS System Service Areas to Project Land Classifications (High/Medium Residenti Described)	ai
Densities)	
Table 4-6. Relationship of PCwS System Service Areas to Project Land Classifications (Low and Rural Resident	.181
Densities)	38
Table 4-7. Example Per Capita Residential Demands and Summer to Non-Summer Demand Ratios	39
Table 4-8. Example Residential Water Demand Per Capita Per Day (gpcd) for a PCWS Service Area	40
Table 4-9. Example Per Capita Residential Demands, Year-Round versus All Users	41
Table 4-10. Median and Weighted Average Residential Water Demands, Case PCWS Systems	42
Table 4-11. Merged Land Classification Categories due to Low Associated Populations	47
	12
Table 4-12. Selected Per Capita Residential Demands	43
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems	43
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System	43 43 45
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case	43 43 45 45
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System	43 43 43 45 45
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss	43 43 43 45 se 47
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss Estimates by Case PCWS System	43 43 45 se 47
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss Estimates by Case PCWS System Table 4-17. Water Loss Statistics by System Size and Geology	43 43 45 se 47 47 52
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Cas PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss Estimates by Case PCWS System Table 4-17. Water Loss Statistics by System Size and Geology Table 4-18. Seasonal Demand Analysis for Coastal PCWS Systems	43 43 45 se 47 47 52 54
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasPCWS SystemTable 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemTable 4-17. Water Loss Statistics by System Size and GeologyTable 4-18. Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19. Shore Systems Lacking Seasonal Demand Factors	43 43 45 se 47 47 52 54 55
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasPCWS SystemTable 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemTable 4-17. Water Loss Statistics by System Size and GeologyTable 4-18. Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19. Shore Systems Lacking Seasonal Demand FactorsTable 4-20. Model Assumptions for Industrial Water Demands	42 43 43 45 se 47 52 54 55 60
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasPCWS SystemTable 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemTable 4-17. Water Loss Statistics by System Size and GeologyTable 4-18. Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19. Shore Systems Lacking Seasonal Demand FactorsTable 4-20. Model Assumptions for Industrial Water DemandsTable 4-21. Comparison of Model and Reported PCWS System Demands (Largest Systems)	42 43 43 45 se 47 52 54 55 60 60
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasePCWS SystemTable 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemTable 4-17. Water Loss Statistics by System Size and GeologyTable 4-18. Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19. Shore Systems Lacking Seasonal Demand FactorsTable 4-20. Model Assumptions for Industrial Water DemandsTable 4-21. Comparison of Model and Reported PCWS SystemsTable 5-1. Residential Water Demands for Case PCWS Systems	43 43 45 se 47 52 54 55 60 60 71
Table 4-12.Selected Per Capita Residential DemandsTable 4-13.Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14.Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15.Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasePCWS SystemSystemTable 4-16.Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemSystemTable 4-17.Water Loss Statistics by System Size and GeologyTable 4-18.Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19.Shore Systems Lacking Seasonal Demand FactorsTable 4-20.Model Assumptions for Industrial Water DemandsTable 4-21.Comparison of Model and Reported PCWS SystemsTable 4-21.Comparison of Model and Reported PCWS SystemsTable 5-1.Residential Water Demands for Case PCWS SystemsTable 5-2.Weighted Average Residential Demands and Seasonal Ratios	42 43 43 45 45 47 52 54 55 60 71 72
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss Estimates by Case PCWS System Table 4-17. Water Loss Statistics by System Size and Geology Table 4-18. Seasonal Demand Analysis for Coastal PCWS Systems Table 4-19. Shore Systems Lacking Seasonal Demand Factors Table 4-20. Model Assumptions for Industrial Water Demands Table 4-21. Comparison of Model and Reported PCWS Systems Table 5-1. Residential Water Demands for Case PCWS Systems Table 5-2. Weighted Average Residential Demands and Seasonal Ratios Table 5-3. 2040 Residential Demand Scenarios	
Table 4-12. Selected Per Capita Residential DemandsTable 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS SystemsTable 4-14. Residential, Commercial and Industrial Demands by Case PCWS SystemTable 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by CasPCWS SystemTable 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water LossEstimates by Case PCWS SystemTable 4-17. Water Loss Statistics by System Size and GeologyTable 4-18. Seasonal Demand Analysis for Coastal PCWS SystemsTable 4-19. Shore Systems Lacking Seasonal Demand FactorsTable 4-20. Model Assumptions for Industrial Water DemandsTable 4-21. Comparison of Model and Reported PCWS SystemTable 4-21. Residential Water Demands for Case PCWS SystemsTable 5-1. Residential Water Demands for Case PCWS SystemsTable 5-2. Weighted Average Residential Demands and Seasonal RatiosTable 5-3. 2040 Residential Demand ScenariosTable 5-4: PCWS Systems with Major Industrial Land Uses	
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems	
Table 4-12. Selected Per Capita Residential Demands Table 4-13. Comparison of Per Capita Residential Demands for Largest Case PCWS Systems Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses and Demand Comparisons by Case PCWS System Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most Recent Water Loss Estimates by Case PCWS System Table 4-17. Water Loss Statistics by System Size and Geology Table 4-18. Seasonal Demand Analysis for Coastal PCWS Systems Table 4-19. Shore Systems Lacking Seasonal Demand Factors Table 4-20. Model Assumptions for Industrial Water Demands Table 4-21. Comparison of Model and Reported PCWS Systems Table 4-21. Residential Demands for Case PCWS Systems Table 4-21. Residential Demands for Case PCWS Systems Table 4-21. Comparison of Model and Reported PCWS Systems Table 5-3. 2040 Residential Demand Scenarios Table 5-4. PCWS Systems with Major Industrial Land Uses Table 5-5. Water Loss Scenarios for 2040 Demands Table 5-6. 2040 Water Demand Scenarios	

Acknowledgements

The Rutgers team thanks the New Jersey Department of Environmental Protection for its support of this project, and for the continuing involvement of NJDEP staff throughout the life of the project. Steven Domber served as the project manager, with the technical support and assistance of Nicholas Thistle and staff of the NJDEP Division of Water Supply and Geoscience, including the New Jersey Geological & Water Survey, the Bureau of Water Allocation and the Bureau of Safe Drinking Water.

The Rutgers team included two graduate assistants, Jiayi Ding (throughout the project) and Eric Pierson (first year of the project), both affiliated with the Edward J. Bloustein School of Planning & Public Policy. This project could not have been completed without their efforts in population projections and GIS analysis. Thanks also to Kaitlyn (Kate) Millsaps, also a graduate student with the Bloustein School, for her compilation and evaluation of literature regarding residential water demand trends.

Our thanks to the water supply utilities that provided residential demand data and additional information. This project would have been entirely impossible without their participation. Please note that in nearly every case, provision of the customer data occurred in compliance with Data Confidentiality Agreements between the utility and Rutgers University to ensure that no customer data are provided to NJDEP or to other parties. Only statistical analyses of the customer data have been provided to NJDEP. Upon completion of the project and acceptance of the report by NJDEP, Rutgers is required to delete all copies of the original customer data from its files.

Our thanks to the Water Supply Advisory Council, its technical advisors, and a group of additional advisors who agreed to provide input to the methodology for this project.

Finally, thanks to the administrative staff of the Department of Human Ecology, Wendy Stellatella and Justine DiBlasio, for their efforts in administration of the grant. Water Needs through 2040 for New Jersey Public Community Water Supply Systems

New Jersey Water Needs through 2040: Evaluation of Population and Water Use Rate Scenarios

Executive Summary

The New Jersey Department of Environmental Protection (NJDEP) contracted with Rutgers-The State University of New Jersey (Rutgers) to estimate water demands for each Public Community Water Supply (PCWS) system in New Jersey to the year 2040. The project results will support future water supply planning by NJDEP, including the Statewide Water Supply Plan. This project made several important advances regarding our understanding of water supply demands and demand forecasting. This report provides a detailed technical discussion of the methodology, data collection, data analyses, model development and assumptions, and results for the project. It is not written or intended for general public use.

Residential Demand Data

Multi-year residential water demand data were collected and analyzed representing over 40 percent of the state's population and over 45 percent of those served by PCWS systems. Data were provided by Mount Laurel MUA, Newark Water & Sewer, New Jersey American Water (28 systems), Passaic Valley Water Commission (PVWC), Ridgewood Water Department, Roxbury Township Water, and Suez-New Jersey (Hackensack and Franklin Lakes systems). The results provide a detailed view of per capita demands and how they vary by housing density and geographic area of the state. Additional factors were assessed, including housing age, average slope and precipitation intensity, but the available data did not support differentiation of residential demands by these factors. The weighted average values for all systems are as shown in **Table ES-1**, which clearly shows that rates differ dramatically between low density and high density housing.

Residential	Housing	Weighted
Demands Metric	Density	Average (gallons)
Average Annual Per	high	49.89
Capita Per Day	medium	60.79
	low	87.10
Total Summer Use	high	52.96
Per Capita Per Day	medium	78.23
	low	128.51
Average Non-	high	46.23
Summer Use Per	medium	52.09
Capita I Ci Day	low	62.93
Ratio of Summer Use	high	1.15
to Non-Summer Use	medium	1.50
(r er Capita Per Day)	low	2.04

Table ES-1.	Residential Per Capita	Demands by	y Housing Density and Seas	on
			<u> </u>	

In addition to per capita demands, the residential data provide an understanding of how residential demands differ between the summer and non-summer periods, and perhaps more importantly, how the ratio of summer to non-summer demands differs regionally and between different housing

densities. In general, high-density residential development shows minimal differences between the seasons, while low-density residential development shows great differences, and especially in the coastal zone. As can be seen in the table above, for all systems, Non-Summer demands for low density development are roughly 36 percent greater than high density development, while Summer demands differ by over 140%. For high density development, Summer demands are little higher than Non-Summer, while for low density development, Summer demands are double, on average.

PCWS System Population Estimates

These analyses required a detailed understanding of populations within PCWS service areas (see Figure ES-1). Following an approach used by the Highlands Water Protection and Planning Council, a technique called dasymetric analysis was employed using Geographic Information System (GIS) software. This approach provided estimates of population associated with high, medium and low density residential development for each Census block group, the smallest Census area available. Using this technique and NJDEP draft mapping of PCWS service areas (see map on next page), the total population served by PCWS systems is roughly 90 percent of the total population (a total of 7,884,569, compared to the 2010 Census of 8,791,894). Comparison of the computed populations with actual 2010 populations, for PCWS systems serving entire municipalities where comparisons are easiest, indicates that the dasymetric analysis provides a good estimate at that scale. The use of this technique for very small PCWS systems is less robust.

Population projections from the three Metropolitan Planning Organizations (MPOs) – North Jersey Transportation Planning Authority (NJTPA), the Delaware Valley Regional Planning Commission (DVRPC), and the South Jersey Transportation Planning Organization (SJTPO) – were used as the only source of municipal population projections. In aggregate, they project an 18 percent increase in population from 2010 to 2040, to roughly 10.4 million. This value exceeds an extrapolation of the 2030 statewide projections from the NJ Department of Labor and Workforce Development (NJDOL), which would result in a statewide population of 10.1 to 10.2 million. The differences can be ascribed to the different methods used by the MPOs and NJDOL. The MPO municipal population projections for 2040 were distributed to the PCWS service areas in the same manner as for the 2010 populations.

The project team evaluated how population projections may vary if rates of fertility, mortality and net migration change from assumed levels. The population profile of New Jersey is significantly different from the national profile, as are the fertility, mortality and migration rates. The sensitivity of statewide population projections to changes in these rates (using national rates or other recent historical trends) indicates that mortality rates are less likely to cause a significant difference in 2040 population (+0.54% to -1.09%) than fertility rates (+3.36% to -0.22%). Net migration (i.e., influx from other states and other nations minus outflux to other states and nations) is most subject to major changes, from year to year and over time. Net migration is calculated in various ways by various entities, and is not easy to confirm. However, based on available information, the 1990s were a period of relatively high net immigration, with the period from the year 2003 through 2014 being a period of either significant net outmigration or a rough equilibrium. As has been reported, New Jersey's recent population increases are due to more births than deaths, which have resulted in a net gain despite net outmigration. Variations in net migration within recent averages yield the greatest potential variation in 2040 population (+5.27% to -3.90%). Similar analyses were performed for the county populations, showing that counties are more variable based on changes in these three rates, as would be expected. All projections are subject to error, as economic shifts and regulatory changes (such as to national immigration policies) cannot be predicted that could alter

trends. Two major examples are Atlantic City's changing casino industry, and Camden City's redevelopment efforts.

Figure ES-1. Public Community Water Supply System Service Areas, 2017

Water Demand Model for 2010

Residential water demand estimates for 2010 were developed based upon the 2010 population estimates, for the case study PCWS systems (using supplied data) and then for all other PCWS systems (using the critical factors of housing density and location – Coastal Plain; Piedmont; Highlands and Ridge & Valley). In addition, systems with extensive service area along the Atlantic Coast were evaluated to determine the extent to which summer demands were affected by seasonal populations, beyond the increases expected due to normal summer demands by year-round residents. In these cases, a summer demand estimate was added.

Commercial and industrial demands were more problematic. Based on the limited available information regarding demands, a rough correlation was developed between demands and the percent commercial and industrial land area within PCWS service area. The assumptions used for estimation of these demand components were necessary due to a lack of data, but they are a concern as they introduce significant potential for error.

Water loss rates were available from NJDEP or the Delaware River Basin Commission for 228 of the 584 PCWS systems, providing a robust view of the very wide range of losses, from below 5 percent to over 50 percent for major systems. However, some large and medium and many small systems lacked reported water losses and so the available information was used to develop assumed water loss rates based on system size and service area location, either Coastal Plain or Bedrock geology, as the median and mean water losses differed significantly based on these factors, from a median (excluding outliers) of 22.3 percent for small bedrock systems to roughly 10 to 11 percent for coastal systems of all sizes. There is no way to ascertain whether the assumed rates are appropriate for each system, introducing a potential for error. The use of percentage losses is appropriate for this purpose, as the focus is on total demands, not whether the losses are acceptable.

The total modeled water demands incorporate Residential, Industrial and Commercial (RIC) demands plus water losses. These totals were compared to two measures of recent delivered water (i.e., the water released into the distribution system): the peak annual demand in the last five years (NJDEP Water Supply Deficit/Surplus analysis); and the average annual demand for 2008-2015 (NJ Water Tracking database, NJWaTr), which matches the years for available data from most of the case study PCWS systems. Peak years can differ among the systems, occurring any time from 2012 through 2016, and as of the close of 2017 the year 2012 peaks will drop from the analysis and 2017 will be added. Neither of these measures was developed for the specific purpose, but were useful for comparison.

A modeled result within roughly 20 percent of either of the two measures is considered useful, given the assumptions made within the modeling system and the nature of the comparison measures. While the results for many PCWS systems were nearly identical to one or both of these measures, and many more were within 20 percent, there were many where the differences were larger. Specific causes could not be determined without detailed system-specific information. However, the assumptions regarding Commercial and Industrial demands, the use of average residential per capita demand rates, and the assignment of water loss rates are potential causes. For the smallest systems, the uncertainty regarding service area populations is a major issue, though these systems provide a very small fraction (roughly 2 percent) of the total state demand.

Water Demand Models for 2040

Water demand projections scenarios were developed to estimate 2040 demands as paired sets. Within each set, one scenario assumes that water loss rates match the current median levels, while another scenario assumes that all systems achieve water loss rates equivalent to the current 25th percentile level, an aggressive assumption for conservation.

Two sets are based on the same demand model as for the 2010 demands, with one set assuming that Residential per capita and Commercial demand rates do not decline (No Conservation scenario), and the other set assuming that Residential rates do decline wherever they are above specific values based on "best practice" (Conservation scenario). The Conservation scenario is not highly aggressive, but rather assumes continued, gradual decline in per capita demands. In both cases, Commercial demands are assumed to vary in pace with Residential demands, and Industrial demands remain at the 2010 level. Given the consistent assumptions within these models, they provide a good assessment of the direction and magnitude of change, but accuracy is an issue.

The other sets take a completely different approach. They use the percent change from 2010 to 2040 demands from the No Conservation and Conservation scenarios of the first set of models as an indication of the <u>magnitude</u> of anticipated change, but then apply those percentages to the peak annual and average annual demands discussed above. In this approach, known demands are the foundation for the projection, but the modeling process provides a way to differentiate among systems, to avoid applying a standard rate of change to all systems regardless of location, service area type, etc. These approaches are considered the most robust method for projecting 2040 demands based on the currently available information and the modeling approaches uses.

Table ES-2 provides the results of the recommended set of scenarios for the 37 PCWS systems that provided 80 percent of total PCWS demands from the NJWaTr database.

- **Current Demands**: For the 37 largest systems, the total of all peak demands from the Water Supply Deficit/Surplus analysis is 919.229 MGD, of a total for all systems of 1238.906 MGD. For the 37 largest systems, the total of all 2008-2015 average demands was 702.879 MGD, of a total for all systems of 983.892 MGD. The average demands for the 37 systems are 79.4 percent of the peak demands for all systems. In both cases, these demands are considered the starting point for projections.
- No Conservation Scenarios: For the 37 largest systems, the total 2040 demands in the No Conservation scenario with Nominal Water Losses are 726.174 MGD. The No Conservation scenario but with Optimum Water Losses results in demands of 684.463 MGD, a reduction of 5.75 percent from the Nominal Water Loss approach, and a reduction of 2.62 percent from the NJWaTr 2008-2015 average.
- **Conservation Scenarios**: Finally, the Conservation scenarios with Nominal and Optimum Water Losses result in demands for the 37 largest systems of 680.541 MGD and 641.464 MGD, respectively. The Conservation scenarios results in a drop of 6.28 percent from each of the No Conservation scenarios. The difference between the No Conservation/Nominal Water Loss and Conservation/Optimum Water Loss scenarios is **11.67 percent**. Based on these projections, modeled customer conservation and water loss reductions have roughly equal effects on water demands.

The conclusions from this study are several. First, the experience from literature and New Jersey is that indoor water demands are declining. Second, population trends in New Jersey are highly dependent on net migration more than fertility and mortality, and all three factors vary considerably from county to county and municipality to municipality. Third, water losses will play a major role in future water delivery requirements; an aggressive program to minimize water losses can offset a large

population increase. Fourth, more aggressive efforts to reduce per capita demands can achieve 2040 demands even below what is projected through this report.

There are a variety of future improvements that can be made to the evaluations and modeling approaches in this report. Over decades of effort, each water supply planning effort in New Jersey has used a more detailed and defensible approach than the prior effort. The priorities from this project will be using the results in the best manner possible, and improving the technique so that this approach is superseded by better results.

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet		NJWaTr	2040 No Co Scer	onservation nario	2040 Con Scen	servation ario		
PWSID #	County	Name	D/S Peak Annual Demand (MGD)	2008-2015 Average Demand (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)
0238001	Bergen	Suez New Jersey - Haworth & Franklin Lakes (PWSID 022001)	119.315	112.557	124.097	116.797	107.219	100.912
2004002	Union	New Jersey American Water - Raritan System	137.913	97.057	103.994	97.876	101.713	95.730
0714001	Essex	Newark Water Department	84.753	55.247	49.742	46.816	45.585	42.903
1605002	Passaic	Passaic Valley Water Commission	101.915	51.051	44.491	41.873	42.387	39.894
1345001	Monmouth	New Jersey American Water - Coastal North	47.568	37.114	39.483	37.405	36.365	34.451
0712001	Essex	New Jersey American Water - Passaic Basin	41.736	36.508	36.909	34.738	35.490	33.403
0906001	Hudson	Jersey City MUA	47.419	31.100	37.473	35.269	34.518	32.487
0327001	Burlington	New Jersey American Water - Delaware Division	30.872	28.847	31.300	29.653	30.308	28.713
1225001	Middlesex	Middlesex Water Company	52.145	24.977	24.346	22.914	23.295	21.925
1111001	Mercer	Trenton Water Works	26.773	23.930	26.121	24.584	24.832	23.371
2004001	Union	Liberty Water Company	13.360	13.229	15.671	14.749	14.466	13.615
1507005	Ocean	Suez Toms River	12.204	12.778	15.272	14.469	14.527	13.763
0119002	Atlantic	New Jersey American Water - Atlantic	12.635	12.007	16.402	15.538	15.965	15.125
0102001	Atlantic	Atlantic City MUA	11.571	11.004	7.799	7.389	7.550	7.153
1214001	Middlesex	New Brunswick Water Department	16.612	10.864	7.947	7.479	7.464	7.025
0408001	Camden	Camden City Water Department	11.006	10.435	5.616	5.320	5.499	5.209
0901001	Hudson	Bayonne City Water Department	8.932	8.759	10.452	9.838	9.823	9.245
1424001	Morris	Southeast Morris County MUA	9.555	8.374	7.811	7.352	7.536	7.093
0614003	Cumberland	Vineland City Water and Sewer Utility	8.368	8.072	9.833	9.316	9.467	8.969
0705001	Essex	East Orange Water Commission	7.367	7.876	6.242	5.875	5.634	5.303
0251001	Bergen	Ridgewood Water Department	8.146	7.818	6.082	5.725	5.967	5.616
0702001	Essex	Bloomfield Water Department	7.431	7.630	5.552	5.225	5.188	4.883

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet		NJWaTr	2040 No Co Scen	onservation ario	2040 Con Scen	servation ario		
PWSID #	County	Name	D/S Peak Annual Demand (MGD)	2008-2015 Average Demand (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)
1614001	Passaic	Wayne Township Division of Water	7.797	7.459	8.641	8.133	8.431	7.935
1204001	Middlesex	East Brunswick Water Utility	7.231	7.013	7.336	6.950	7.084	6.711
1429001	Morris	Parsippany - Troy Hills	6.535	6.292	6.205	5.840	5.983	5.631
1209002	Middlesex	Old Bridge Township MUA	9.096	6.058	6.881	6.519	6.577	6.231
0424001	Camden	Merchantville Pennsauken Water Commission	5.962	6.040	6.006	5.690	5.843	5.535
1808001	Somerset	Franklin Township Department Public Works	6.628	6.015	7.082	6.665	6.720	6.324
1205001	Middlesex	New Jersey American Water Company - Edison	5.887	6.004	6.589	6.201	6.401	6.024
0907001	Hudson	Kearny Town Water Department	10.310	5.470	5.917	5.569	5.591	5.262
1221004	Middlesex	South Brunswick Township Sewer & Water Dept	6.052	5.309	7.965	7.496	7.635	7.186
2013001	Union	Suez Rahway	5.315	5.247	4.421	4.161	4.229	3.980
1215001	Middlesex	North Brunswick Water Department	5.421	5.185	5.311	4.999	5.057	4.759
1506001	Ocean	Brick Township MUA	9.752	5.118	6.015	5.699	5.793	5.488
1216001	Middlesex	Perth Amboy Department of Municipal Utilities	5.994	5.079	5.124	4.823	5.026	4.730
1326001	Monmouth	Gordons Corner Water Company	5.096	4.760	5.029	4.765	4.777	4.526
0324001	Burlington	Mount Laurel Township	4.557	4.596	5.017	4.753	4.596	4.354
TOTALS 80 percer	6 (Largest 37 I nt of total 2010	CWS Systems, representing statewide demands)	919.229	702.879	726.174	684.463	680.541	641.464
TOTALS available	TOTALS (All PCWS Systems) NB: Many very small systems lack available information on current and therefore projected demands		1250.478	994.896	1045.664	985.4604	986.391	929.615

1. Project Purpose and Methodology Considerations

The New Jersey Department of Environmental Protection (NJDEP) contracted with Rutgers-The State University of New Jersey (Rutgers) to estimate water demands for each Public Community Water Supply (PCWS) system in New Jersey to the year 2040. The project results will support future water supply planning by NJDEP, including the Statewide Water Supply Plan.

How will New Jersey's water demand and use change in the next decades? No definitive prediction is possible, but reasonable scenarios can be developed that will aid in planning. Understanding viable scenarios is vital for useful water supply planning, especially for the urbanized areas that dominate the total demands for potable water in New Jersey. The northeastern and central regions of New Jersey are mostly supplied by reservoirs but with important supplies from aquifers, the lower Delaware Valley area relies on a combination of aquifers and Delaware River supplies, and much of the Jersey Shore uses aquifers. Each of these water resources has limitations that must be addressed for the benefit of the state, now and into the future.

Water demand projections for urbanized areas are highly sensitive to projections and forecasts¹ of population, industrial uses and per capital residential and commercial/business demands.

The first issue is with population forecasts. These are highly dependent on past population trends (including both natural growth and migration) and economic trends, and expectations as to how these trends will continue or change over time in response to a wide range of impacts including public policy. Both population and economic trends are subject to significant variation over time. Trends involving larger populations tend to be more stable and predictable than projections involving individual municipalities or other small areas. Within smaller areas especially, short and long-term population trends will be affected by available land, the economics of redevelopment to higher (or lower) densities, a shift from residential to non-residential land uses or vice versa, changes in household size due to demographic shifts (such as changes in ethnic makeup or the proportion of new immigrants), and changes in lifestyle preferences (such as the apparent recent interest in urban areas with high cultural amenities). Development trends have shifted in the past (from urban growth to suburban and exurban growth) and are apparently shifting again toward urban growth; however, there is no guarantee that this shift will continue over the next twenty to thirty years. New Jersey has routinely experienced net migration to other states, but even higher immigration from other countries. Changes in national immigration policies could determine whether New Jersey grows at all, or grows faster. Changes in the desirability of New Jersey to current residents could alter net domestic migration. The only certainty in population forecasts is that they will be incorrect in detail, though they may be correct in general trend and scale.

Water use trends also change. Areas with large existing populations can see significant changes in total water demand based on relatively small changes in per capita water use. Total demand per capita has been trending downward since 1990, according to data compiled by the NJDEP. This change could be the result of new or updated building codes as applied over time, increased water costs (rates), changing household size, personal preferences for water-using or water-saving devices,

¹ According to the U.S. Bureau of the Census, population projections are "estimates of the population for future dates. They illustrate plausible courses of future population change based on assumptions about future births, deaths, net international migration, and net domestic migration. Projected numbers are typically based on an estimated population consistent with the most recent decennial census as enumerated, projected forward using a variant of the cohortcomponent method." Forecasts include consideration of other factors such as policies, investment impacts, land availability, etc., to evaluate various possible assumptions and determine the most probable. They explicitly include the potential that trends may be changed through public policy.

lawn irrigation practices, etc. However, a review of the 1982 New Jersey Water Supply Master Plan (Task 2-Needs Assessment) indicates that residential per capita demands, based on information provided by 98 water purveyors in response to a survey of 500 systems (see page 1-7 of that report), were not significantly different from the findings of this report, and in some cases were less. The results are shown in **Table 1-1**.

County	Residential	County	Residential
-	Demand	-	Demand
Atlantic	66.70	Middlesex	62.12
Bergen	74.23	Monmouth	56.71
Burlington	54.59	Morris	59.67
Camden	59.59	Ocean	53.91
Cape May	68.74	Passaic	73.98
Cumberland	50.49	Salem	50.19
Essex	74.73	Somerset	56.37
Gloucester	52.74	Sussex	50.45
Hudson	74.73	Union	74.73
Hunterdon	45.1	Warren	50.55
Mercer	61.12		

<i>Table 1-1.</i>	Residential Water Use Rates in 1975 (gpcd).	
(New Jerse	ey Water Supply Master Plan. Task 2-Needs Assessment, p. 1	1-8)

Commercial/office water use trends may likewise be affected by changes in building codes, but also by technology improvements for lavatories and HVAC units to reduce water supply and sewer charges. Industrial uses are far harder to forecast, depending as they do on the presence/absence of specific industrial facilities, major process changes, technology upgrades, etc. Industries tend to be concentrated in urban areas, while most of New Jersey's office development is in suburban areas such as the Interstate 287 corridor.

For all these reasons, simple application of an aggregate per capita RIC (residential, industrial, commercial) water demand rate to a given population projection is not highly dependable. As noted above, the 1982 NJ Water Supply Master Plan gathered information on per capita residential demands in an effort to assess how demands would differ around the state. The 1996 Statewide Water Supply Plan developed estimates of 1990 water demands that lumped RIC demands.

These issues apply at the statewide scale, but even more so at the PCWS system level. Water supply utilities generally do not track in detail the total number of residents served, and even less so the total employment associated with retail commercial, institutional and office locations. Their focus is on the number of customers and service connections, and on water sales. Estimating per person residential demands, per employee demands or even demands per unit area of commercial space is not an easy calculation, unless a utility served an entire municipality so that the local population is equal to the service population. Even then, demands will differ depending on the nature and density of development, so analyses are needed to identify sub-populations that will have different demand patterns.

In sum, demand projections are inherently uncertain. They also are necessary and useful, if sufficient caution is used in their application to water supply planning.

Rutgers developed a detailed evaluation of the variables involved in developing more solidly grounded scenarios for future water use. This two-part study addresses:

- Anticipated population growth statewide and PCWS service areas, with a sensitivity analysis based on reasonable scenarios for statewide and county-level population change using reasonably viable assumptions. What are the anticipated or most likely demographic shifts?
- Anticipated water use rates and total water use within the service areas of PCWS systems, again with a set of scenarios based on reasonably viable assumptions. Also, peak demand is a key component of water availability analysis and an important factor is sizing water system capacities and infrastructure so detailed information is critical to NJDEP water supply planning, safe drinking water permitting, and asset management. Therefore, along with annual demands, trends in seasonal water use will be important. Industrial use forecasts were not attempted due to the uncertainties involved.

The study estimates water demand forecasts for all 584 PCWS systems. The results of this study provide a set of input projections for use in water supply planning, which will occur through other projects.

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

2. General Project Methodology

The methodology has three major components. First, available regional and statewide population projections were evaluated to determine relative levels of uncertainty based on the assumptions used in key variables such as fertility, mortality and net immigration rates. Second, existing water demands and demand rates were determined through the evaluation of metered water delivery and water loss rates for specific types of development within case study areas, and then extrapolated to all other PCWS systems. Third, water demands were projected for 2040 by PCWS system using multiple methods. Each of these methods has advantages and disadvantages, which are discussed later in this report.

This section provides a general overview of the methodology, drawn from the final Methodology Report submitted to and approved by NJDEP (See <u>Appendix E</u>). More detailed information is provided in Chapters 3 through 5.

Population Projections/Forecasts Analysis Method

Step P-1: Existing Projections: Population projections/forecasts to 2040 were assembled from the three Metropolitan Planning Organizations (North Jersey Transportation Planning Authority, Delaware Valley Regional Planning Commission, and the South Jersey Transportation Planning Organization) and population projections to 2032 and 2034 were used from the NJ Department of Labor and Workforce Development (NJDOL). The MPO projections are to the municipal level, while the NJDOL projections are statewide and county only. The MPO projections in total were found to be somewhat higher than the NJDOL projections using its Economic-Demographic Model, which is designated "preferred" by NJDOL, but the MPO projections were used for this project as the only available source of municipal projections, which are critical to the project.

Step P-2: Critical Variables: Rutgers compared the various projections and forecasts, evaluated the assumptions, assessed the reasons for differences among the existing projections, and assessed alternative assumptions (including but not limited to shifts in the proportion of residential development that occurs through redevelopment versus "green field" development). Variables of interest include the base population, fertility and mortality rates, and net migration.

Step P-3: Historic Trends: Rutgers evaluated the ranges and trends for the key variables to provide a basis for scenario development and the "outer bounds" of likely future trends.

Step P-4: Sensitivity Analyses: Using the available population projection models, Rutgers assessed the sensitivity of 2040 population statewide and county projections to modifications in the primary variables, within the historic range of each variable and with attention to situations where the simultaneous modifications of multiple variables may result in invalid evaluations (e.g., historic high migration rates into New Jersey are unlikely to occur at the same time as an historic low employment growth rate).

Step P-5: Selection of Scenarios and Projections: The next step of the project is to recommend one projection, a combination of sub-region projections, or a subset of the evaluated projections that would be best utilized for NJ Statewide Water Supply Plan needs. Critical uncertainties are discussed to demonstrate the potential impacts of such uncertainties on water demand forecasting. However, given the need for municipal population projections, the MPO projections were the only relevant 2040 projections available and so are used in this project. Planners should be aware of the sensitivity analyses when evaluating PCWS systems with demands that are close to their system limits, as shifts in population trends could create a deficit situation.

Step P-6: Build-out Analyses: It is recognized that limitations on available land may redirect growth locally but not greatly alter regional or statewide forecasts. The MPO projections appear to implicitly or explicitly incorporate limitations imposed by the Pinelands Comprehensive Management Plan and the Highlands Regional Master Plan. Analyses of land limitations on development, developed for the Council on Affordable Housing (COAH), were not available for this project. PCWS systems should be aware of the build-out potential of their service areas and the extent to which it is constrained by state laws or local conditions.

Current Water Demand Rates Method

Step D-1: Statewide Data Acquisition: Data used on this project included:

- 2012 Land Use/Land Cover (LULC) Data in GIS (NJDEP)
- Listing of Public Community Water Supply (PCWS) Systems (NJDEP) (as of May 2017)
- PCWS service areas in GIS (NJDEP, work in progress as of June 2017)
- PCWS Safe Drinking Water Program data on current and committed peak demands, contracted water supplies, firm capacity, etc. (NJDEP, current to May 2017)
- NJ Water Tracking (NJWaTr) database on water demands per year 1990-2015 (NJDEP)
- Water loss data (NJDEP, Delaware River Basin Commission) (compiled as of June 2017 from multiple data sources)

Step D-2: Evaluation of PCWS Service Areas and Populations: Rutgers estimated the population served for each PCWS. The dasymetric analysis identifies spatial clusters of populations that can be used to estimate PCWS system demands. It also identifies the populations associated with water demands from each residential area within the case example PCWS systems, for the estimation of per capita demands in various development categories. Finally, it is used to help assign future residential demands for all PCWS in a later step.

Step D-3: Identification of Case Example PCWS Systems: Rutgers identified a stratified sample of 10-15 PCWS systems, based on annual average daily demands (over 50 MGD, 20-50 MGD, 5-19 MGD and 2-5 MGD), that collect and compile demands from residential, industrial and commercial (RIC) water uses based on individual metering. The selections were based on systems of varying capacity, geographic location, demographic makeup, and built environment characteristics.

Variables	Unit of Measure	Source
Housing Density	Residential Units per acre (units/acre)	2010 U.S. Census
Precipitation	Annual / Monthly Precipitation	Office of the New Jersey State
	(inches/ year or inches/month)	Climatologist
Housing unit age	Housing unit age (years)	Most recent American
		Community Survey
Household Size	Average number of people per household	2010 U.S. Census
	(persons/unit)	
Land use	Concentrations of different Land Use types	2012 LU/LC data
patterns		
Topography	Topographic Variability (e.g., percent of	USGS 10-meter
	service area greater than 10% slope)	Digital Elevation Module
Region	Metropolitan Planning Organization	MPO Counties; State
	regions, Physiographic Provinces	Geophysical Province Map

 Table 2-1. Variables Use to Identify Case Example PCWS Systems (Step D-3)

Step D-4: Data Collection from Case Example PCWS Systems: Utilities were solicited for monthly water demands by user by municipality to the extent feasible. Where available, information on water demand trends and water loss rates and trends by PCWS system were also collected.

Step D-5: Data Evaluation from Case Example PCWS Systems: Rutgers developed a database and analytical approach to assess average water demand rates for various categories of land development, for peak and low annual and seasonal periods over the period of record.

Step D-6: Land Use Categorization for All PCWS Systems: Rutgers used the 2012 NJDEP LU/LC data (regarding the amount and relative percentages of residential development of various densities, and of commercial and industrial lands) and American Community Survey data on housing age. Census block group data (as interpreted through dasymetric analysis), LULC data and PCWS system service areas were used to evaluate relative population, land use and housing age distributions within each PCWS system service area

Step D-7: Current Water Demands for All PCWS Systems: Using information from the prior steps, Rutgers estimated current residential, commercial and industrial water demand rates and water losses by PCWS system.

Step D-8: Peak Season Water Use for All PCWS Systems: Rutgers also evaluated seasonal aggregate per capita water use patterns (summer versus non-summer use) for all PCWS systems, and drew conclusions where possible regarding trends in seasonal water use patterns for urban, suburban and Atlantic Coast water systems.

Future Water Demand Method

Step D-9: Water Demand Trend Analysis: Rutgers developed water use efficiency and conservation scenarios for application to future demands in all PCWS systems, assessing: comparison rates available through a national literature search; New Jersey non-revenue water and water losses; industrial uses; seasonal peaking factors; and conservation and efficiency trends.

Step D-10: Water Demand Trend Projections: Based on the current demand estimates and the water demand trend scenarios, Rutgers forecast water demand rates for residential and office/commercial uses, using generalized rates that are applicable to groups of PCWS systems, municipalities or both, with clearly identified assumptions and conditions. For each scenario, the population trend scenarios from Step P-5 were applied.

Scenarios	Demand Scenario	Water Losses
Scenario 1	Constant Per Capita	Current State Median
Scenario 2	Constant Per Capita	Current 25 th Percentile
Scenario 3	Decrease Per Capita	Current State Median
Scenario 4	Decrease Per Capita	Current 25 th Percentile
Scenario 5	Current Peak Demands X	Current State Median
	Percent Change from Scenario 3	
Scenario 6	Current Peak Demands X	Current 25 th Percentile
	Percent Change from Scenario 4	
Scenario 7	Current Average Demands X	Current State Median
	Percent Change from Scenario 3	
Scenario 8	Current Average Demands X	Current 25 th Percentile
	Percent Change from Scenario 4	

 Table 2-2. Population Trend Scenarios (Step D-10)

Step D-11: Water Demand Projections for All PCWS Systems: Finally, Rutgers developed water demand projections for all PCWS in New Jersey for each scenario, with an uncertainty analysis, and provided recommendations regarding a "most probable" scenario and water demand for each PCWS system.

3. Population Projections and Forecasts

Projections of water demands are necessarily dependent on projections or forecasts of population through the planning period. The acquisition and analysis of available projections provided a foundation for further modeling work.

Statewide and Regional Population Projections

New Jersey has two major sources of population projections, but they are not directly comparable. One is statewide with disaggregation to the county level, and the other set is regional with disaggregation to the municipal level. While the best resource for this modeling work would be a statewide population projection that is disaggregated to the municipal level, such projections do not exist and the statewide projections cannot be used in concert with the regional projections for this purpose.

NJ Department of Labor & Workforce Development

The NJDOL periodically provides projections of statewide population and employment using several different models. NJDOL states that "The Economic-Demographic Model is designated 'preferred' due to its greater scope of input information and its consistency with the year 2024 employment projections prepared by the New Jersey Department of Labor. Other models are included mainly for illustrative purpose." Therefore, Rutgers used the NJDOL Economic-Demographic Model as the point of comparison to the regional models discussed next. As shown in **Table 3-1**, the projections currently go only to 2034, not 2040 which is the target year of this project. The 2034 projected population is 9,733,400 statewide. However, the NJDOL projections for this year are not disaggregated by county.

Projection Model	Census	Estimates	Projections to July 1,			
	4/1/2010	7/1/2014	2019	2024	2029	2034
Economic-	8,791,894	8,938,200	9,132,700	9,338,000	9,531,200	9,733,400
Demographic						
Zero Migration	8,791,894	8,938,200	9,128,200	9,258,000	9,326,000	9,342,500
Historical Migration	8,791,894	8,938,200	9,109,800	9,263,100	9,402,600	9,522,200
Linear Regression	8,791,894	8,938,200	9,438,900	9,750,900	10,062,800	10,374,700

Table 3-1. Projections of Total Population by Projection ModelNew Jersey: 2014 to 2034 (NJDOL)

A prior NJDOL projection to 2032 was disaggregated by county, as shown in **Figure 3-1**. The results clearly show an expectation that major growth will happen in counties that are already heavily developed, such as Bergen, Middlesex, Essex, Hudson, Monmouth, Ocean and Union Counties.

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Figure 3-1. NJDOL Population Projections by County: 2012 to 2032

However, NJDOL does not provide disaggregated population projections to the municipal scale. That task is addressed by the Metropolitan Planning Organizations (MPOs) designated by the U.S. Department of Transportation to handle regional transportation planning, especially regarding projects to be funded in part or in whole by the federal government.

Metropolitan Planning Organizations

The North Jersey Transportation Planning Authority (NJTPA) is responsible for transportation planning in the 13 northern counties of New Jersey: the Counties of Bergen, Essex, Hudson, Hunterdon, Middlesex, Morris, Monmouth, Ocean, Passaic, Sussex, Union and Warren. The Delaware Valley Regional Planning Commission (DVRPC) is a bi-state planning agency responsible for transportation and other planning in the New Jersey Counties of Burlington, Camden, Gloucester and Mercer. Finally, the South Jersey Transportation Planning Organization (SJTPO) addresses transportation planning in the southern Counties of Atlantic, Cape May, Cumberland and Salem. These agencies have all developed county and municipal population projections to the year 2040, and in various ways have attempted to address constraints and uncertainties within the projection models. One of the most notable points from **Table 3-2** is that the NJTPA has by far the most populated region, comprising 76% of the state's population. As such, it will also include by far the largest populations that are served by PCWS systems.

DVRPC SITPO Approach NJTPA MPO 2040 7,910,400 1,789,881 710.254 10,410,535

17.2%

Table 3-2. MPO Population Projections

76.0%

Share of Total

Comparison of Available Projections

6.8%

TOTAL

100%

The NJDOL and MPO results do not entirely agree. While no detailed inquiry was performed, apparently each MPO contracts for their own modeling process, which will reflect the techniques and available information of each region. Rutgers added the MPO results for 2040, which totaled over 10.4 million. The NJDOL results for 2030 totaled over 9.6 million. Extrapolations of the NJDOL 2030 value to 2040 used the average per year growth of both the NJDOL (for 2010 to

2030) of 0.47% and the MPOs (for 2010 to 2040) of 0.56%. In each case the extrapolated NJDOL results for 2040 were lower than the MPO aggregate results, by roughly 100,000 to 200,000, as shown in **Table 3-3**. The MPO aggregate population represents an 18% increase over 2010 Census results, while the extrapolation of the NJDOL 2030 projections yielded growth of 15% or 16%. The U.S. Census population estimate for 2016, is 8,944,469, an increase of 1.7% from the 2010 population of 8,791,894 in six years (or only 0.28% per year) of the 30-year period to 2040. Though it is important to keep the different results from these models in mind, the MPO projections were used in this report as the only source of municipal-level population projections.

Total **Population Projection Source** Increase from 2010 10,410,535 MPO 2040 Aggregate Population 18% NJDOL 2030 (Economic/Demographic Model) 9,648,100 10% 2040 Extrapolation of NJDOL 2030 at 0.47% per year (NJDOL average) 10,106,982 15% 2040 Extrapolation of NJDOL 2030 at 0.56% per year (MPO average) 10,207,170 16%

 Table 3-3. Comparison of NJDOL and MPO Population Projections

Evaluation of Sensitivity to Variations in Critical Variables

Using the Age-Cohort population projection models and available data, we determined the sensitivity of 2040 population projections to modifications in the primary variables, such as fertility rate and mortality rate, within the historic range of each variable and with attention to situations where the simultaneous modifications of multiple variables may result in invalid evaluations (e.g., where historic high migration rates into New Jersey are unlikely to occur at the same time as an historic low employment growth rate). The base population model uses the 2012 statewide fertility rate by the National Vital Statistics Report, the 2011 statewide mortality rate by New Jersey Department of Health, and the average migration rate during the period of 2000 to 2010 in New Jersey. The following analysis recognizes the potential for regions to have different results based on local circumstances, such as the evolution of the casino industry in Atlantic City. However, these are inherently unpredictable circumstances that will be affected by industry-specific economic issues, as well as changing laws in New Jersey and elsewhere. As such, these issues must be addressed through uncertainty factors that overlay the population projections.

Approach

The base population, fertility rate, mortality rate, and employment rate are all the independent variables, available from various agencies. The historical net migration is dependent on the base population, births, and deaths, as migration is not directly measured but rather is inferred from the values of the independent variables. The National Center for Health Statistics (NCHS) also provides an upper and a lower limit (95% confidence interval) for each fertility and mortality rate, which could be used to conduct the sensitivity test. Through a control variable method, we assess how changes to the fertility rate and mortality rate may affect the final population projections (**Table 3-4**).

	Fertility Rate	Mortality Rate	Migration Rate
Sensitivity Test 1	Constant	Upper/Lower Limit	Constant
Sensitivity Test 2	Upper/Lower Limit	Constant	Constant
Sensitivity Test 3	Upper/Lower Limit	Upper/Lower Limit	Constant

Table 3-4. State Population Variability Scenarios

New Jersey's population profile is significantly different from that of the United States, as shown in **Figure 3-2**, below. New Jersey generally has a higher percentage of both males and females in the cohorts from age 40 and up, and a lower percentage in younger cohorts, especially for females. The underrepresentation of females of child-bearing age will affect New Jersey's fertility rate, while the overrepresentation of older cohorts will eventually affect mortality rates.

Figure 3-2. U.S. and NJ Population Pyramids (Cohort by Percent) (derived from 2010 U.S. Census)

Sensitivity Test 1: Mortality Rates

In this part of the sensitivity test, we investigate how changes to the mortality rate affect the final population projections in New Jersey. We used the upper and lower limit (95% confidence interval) of the 2011 statewide mortality rate, the 2013 United States mortality rate and a mortality rate that is 2% lower than 2011 data in the age-cohort model to project alternative statewide populations through 2040.

95% Upper and lower limit of the 2011 NJ mortality rate

The upper and lower bounds of a 95% confidence interval are the 95% confidence limits, which give an estimated range of most probable 2011 statewide mortality rate. The lower the mortality rate,

the higher the survival rate. Therefore, the upper limit of the 2011 New Jersey mortality rate could be used to estimate a lower boundary of the population projection and vice versa.

2013 US mortality rate

New Jersey has a lower mortality rate per 100,000 population than United States (802.3 vs. 821.5 in 2013), which means about 19 fewer people per 100,000 population die in New Jersey per year. The mortality rate for almost all age groups in United States is higher than in New Jersey, an important consideration given the New Jersey's population is older than the national population, on average. Therefore, 2013 US mortality rate could be used to estimate the lower boundary of the population projection in New Jersey.

2% lower than 2011 NJ mortality rate

From 2009 to 2013, the mortality rate in New Jersey decreased 2%. In this test, we assume the ongoing mortality rate is 2% lower than the 2011 statewide mortality rate.

Analytical Results

Figure 3-3 and **Table 3-5** below show the results for sensitivity tests when only the mortality rate changes in the age-cohort model. The upper limit of statewide population projection appears when using the lower limit 2011 NJ mortality rate, and the lower limit appears when using the 2013 United States mortality rate. The range for the modified forecasted population in 2040 is from 9,646,755 to 9,805,543 (1.09% lower and 0.54% higher than the baseline projection, respectively). Thus, the most likely range of mortality rates will not affect the population projection significantly.

Figure 3-3. Sensitivity Test 1 (Mortality Rate) from 2010 Census Population

		2015	2020	2025	2030	2035	2040	
	Population	9,022,091	9,248,032	9,464,999	9,645,556	9,760,872	9,805,543	
LL 95% (2011 NJ)	Difference	10,330	19,878	28,865	37,439	45,376	52,325	
	%	0.11%	0.22%	0.31%	0.39%	0.47%	0.54%	
	Population	9,001,462	9,208,396	9,407,510	9,571,064	9,670,667	9,701,612	
CL 95% (2011 NJ)	Difference	-10,299	-19,758	-28,624	-37,053	-44,828	-51,607	
	%	-0.11%	-0.21%	-0.30%	-0.39%	-0.46%	-0.53%	
	Population	8,990,654	9,186,263	9,374,509	9,528,624	9,620,901	9,646,755	
US 2013	Difference	-21,107	-41,892	-61,624	-79,493	-94,595	-106,464	
	%	-0.23%	-0.45%	-0.65%	-0.83%	-0.97%	-1.09%	
2% lower	Population	9,017,150	9,238,029	9,449,836	9,625,325	9,735,981	9,776,605	
	Difference	5,389	9,875	13,703	17,208	20,486	23,386	
	%	0.06%	0.11%	0.15%	0.19%	0.23%	0.26%	

 Table 3-5. Results for Sensitivity Test 1 from 2010 Census Population:

Sensitivity Test 2: Fertility Rates

In this part of sensitivity test, we investigate how changes to the fertility rate could affect the final population projections in New Jersey. The statewide average fertility rate (1990-2012), 2012 United States fertility rate, the lower limit (95% confidence interval, shown as 95% LL) of the 2012 statewide fertility rate, the 2015 estimated fertility rate using linear regression model, and the 2015 estimated fertility rate using exponential regression model are used in the age-cohort method (with no modification of other variables) to forecast statewide population through 2040. The relationship between these variables is shown in **Figure 3-4**.

Figure 3-4. Fertility Rate by Mother's Age for Sensitivity Test 2

NJ average fertility rate (1990-2012)

The NJ average fertility rate is the average number of fertility rate for each female, child-bearing age group during the period of 1990 to 2012.

2012 United States fertility rate

New Jersey has a lower general fertility rate (measured as the average annual births per 1,000 female population aged 15-44) than United States (60.4 vs. 63.0 in 2012), which means about 2.7 fewer children would be born to each 1,000 female population aged 15-44 per year in New Jersey than in United States. **Figure 3-5** shows the relationship of the fertility rate for each female age group between New Jersey and United States. Females in New Jersey tend to later childbearing, so the peak cohort for the United States, at 25-29, differs from the New Jersey peak in the 30-34 age group.

Figure 3-5. Fertility Rate by Mother's Age (NJ vs. U.S.)

95% lower limit of 2012 NJ fertility rate

The lower bounds of a 95% confidence interval are the 95% confidence limits, which give an estimated lower limit of 2012 statewide fertility rate and lower boundary of the population projection.

2015 estimated fertility rate (linear regression)

A linear regression model is used to estimate the 2015 statewide fertility rate based on the historical statewide data.

2015 estimated fertility rate (exponential regression)

An exponential regression model is used to estimate the 2015 statewide fertility rate based on the historical statewide data. The result is an extrapolated change that is faster than that suggested by the linear regression model.

Analytical Results

Figure 3-6 and **Table 3-6** below show the results for sensitivity tests when only the fertility rate changes in age-cohort model. It is clear that the upper limit of statewide population projection appears when using the 2015 exponential rate; the lower limit appears when using the 95% lower limit rate. The range for the forecasted population in 2040 is from 9,732,096 to 10,081,240 (0.22% lower and 3.36% higher than the baseline projection, respectively). Thus, the most likely range of fertility rates will not affect the population projection significantly. (The differences appear larger in the figure due to the truncated axis for population.)

Figure 3-6. Sensitivity Test 2 (Fertility Rate) from 2010 Census Population

	7	~	3	1			
		2015	2020	2025	2030	2035	2040
NJ Average	Population	9,041,855	9,288,055	9,522,434	9,716,086	9,844,102	9,907,862
	Difference	30,094	59,900	86,301	107,969	128,606	154,643
	%	0.33%	0.65%	0.91%	1.12%	1.32%	1.59%
	Population	9,017,540	9,237,619	9,443,357	9,607,667	9,704,990	9,733,922
US 2012	Difference	5,778	9,464	7,224	-450	-10,506	-19,296
	%	0.06%	0.10%	0.08%	0.00%	-0.11%	-0.20%
95% LL	Population	9,008,447	9,221,459	9,425,975	9,594,480	9,698,312	9,732,096
	Difference	-3,314	-6,696	-10,158	-13,637	-17,183	-21,122
	%	-0.04%	-0.07%	-0.11%	-0.14%	-0.18%	-0.22%
2015 Linear	Population	9,050,522	9,307,722	9,558,529	9,774,153	9,925,496	10,012,061
	Difference	38,761	79,568	122,396	166,036	210,000	258,842
	%	0.43%	0.86%	1.30%	1.73%	2.16%	2.65%
2015 Exp	Population	9,061,239	9,328,973	9,590,799	9,817,731	9,981,051	10,081,240
	Difference	49,478	100,819	154,666	209,614	265,556	328,021
	%	0.55%	1.09%	1.64%	2.18%	2.73%	3.36%

Table 3-6. Results for Sensitivity Test 2 from 2010 Census Population

Sensitivity Test 3: Mortality and Fertility Rates

Given the two tests discussed above, the next question is how population projections would change if both mortality and fertility rates were varied within the ranges discussed. Historically, mortality rates (Figure 3-7) in both the United States and New Jersey have fallen over time, with New Jersey's rate falling faster despite its more rapidly aging population. Fertility rates (Figure 3-8) have a more volatile pattern, both falling (the 1990s and during the Great Recession) and rising (during the financial boom period just prior to that recession). The differences between the national and state rates also are more variable than for mortality, with the mid-1990s showing little difference and other periods showing larger differences. However, New Jersey fertility rates are always significantly lower.

Figure 3-7. Age-adjusted Death Rate by Year, NJ and U.S. (1990-2010)

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Figure 3-8. Total Fertility Rate per 1,000, NJ and U.S. (1990-2012)

In this part of the sensitivity test, we investigate how population projections would change if both mortality and fertility rates were varied within the ranges discussed above. Given the historic data and trends, it is highly likely that both rates will remain lower for New Jersey than national rates, that mortality rates will be stable or decline for each cohort, and that fertility rates will not increase to historic highs. Two extreme cases are used to explore how both variables would affect the final population projections in New Jersey. One uses the 95% lower limit of the 2012 statewide fertility rate combined with the 2013 United States mortality rate, and the second uses the 2015 estimated fertility rate (exponential regression) with the 95% lower limit of the 2011 NJ mortality rate.

Analytical Results

Figure 3-9 and Table 3-7 show the results of sensitivity tests when both the mortality rate and fertility rates change in age-cohort model. These results are also compared to the extreme cases when only one variable changed. The range for the modified forecasted population in 2040 has increased, from 9,625,680 to 10,134,109 (1.31% lower and 3.91% higher than the baseline projection, respectively). This change is somewhat larger than when only one variable is changed. However, the differences from the baseline population projections are still relatively small even using extreme scenarios. It is likely that actual conditions will not approach the extremes for either variable, and it is even more likely that the two variables will not both approach the extremes and in ways that result in the highest or lowest population projections.

Figure 3-9. Sensitivity Test 3 from 2010 Census Population

9							
		2015	2020	2025	2030	2035	2040
F: 95%LL M: 2013US	Population	8,987,340	9,179,573	9,364,363	9,515,007	9,603,751	9,625,680
	Difference	-24,421	-48,582	-71,770	-93,110	-111,744	-127,539
	%	-0.27%	-0.53%	-0.76%	-0.97%	-1.15%	-1.31%
	Population	9,071,569	9,348,901	9,619,791	9,855,401	10,026,793	10,134,109
F: 2015 Exp M: 95%LL	Difference	59,807	120,746	183,658	247,285	311,297	380,891
	%	0.66%	1.31%	1.95%	2.57%	3.20%	3.91%

Table 3-7. Results for Sensitivity Test 3 from 2010 Census Population

Sensitivity Test 4: Net Migration

The 2014 population of New Jersey was estimated at 8.94 million. **Figure 3-10** shows the annual population growth rate between 1981 and 2014. The population growth rate was 0.53% per year in 2010, down from 0.85% in 2000. This slowdown in population growth is largely attributed to net domestic out-migration from New Jersey to other states. Rates of immigration from other countries also can vary widely. Therefore, the net migration component represents a large portion of the uncertainty in population projection.

Figure 3-10. New Jersey Population Annual Growth Rate (1981-2014)

As noted in the introduction to this section, migration rates are not directly measured. Rather, they are calculated by comparing the change in total population to the rate of natural increase or decrease (births minus deaths), with the migration rate being that portion of population change not explained by the natural increase or decrease. In this age-cohort population projection model, the average migration rate during the period of 2000 to 2010 in New Jersey is used. **Figure 3-11** provides the calculated net migration rate for New Jersey from 1990 to 2011, clearly showing significant volatility within that average.

There are some other sources of net migration estimates. According to the U.S. Census Bureau's domestic migration estimates, New Jersey has experienced net domestic out-migration since at least 1991 (see **Figure 3-12**). This has closely paralleled the overall migration trends in the northeastern United States. High cost of living and housing might be the main factor that leads to the state's net domestic out-migration. However, New Jersey has also received a large net inflow of international immigrants, which sometimes more than compensates for the domestic outflow.

Figure 3-11. Calculated Net Migration, New Jersey (1990-2011)

Figure 3-12. Net Domestic Out-Migration per 1000 from New Jersey and the Northeast, 1991-2007 (U.S. Bureau of the Census)

The Statistics of Income Division (SOI) of the Internal Revenue Service (IRS) also provides the area-to-area migration data in the United States, using records of all individual income tax forms filed in each year. For each State, there are inflow and outflow spreadsheets, which show the number of returns (used to estimate households) from a U.S. address and a foreign country. **Table 3-8** below shows the SOI Tax Statistics Migration Data in New Jersey from 2004 to 2011, providing a general idea of the relationships between inflow, outflow, domestic, and international migration

rates. However, the source and design of this dataset present some limitations in that the numbers in this table cannot match the values in previous table and figure. People who are not required to file United States federal income tax returns are not included in this file, and so the data will under-represent the poor and the elderly who have limited or no taxable income. As can be seen in the table, the net domestic migration values are negative for all years shown, net foreign migration values are very modestly positive or negative for all years, and net total migration is negative for all years.

		US	Foreign	Total
	Inflow	79,062	5,840	84,902
2004-2005	Outflow	(104,014)	(3,015)	(107,029)
	Total	(24,952)	2,825	(22,127)
	Inflow	80,561	4,635	85,196
2005-2006	Outflow	(109,461)	(2,872)	(112,333)
	Total	(28,900)	1,763	(27,137)
	Inflow	76,751	4,638	81,389
2006-2007	Outflow	(102,940)	(2,828)	(105,768)
	Total	(26,189)	1,810	(24,379)
	Inflow	79,519	5,041	84,560
2007-2008	Outflow	(101,091)	(2,754)	(103,845)
	Total	(21,572)	2,287	(19,285)
	Inflow	77,106	4,751	81,857
2008-2009	Outflow	(92,412)	(3,064)	(95,476)
	Total	(15,306)	1,687	(13,619)
	Inflow	73,241	1,837	75,078
2009-2010	Outflow	(87,630)	(3,016)	(90,646)
	Total	(14,389)	(1,179)	(15,568)
	Inflow	74,343	2,195	76,538
2010-2011	Outflow	(93,872)	(3,026)	(96,898)
	Total	(19,529)	(831)	(20,360)

Table 3-8. SOI Tax Statistics, Migration Data, New Jersey (IRS)

Using net migration rates from the various sources provide significantly different population estimates. In this part of sensitivity test, we investigate how changes in net migration rates (domestic and foreign combined) could affect population projections in New Jersey through 2040. The average net migration rates during 2005 to 2010 and during 2010 to 2014 are used to replace the average rate during 2000 to 2010 (which was the basis for the current 2040 projections).

Average net migration rate during 2010 to 2014

The U.S. Census Bureau, Population Division provides the estimates of the components of resident population change in New Jersey from 2010 to 2014 (see **Table 3-9**). The number of total net migration varies significantly, from -14,355 to 1,338. The average is -4,888, which represents a net of nearly 5,000 people moving from New Jersey to other locations every year during 2010 to 2014.

Year	Total	Natural Increase	Vital Ev	Vital Events		Net Migration			
	Change		Births	Deaths	Total	International	Domestic		
2010-2011	21,562	35,971	104,343	68,372	-14,355	30,889	-45,244		
2011-2012	29,817	32,693	102,379	69,686	-2,691	46,609	-49,300		
2012-2013	31,590	34,017	104,769	70,752	1,338	46,373	-45,035		
2013-2014	26,673	31,741	103,440	71,699	-3,843	51,626	-55,469		

Table 3-9. Estimates of the Components of Resident Population Change(U.S. Census Bureau)

Analytical Results

Table 3-10 and **Figure 3-13** (following page) show the results of sensitivity tests when the net migration rate is changed in the age-cohort model. The range for the modified forecasted population in 2040 has increased, from 9,372,695 to 10,267,065 (3.90% lower and 5.27% higher than the baseline projection, respectively). This change is much more significant than other scenarios, which indicates net migration rate plays the most important role in population projection model. However, due the lack of accurate and complete data on the net migration rate by sex and age group, this variable is still the most uncertain within the population projection model. As a result, water demand projections will need to address this uncertainty in a useful and useable manner.

		2015	2020	2025	2030	2035	2040
	Population	8,955,323	9,102,565	9,232,968	9,333,557	9,383,631	9,372,695
2005 to 2010	Difference	-56,439	-125,590	-203,165	-274,560	-331,865	-380,523
	%	-0.63%	-1.36%	-2.15%	-2.86%	-3.42%	-3.90%
2010 to 2014	Population	9,021,490	9,303,748	9,614,885	9,898,652	10,115,104	10,267,065
	Difference	9,729	75,593	178,752	290,535	399,609	513,846
	%	0.11%	0.82%	1.89%	3.02%	4.11%	5.27%

Table 3-10. Results for Sensitivity Test 4 from 2010 Census Population

County Level Sensitivity Analyses

The state level sensitivity analyses discussed above indicate that modifications of fertility and mortality, individually and combined, do not show a major shift in projected population through 2040. Net migration has a somewhat larger potential effect and is much more volatile than fertility and mortality. Further, net migration may affect fertility and mortality rates, depending on the age, gender and (for females) fertility rates of those who move into and out of New Jersey.

Water demand projections for this project are focused on individual water supply systems, and therefore statewide sensitivity to variables is only part of the question. We therefore assessed the potential for significant changes in county population projections.

Figure 3-13. Sensitivity Test 4 for Net Migration Rate from 2010 Census Population

The county level sensitivity analyses also use the Age-Cohort population model to determine the sensitivity of 2040 population projections in each county by modifications in the primary variables, such as fertility rate and mortality rate. The base population model estimates use the 2001-2011 county level fertility rates and mortality rates from New Jersey State Health Assessment Data, and the average New Jersey migration rate during the period of 2000 to 2010. The four county level sensitivity tests are designed based on the results of statewide sensitivity tests. Migration rates are even less well known at the county level, and therefor are not modified in these tests.

Table 3-11. County Population Variability Scenarios

	Fertility Rate	Mortality Rate	Migration Rate
Sensitivity Test C1	2012 US	Constant	Constant
Sensitivity Test C2	2012 NJ	Constant	Constant
Sensitivity Test C3	Constant	2013 US	Constant
Sensitivity Test C4	Constant	2011 NJ	Constant

Sensitivity Tests C1 and C2: Fertility Rates

In county sensitivity test 1 and 2 (C1 and C2), we investigate how changes to the fertility rates affect the final population projections in each county. The 2012 United States and New Jersey fertility rates are used in tests. **Figure 3-14** shows the fertility rates in each female age group in the United States and New Jersey. It is clear that their trends are similar, but the peak in New Jersey (age group: 30-34) lags behind the nation as a whole (age group: 25-29). The influence of fertility rate depends on the demographic structure of each county.

Figure 3-14. 2012 Fertility Rates in United States and New Jersey (per 1000 women)

Analytical Results

Table 3-12 below shows the results for sensitivity test C1 and C2. The range for the percentage difference is from 0.05% to 10.49%. Only Cumberland and Ocean County show a sensitivity percentage difference larger than 5%, which indicates the fertility rate has a great impact on population in these two counties and also suggests the 2040 estimated population based on Age-Cohort population model in these two counties is not accurate. For other counties, the most likely range of mortality rates will not affect the population projection significantly.

Other than Cumberland County and Ocean County, the four fastest growth counties in New Jersey using the baseline projection are Gloucester County, Middlesex County, Somerset County, and Atlantic County where the population growth is faster than New Jersey as a whole. The four slowest growth counties are Cape May County, Sussex County, Monmouth County, and Camden County where the population growth lags behind the state as a whole and some even experience population decline.

County	Year	Base	Growth Rate	F: 2012 NJ	Change from	F: 2012 US	Change from
			2010-2040		Baseline (%)		Baseline (%)
Atlantic	2010	274,549	16.62%	274,549		274,549	
	2040	320,189	10.0270	313,165	-2.19%	314,545	-1.76%
Bergen	2010	905,116	5 10%	905,116		905,116	
	2040	952,117	5.1970	984,796	3.43%	985,301	3.49%
Burlington	2010	448,734	10.64%	448,734		448,734	
	2040	496,457	10.0470	500,115	0.74%	501,266	0.97%
Camden	2010	513,657	1 690/-	513,657		513,657	
	2040	505,037	-1.0070	499,316	-1.13%	500,508	-0.90%
Cape May	2010	97,265	20 46%	97,265		97,265	
	2040	77,366	-20.4070	76,271	-1.42%	76,643	-0.93%
Cumberland	2010	156,898	20 1 494	156,898		156,898	
	2040	188,498	20.1470	175,038	-7.14%	175,808	-6.73%
Essex	2010	783,969	8 2 00/	783,969		783,969	
	2040	848,224	0.2070	843,491	-0.56%	843,773	-0.52%

Table 3-12. Sensitivity Tests C1 and C2, Modifying Fertility Rates

County	Year	Base	Growth Rate 2010-2040	F: 2012 NJ	Change from Baseline (%)	F: 2012 US	Change from Baseline (%)
Gloucester	2010	288,288	30.26%	288,288		288,288	
	2040	375,520	30.2070	381,698	1.65%	383,771	2.20%
Hudson	2010	634,266	15 6 20/	634,266		634,266	
	2040	733,421	15.0570	742,619	1.25%	736,589	0.43%
Hunterdon	2010	128,349	2 0.2%	128,349		128,349	
	2040	130,941	2.0270	134,903	3.03%	135,270	3.31%
Mercer	2010	366,513	11 88%	366,513		366,513	
	2040	410,047	11.0070	415,387	1.30%	418,394	2.04%
Middlesex	2010	809,858	20 1 30/-	809,858		809,858	
	2040	972,861	20.1370	988,633	1.62%	991,640	1.93%
Monmouth	2010	630,380	0.57%	630,380		630,380	
	2040	626,767	-0.3770	630,823	0.65%	632,948	0.99%
Morris	2010	492,276	5 24%	492,276		492,276	
	2040	518,080	5.2470	524,861	1.31%	523,574	1.06%
Ocean	2010	576,567	30 51%	576,567		576,567	
	2040	804,342	39.3170	720,006	-10.49%	722,808	-10.14%
Passaic	2010	501,226	5 6 3 %	501,226		501,226	
	2040	529,423	5.0570	506,534	-4.32%	508,810	-3.89%
Salem	2010	66,083	3 3 4 %	66,083		66,083	
	2040	68,293	5.5470	67,174	-1.64%	67,534	-1.11%
Somerset	2010	323,444	16.05%	323,444		323,444	
	2040	375,350	10.0370	376,415	0.28%	375,535	0.05%
Sussex	2010	149,265	2 05%	149,265		149,265	
	2040	143,367	-3.95%	145,531	1.51%	145,957	1.81%
Union	2010	536,499	6.01%	536,499		536,499	
	2040	573,552	0.91%	562,307	-1.96%	562,666	-1.90%
Warren	2010	108,692	6 5404	108,692		108,692	
	2040	115,803	0.0470	119,353	3.07%	119,739	3.40%

Sensitivity Tests C3 and C4: Mortality Rates

In sensitivity test C3 and C4, we investigate how changes to the mortality rates would affect the final population projections in each county. The 2013 United States and 2011 New Jersey mortality rates are applied to these tests. **Figure 3-15** is the survival rates in each male and female age group in United States and New Jersey. The trends of them are same, but New Jersey has a slightly higher survival rate than the nation. Moreover, when people are older than the age of 40, females have a much higher survival rate than males.

Figure 3-15. 2013 US & 2011 NJ Survival Rate

Analytical Results

Table 3-13 shows the results for sensitivity test 3 and 4. The range for the percentage difference is from 0.05% to 4.24%. All counties in New Jersey have sensitivity percentage differences lower than 5%. Thus, in conclusion, the most likely range of mortality rates will not affect the population projection significantly.

County	Year	Base	Growth Rate 2010-2040	M: 2013 US	Change from Baseline (%)	M: 2011 NJ	Change from Baseline (%)
Atlantic	2010	274,549	16 (20)	274,549		274,549	
	2040	320,189	16.62%	324,484	1.34%	328,035	2.45%
Bergen	2010	905,116	5 10%	905,116		905,116	
	2040	952,117	5.1970	917,233	-3.66%	927,834	-2.55%
Burlington	2010	448,734	10 6 49/-	448,734		448,734	
	2040	496,457	10.0470	491,924	-0.91%	497,546	0.22%
Camden	2010	513,657	1 690/	513,657		513,657	
	2040	505,037	-1.0070	510,592	1.10%	516,478	2.27%
Cape May	2010	97,265	20.46%	97,265		97,265	
	2040	77,366	-20.40%	78,564	1.55%	79,725	3.05%
Cumberland	2010	156,898	20.14%	156,898		156,898	
	2040	188,498	20.1470	191,934	1.82%	193,898	2.86%
Essex	2010	783,969	8 2 00/	783,969		783,969	
	2040	848,224	0.2070	854,213	0.71%	863,709	1.83%
Gloucester	2010	288,288	30.26%	288,288		288,288	
	2040	375,520	30.2070	376,883	0.36%	380,765	1.40%
Hudson	2010	634,266	15 6 30/	634,266		634,266	
	2040	733,421	15.0570	726,523	-0.94%	733,754	0.05%

Table 3-13. Sensitivity Tests 3 and 4, Modifying Mortality Rates

County	Year	Base	Growth Rate 2010-2040	M: 2013 US	Change from Baseline (%)	M: 2011 NJ	Change from Baseline (%)
Hunterdon	2010	128,349	2 0 20/	128,349		128,349	
	2040	130,941	2.0270	125,388	-4.24%	127,058	-2.97%
Mercer	2010	366,513	11 000/	366,513		366,513	
	2040	410,047	11.88%	407,102	-0.72%	411,416	0.33%
Middlesex	2010	809,858	20 1 20/	809,858		809,858	
	2040	972,861	20.1370	954,599	-1.88%	964,334	-0.88%
Monmouth	2010	630,380	0.570/	630,380		630,380	
	2040	626,767	-0.3770	617,940	-1.41%	625,652	-0.18%
Morris	2010	492,276	E 240/	492,276		492,276	
	2040	518,080	5.24%	501,409	-3.22%	507,315	-2.08%
Ocean	Ocean 2010 5	576,567	20 510/	576,567		576,567	
	2040	804,342	39.3170	803,765	-0.07%	811,511	0.89%
Passaic	2010	501,226	E (20/	501,226		501,226	
	2040	529,423	5.05%	524,498	-0.93%	530,080	0.12%
Salem	2010	66,083	2 2 4 0 /	66,083		66,083	
	2040	68,293	3.34%	70,148	2.72%	70,972	3.92%
Somerset	2010	323,444	16.059/	323,444		323,444	
	2040	375,350	10.03%	363,185	-3.24%	367,309	-2.14%
Sussex	2010	149,265	2.050/	149,265		149,265	
	2040	143,367	-3.95%	142,630	-0.51%	144,530	0.81%
Union	2010	536,499	6.010/	536,499		536,499	
	2040	573,552	0.9170	564,715	-1.54%	570,958	-0.45%
Warren	2010	108,692	6 5 40/	108,692		108,692	
	2040	115,803	0.3470	114,217	-1.37%	115,604	-0.17%

Conclusions

The population sensitive tests indicate that statewide populations are not likely to be much affected by changes in mortality or fertility rates, but do show the potential for greater differences based on net migration rates. These patterns are amplified at the county level, and logically at the municipal level, as some parts of the state will be more prone to net out-migration while others are more prone to in-migration. Unfortunately, it is not possible to predict the potential for significant changes in domestic or foreign migration patterns and levels, as shown by the high variability in net migration rates since 1980. Therefore, the municipal population estimates from the Metropolitan Planning Organizations are used in the remainder of this report, recognizing that there is inherent uncertainty in this projections that will warrant periodic reevaluation of the water demand projections.

4. Evaluation of Current Water Demands

Most of the public community water supply (PCWS) system data available through the NJDEP address total withdrawals from water supply sources (i.e., as reported in water allocation permit reports) and total water delivered into the water supply system (i.e., as reported for the Water Supply Deficit/Surplus analysis). Utilities provide information on the relative demands for residential, industrial and commercial uses (and unaccounted-for water) when needed to justify water allocation permits, generally when they propose an increased allocation. As water allocation permits have a 10-year lifespan and in many cases utilities are not requesting increases or needing to justify existing allocations, this information is sparse. Some PCWS systems don't have water allocation permits at all, as they are too small (i.e., capable of pumping less than 100,000 gallons per day) or receive their water from other utilities that have their own water allocation permits, making it difficult to know how much water is used by the originating utility for its own purposes and how much is provided to bulk contract customers. Therefore, assumptions must be made based on available information.

Given the major differences in PCWS systems, from rural, residential service areas to highly urbanized and industrialized areas, no single method for apportioning and estimating demands for residential, industrial and commercial (RIC) demands is feasible. This chapter addresses the methods and results for assessing the nature of current water demands for the 584 PCWS systems currently tracked by NJDEP. Approximately 80 percent of all delivered public water in New Jersey is provided by just 37 systems, based on NJDEP's NJ Water Tracking system (NJWaTr) information regarding average annual delivered water.

PCWS Service Areas, Populations and Land Use

The first step in assessing current demands was to acquire available information from NJDEP's Water Supply Deficit/Surplus Analysis data base, which provides available capacity (self-supplied and bulk purchases under contract from other sources, minus bulk water delivered to other PCWS systems under contract) and the highest demand levels in the previous five calendar years. The result indicates whether a utility has surplus capacity or a deficit at the monthly or annual level. NJDEP provided successive versions of the Water Supply Deficit/Surplus Analysis in spreadsheet form for use in this project; the May 2017 version is used in this project with some corrections that were agreed to by NJDEP. This spreadsheet was the most complete listing of PCWS systems available to this project at the time. For the purposes of this project, the annual values were used as one point of comparison to the modeled demands, or as a basis from which demands were calculated, depending on the availability of information regarding the PCWS system in question. NJDEP's NJ Water Tracking system (NJWaTr) is the other basis for calculating demands.

Next, the population of each PCWS system service area was estimated. This estimate differs from the total accounts served, as each residential account often involves more than one person, and non-residential accounts serve individuals only as customers, clients and workers. The following data were used:

- 2010 Census data by Census Block Group
- Land Use Data in GIS (NJDEP 2012 LULC dataset, as the closest data to the 2010 Census)
- Listing of Public Community Water Supply (PCWS) Systems (NJDEP, current to May 2017)
- Revised PCWS service areas in GIS (NJDEP work in progress, 2015 and June 2017)

Using the 2012 LULC dataset and 2010 Census data, a GIS-based dasymetric analysis identified the residential land uses within each Census block group and then related the population from the

Census block group to the residential areas using a proportionality method. Dasymetric mapping is a method of using an ancillary data source to spatially distribute data that are initially organized by large or arbitrary boundaries, to achieve greater spatial accuracy. Dasymetric mapping is employed in this study to more accurately distribute population within the land area of the block groups, the smallest available cartographic units with associated U.S. Bureau of Census Decennial population data. This technique preserves each block group's total census population. The complete method of GIS analysis is in <u>Appendix A</u>.

The 2012 Land Use/Land Cover (LULC) dataset was used to spatially distribute Census population data within block groups. The 2012 version was used rather than the 2007 LULC, because it was closest in time to the 2010 Census and because the available water demand data from PCWS case systems overlapped that date, usually from 2008 to 2014, but up to 2016. Given the effects of the economic recession on land development in New Jersey from 2008 on, the expectation is that little change in land uses occurred in the initial years following the 2012 LULC.

The LULC dataset includes a comprehensive statewide layer of land use polygons using the Anderson coding system. For the purposes of this study, only the residential land use polygons are used. Residential LULC polygons are categorized into four residential density categories: High (1110), Medium (1120), Low (1130), and Rural Density (1140). The last two were grouped for this analysis, as there is very little Rural Density development within PCWS service areas. Within each block group, the residential LULC polygons are grouped by these density categories.

Using this approach, the Anderson LULC classification of 1110 (high-density development, at 5 dwelling units (DU)/acre or more) would receive proportionally more population than 1120 (moderate density development, at 2 to 5 DU/acre), which likewise would receive proportionally more than 1130/1140 (low and rural density development, at 2 DU/acre or less). Population density ratios were developed for this purpose (**Table 4-1**), using groups of counties that have similar development patterns, to recognize that development types in the most urbanized counties (e.g., Hudson County) may have significantly different population densities than the same classifications in other counties (e.g., Warren County). The four groups of counties are as follows:

- Dense Urban Core Counties: Hudson
- Major Urban Counties: Essex, Union, Bergen, Passaic, Middlesex, Camden, Mercer
- Suburban Counties: Monmouth, Somerset, Morris, Ocean, Gloucester, Burlington, Atlantic
- Exurban/Rural Counties: Cape May, Cumberland, Warren, Hunterdon, Sussex, Salem

County Croup	Land Use Density Category					
County Group	High	Medium	Low/Rural			
Dense Urban Core	0.79	0.17	0.04			
Major Urban	0.75	0.20	0.05			
Suburban	0.55	0.36	0.09			
Exurban/Rural	0.70	0.25	0.05			

 Table 4-1. New Jersey Population Density Ratios

Using this information and the PCWS service areas from NJDEP, the existing residential land use areas (high, medium and low/rural density) and related population served for each PCWS system were estimated. Due to project timing, the 2015 version of the PCWS service areas was used for this analysis, except where the June 2017 version provided major updates or entirely new service area delineations. The 2017 version for the complete analysis became available at the very end of the project; using this version for all analyses would have required a complete reconstruction of the

population estimates and all subsequent steps for the project, which was not feasible given the remaining time and funds in the project. The modifications addressed the following systems:

- NJ1208001: NJ American Jamesburg (new service area)
- NJ1426004: United Water Arlington Hills (new service area)
- NJ1439001: Wharton Water Department (new service area)
- NJ1509001: Harvey Cedars Borough Water Department (new service area)
- NJ1436002 Roxbury Water Company, NJ1436003 Roxbury Twp WD Shore Hills, NJ1436004 Roxbury Twp WD – Skyview, and NJ1436006 Roxbury Twp WD – Evergreen (new service area replacing prior Roxbury Water Company delineation and providing Roxbury Township areas)
- NJ417001: Haddonfield Water Department (no service area mapped, but this system is now part of the NJ American-Delaware system, NJ0327001; the entire township was added to that system)
- NJ0708001: Glen Ridge Water Dept (modified service area)
- NJ1316001: Freehold Twp Water Department (modified service area)

One result of having population estimates from two different versions of the service area mapping is that the estimates in some cases are slightly different between two tables used in the report. One table provides the populations associated with High, Medium and Low Density residential development, while the other provides the populations associated with these development densities but further subdivided by geophysical province, slope, housing age and precipitation (see <u>Per Capita</u> <u>Residential Water Demands by Housing Category</u>).

The GIS analysis also allows for identification of non-developed lands within and outside of PCWS service areas that are not constrained by major environmental features such as preserved lands, wetlands and flood plains. The latter information can help assess the potential constraints on increasing population within the PCWS service areas. However, a build-out evaluation is beyond the scope of the study.

Service Area Population Results

Based on this analysis, roughly 90 percent of all New Jersey residents receive their water from PCWS systems, a total of 7,884,569, compared to the 2010 Census of 8,791,894. The thirteen largest systems serve slightly more than **50 percent** of all New Jersey residents within PCWS service areas, as shown in **Table 4-2**. As mentioned at the beginning of this section, the largest 37 PCWS systems account for 80 percent of all PCWS demands in New Jersey, out of 584 systems in the NJDEP dataset.

PWID	System	High Density	Moderate Density	Low Density	Total Population	% of PCWS Population
NJ0238001	Suez - Hackensack System	448,835	286,380	39,932	775,148	9.83%
NJ2004002	NJ American - Raritan	263,497	294,324	148,708	706,529	8.96%
NJ1345001	NJ American - Coastal North	103,861	191,690	71,594	367,145	4.66%
NJ0327001	NJ American - Delaware Basin	257,948	37,473	979	296,400	3.76%
NJ1605002	Passaic Valley Water Commission	82,799	189,811	18,424	291,034	3.69%
NJ0712001	NJ American - Passaic	257,094	1,654	-	258,749	3.28%
NJ0714001	Newark Water & Sewer Dept.	104,820	108,349	41,754	254,923	3.23%

 Table 4-2. New Jersey Water System Population by Residential Development Density (Top 50%)

PWID	System	High Density	Moderate Density	Low Density	Total Population	% of PCWS Population
NJ0906001	Jersey City MUA	238,444	-	-	238,444	3.02%
NJ1225001	Middlesex Water Company	113,203	70,866	12,429	196,498	2.49%
NJ1111001	Trenton City Water Dept.	101,201	82,855	8,375	192,431	2.44%
NJ2004001	NJ American - Liberty	116,348	5,473	1	121,822	1.55%
NJ0119002	NJ American - Atlantic	21,665	73,312	19,359	114,336	1.45%
NJ1507005	Suez - Toms River System	32,661	66,153	12,142	110,955	1.41%

The dasymetric mapping technique provides a more refined estimation of population distribution and densities than is otherwise possible. The refined population distribution is advantageous for accurately assigning water use data to populations. Another benefit of the dasymetric mapping technique is that it allows for a more detailed comparison for water use across residential density types.

Sources of Population Uncertainty

The dasymetric analysis incorporates inherent uncertainties, which propagate through the study. Some uncertainties arise from the land use analysis and the dasymetric evaluation. The 2012 Land Use/Land Cover mapping released by the New Jersey Department of Environmental Protection was used as the best available source of information on residential land uses. However, these land uses and their categorization are based on aerial photograph interpretation.

Some housing units are located within dominant commercial land uses and therefore coded as commercial, not residential. Detailed analysis of water customer locations in urban areas identified a number of these circumstances, which represented a small percentage of total customer records but still indicated that some residences are not captured in this project. In addition, mixed use developments may be delineated as such in the LULC mapping, but the residential density is impossible to ascertain. Also, the residential densities are provided as ranges, and therefore some residential areas may tend toward the high or low side of the range and yet be categorized as the same density class and receive equal distributions of population. In each case, uncertainties exist as to the actual location and densities of residential units and thus populations.

The dasymetric evaluation process is valuable in that it assigns population to the residential portions of census tracts, proportional to development density, rather than assuming that population is evenly spread across the census tract. However, the nature of census information is that the dasymetric evaluation cannot determine actual population by household. Rather, household averages for the census areas are used. This assumption incorporates uncertainties based on the nature of the census information.

All these uncertainties are more consequential as water supply service area decreases in size or the residential development increases in diversity. For this reason, the population estimates for the smallest size water systems have the greatest potential for error. Very large systems are more likely to have inaccuracies that cancel each other at the system level. All systems with estimated populations of 2,500 people or greater (approximately 230 systems) were compared to census information regarding their service areas, and in each case the two values compared well. However, it was not feasible to examine the population estimates for all 584 systems. Therefore, the population estimates for the smallest systems should be used with great care and re-evaluated where issues are raised regarding water supply adequacy. On the other hand, nearly all the small systems were built to serve specific developments or facilities, and therefore the populations (and water demands) are highly unlikely to change a great deal into the future. They also represent a very small

demand per system and even in aggregate, and therefore are likely to have a very limited impact on net water demand or availability for a watershed or aquifer.

Another source of uncertainty relates to the PCWS service areas. NJDEP has developed a detailed mapping of water supply service areas but this product was not finalized and public as of this analysis; NJDEP provided versions of a confidential copy of the GIS files for this project, with the most recent date of June 2017, and intends to release a public version subsequent to a verification process. For this reason, certain water systems exist (as listed in other NJDEP permit and data systems), but were not yet mapped. Population estimates could not be developed for roughly 144 PCWS systems, nearly all of which are very small systems.

Some systems have or may have been absorbed into other systems, either for mapping purposes or as formal consolidations. As one example, the service area for Haddonfield Water Department (NJ0417001) was not delineated in the GIS files provided. This system recently became part of the NJ American Water-Delaware system, but this change was not yet incorporated into NJDEP mapping, resulting in a gap in the mapping, and therefore in the original population projections for this project. Rutgers assumed that the service area boundaries for Haddonfield are essentially contiguous with the township boundaries (given that this general area is very developed and Haddonfield shows as a hole between all the surrounding water service areas). We derived the population estimates for the former Haddonfield system based on the township population, and added the results to NJ American Water-Delaware.

As mentioned in the prior section, some of the analyses were based on the 2015 version of the service area mapping. The 2017 version was used to add newly delineated service areas and to correct the analysis for systems where the estimated populations were very different from the actual municipal populations due to the 2015 version not including the complete service area. The differences are likely to be small, but still will have some effect on calculated water demands.

Per Capita Residential Water Demands by Housing Category

The modeling method assumes that households will have varying demand rates depending on several characteristics. To test this assumption, the following available data were acquired:

- NJ Parcel Boundary Dataset (NJ Office of Information Technology)
- Residential customer water demand data from selected PCWS systems
- PCWS Safe Drinking Water Program data on current and committed demands, contracted water supplies, firm capacity, etc. (NJDEP Water Supply Deficit/Surplus Analysis data base, May 2017)

In consultation with NJDEP and the Water Supply Advisory Council, Rutgers identified a stratified sample of PCWS systems, based on annual average daily demands (over 50 MGD, 20-50 MGD, 5-19 MGD, 2-5 MGD), from which water demand data were sought from residential customers based on individual metering. Monthly demand data were preferred, but in some cases only quarterly data were available within a specific land use type. The target systems were identified to provide the maximum geographical and land development diversity, based on the variables in **Table 4-3**.

Variables	Unit of Measure	Levels
Housing	Residential Units per acre (units/acre)	High =>5 units per acre
Density	(Anderson classes)	Medium >2<5 units per acre
		Low/Rural <=2 units per acre
Housing age	Mean Housing age (years)	Old (Mean <=1990); New (Mean >1990)
Topography	Mean Topographic Variability	Flat (Mean <10%); Steep (Mean >=10%)
Region	Physiographic Provinces	Highlands/Valley & Ridge, Piedmont, Coastal Plain
Precipitation	Annual Precipitation (inches/year)	High (within highest 5 th quintile); Low (other)

Table 4-3. Geographic Variables of Water Demand

The five variables resulted in 96 unique land area categories. These were compared to all PCWS systems with significant service areas using the 2015 GIS mapping of service areas from NJDEP. Roughly 50 of the 96 categories were represented in at least one PCWS service area of any significant size. The largest PCWS service area was then identified for each of these classifications, along with other PCWS systems that might serve as backups should the required data not be available from the first choice. Based on this analysis, 20 PCWS systems were identified as priorities, and of those a total of eleven addressed the largest land area categories. Another 16 systems were identified as potential backups.

Data Acquisition and Analysis

Some of the priority PCWS systems were willing to provide data, but some collected only quarterly data and of those, only a few collected the quarterly data in a pattern that allowed for effective geographic analysis (i.e., collecting data the same month from an entire municipality within a larger service area, rather than in multi-month staging within each municipality). Other potential candidate systems declined or did not respond to the request for data. The following water utilities provided data usable in the project, with the understanding that Rutgers would not provide the original data to other users without the written permission of the data provider, and that personal identifications of customers would not be used or provided to any other entity. However, interpreted information, such as the analyses used in this project, are in the public domain. Nearly all the utilities in **Table 4-4** provided data for the period 2008 through 2014; this period represents both wet and moderately dry years, but includes no drought periods that required declaration of a drought emergency. One utility provided information for a later period, 2015-2016, because they had recently changed to a different metering schedule and accounting system, and so earlier data were not comparable.

Water Utility	Service Area	Demand	Service Area					
		Period	Population					
Mount Laurel MUA	Township	Monthly	40,272					
Newark Water & Sewer	City	Monthly	272,919					
New Jersey American Water	28 separate systems	Monthly	2,077,148					
Passaic Valley Water Commission	Regional (direct service to Paterson, Clifton,	Quarterly	345,502					
(PVWC)	Passaic, Prospect Park, Lodi, North Arlington,							
	and a section of Woodland Park)							
Ridgewood Water Department	Regional (Glen Rock, Midland Park,	Quarterly	60,113					
	Ridgewood, Wyckoff)							
Roxbury Township Water	Portion of municipality	Quarterly	10,773					
Suez-New Jersey	Hackensack System	Monthly	781,624					
	Total Service Area	a Population	3,588,351					
	Percentage of State Pop	oulation 2010	40.81%					
	Percentage of 2010 Population Served by PCWS Systems 45.51%							

Table 4-4. Water Utilities Providing Residential Water Demand Data

Of these systems, Newark, PVWC, portions of the NJ American system (Raritan, Coastal North, Delaware Basin, Harrison-Gloucester County, Washington-Warren County) and Roxbury Township were original high priorities for data acquisition, as they represent many of the largest land area classifications in New Jersey. Suez-NJ (Hackensack) provided a very valuable addition to the available data, covering many older suburbs of northern New Jersey. Mount Laurel is a prototypical suburban municipality in southern New Jersey, providing valuable monthly data for that land use type. Ridgewood Water provided quarterly data but there were complexities involved in the analytical process that did not allow for their inclusion in the analysis of per capita residential demands for this report, though the data were used as a basis for 2010 estimates of Ridgewood Water demands. The result is that data were available from most of the targeted land area classifications; those classifications represented almost 88% of all PCWS service areas in New Jersey. While additional data sets would have further benefitted this work, the available data provide a solid foundation for analysis of per capita residential demands.

In each case, the first step was associating the water demand data to parcels, using the customer addresses and NJ Parcel Boundary data set; in some cases, a GIS dataset of customer locations was provided by the utility. Using the dasymetric analysis previously discussed, the demand data were then associated with the appropriate residential development density and the associated populations. The result was a per capita residential demand for each unique combination of Census block group and residential development density.

This step required additional analysis, as in many cases the relevant parcel included more than one LULC coding, and the geocoded customer location was in a portion of the parcel mapped as nonresidential. LULC data are created at such a fine scale that any given parcel could contain multiple land use classifications. Simply overlaying the water use data points on top of the LULC polygons results in points being assigned to unrealistic and incorrect land use classifications such as forest or wetland. Figure 4-1 is an example from a service area that illustrates a common situation where the data points are clearly supposed to be associated with the houses within the parcel, but the data points are located outside of the medium density residential LULC classification. To remedy the discrepancy between the LULC data and the parcel data, a series of processing steps are completed to assign each parcel a land use classification that is most appropriate for this study. Land use classifications that are not associated with residential

Figure 4-1. Example Relationship of Water Use Data Points and Land Use/Land Cover

water use are ignored and overridden. In this example, the deciduous wooded wetlands land use classifications are ignored and each of the three parcels is given a land use classification of Medium Density Residential only.

The results are developed for annual, summer and non-summer demands for each year in the period of record, and the same for the entire period of record. Summer months are defined as June

through September to correspond with the major growing season, and Non-Summer as October through May.

In areas that have large seasonal population shifts, demands are also differentiated between "all users" and "year-round users" to allow an evaluation of how seasonality affects per capita demands. By definition, use of Census population data in this analysis means that it is not possible to determine the summer population. However, the water demand data do provide a good estimate of the total number of housing units with seasonal demands.

The results also are associated through GIS with the land area classifications previously described (i.e., housing age, topography, residential density, geography and rainfall). In this manner, per capita demands can be described for each Census block group/residential density combination, each Census block group for all residential areas, each residential development density within a total service area, all residential areas within a service area, each land area classification at any geographic scale, and each municipality or other geographic area. It is this broad range of aggregation opportunities that allow the following steps.

Characterization of Case Example Water Systems

The service areas for the larger PCWS Systems that provided water data are described in **Table 4-5** and **Table 4-6**, below, which shows the breakdown of the service area according to the variables described above. NJ American Water also provided information on numerous smaller systems, which are not shown in this table. Within the analyses performed, low and rural residential density service areas were combined, but they are shown separately below.

PWID	System Name	Type	Total Acres	HD_0_ F_PM_L	HD_0_ F_HL_ H	HD_0_ F_HL_L	HD_0_ F_CP_L	HD_O_ F_PM_ H	MD_O_ F_PM_L	MD_0_ F_HL_L	MD_N_ F_CP_L	MD_0_ S_HL_H	MD_0_ F_CP_L	MD_O_ F_PM_ H
0324001	Mount Laurel MUA	G	4,406				746						2,161	
0714001	Newark Water & Sewer Dept.	G	4, 570	4,570										
2004002	NJ American - Raritan	Ι	82,356	12,011					26,924					
1345001	NJ American - Coastal North	Ι	44,912				5,476						20,195	
327001	NJ American - Delaware Basin	Ι	28,992				3,490						21,799	
808001	NJ American - Harrison	Ι	2,427								279			
2121001	NJ American - Washington	Ι	1,924			106				770				
1605002	Passaic Valley Water Commission	G	7,843					5,561						2,282
251001	Ridgewood Water	G	7,561						4,757					
1436003	Roxbury Water Dept.	G	3,902		95							1,954		
0238001	Suez-NJ-Hackensack	Ι	45,284	10,265					24,690					

Table 4-5. Relationship of PCWS System Service Areas to Project Land Classifications (High/Medium Residential Densities)

I = Investor-owned G = Governmental entity (municipal, municipal utility authority, regional agency)

The columns use a five-variable convention: Housing Density-Housing Age-Topography-Region-Precipitation with the following abbreviations:

Variables	Unit of Measure	Levels
Housing	Residential Units per acre	High (HD), Medium (MD), Low (LD) (Anderson classes)
Density	(units/acre)	
Housing age	Mean Housing age (years)	Old (O) (Mean <=1990), New (N) (Mean >1990)
Topography	Mean Topographic Variability	Flat (F) (Mean $<10\%$), Steep (S) (Mean $>=10\%$)
Region	Physiographic Provinces	Highlands/Valley & Ridge (HL), Piedmont (PM), Coastal Plain (CP)
Precipitation	Annual Precipitation	High (H) (within highest 5^{th} quintile), Low (L) (other)
	(inches/year)	

Grid cells shown in blue with bold text are PCWS system service areas with the largest area within the indicated land classification.

PWID	System Name	Type	Total Acres	LD_O_F _PM_L	LD_0_F _HL_H	LD_0_F _HL_L	LD_N_F _CP_L	LD_0_F _CP_L	RD_N_ F_CP_L	RD_O_F _PM_L	RD_0_F _HL_H	RD_0_F _HL_L	RD_O_F _CP_L
0324001	Mount Laurel MUA	G	4,406					1.058					441
0714001	Newark Water & Sewer Dept.	G	4,5 70										
2004002	NJ American - Raritan	Ι	82,356	20,760						22,661			
1345001	NJ American - Coastal North	Ι	44,912					10,873					8,368
327001	NJ American - Delaware Basin	Ι	28,992					2,321					1,381
808001	NJ American - Harrison	Ι	2,427				648		1,500				
2121001	NJ American - Washington	Ι	1,924			523						525	
1605002	Passaic Valley Water Commission	G	7,843										
251001	Ridgewood Water	G	7,561	2,804									
1436003	Roxbury Water Dept.	Ι	3,902		1,375						478		
0238001	Suez-NJ Hackensack			6,885						3,444			

Table 4-6. Relationship of PCWS System Service Areas to Project Land Classifications (Low and Rural Residential Densities)

I = Investor-owned G = Governmental entity (municipal, municipal utility authority, regional agency)

The columns use a five-variable convention: Housing Density-Housing Age-Topography-Region-Precipitation with the following abbreviations:

Variables	Unit of Measure	Levels
Housing	Residential Units per acre	High (HD), Medium (MD), Low (LD) (Anderson classes)
Density	(units/acre)	
Housing age	Mean Housing age (years)	Old (O) (Mean <=1990), New (N) (Mean >1990)
Topography	Mean Topographic Variability	Flat (F) (Mean <10%), Steep (S) (Mean >=10%)
Region	Physiographic Provinces	Highlands/Valley & Ridge (HL), Piedmont (PM), Coastal Plain (CP)
Precipitation	Annual Precipitation (inches/year)	High (H) (within highest 5 th quintile), Low (L) (other)

Grid cells shown in blue with bold text are PCWS system service areas with the largest area within the indicated land classification.

Residential Annual Average, Non-growing Season and Growing Season Demands

The results from an example service area in **Table 4-7** below show a relationship of increasing per capita water use with decreasing residential density, which is expected. High density residential development has the lowest annual per capita water use. Per capita water use for medium density residential development is slightly greater than high density residential development water use. Low density residential development has a much greater per capita water use than medium and high density residential development, roughly double the per capita water use of medium density residential development.

The other major point in this table is the significant variation from year to year in summer per capita demands for the medium and low density residential development, as compared to high density development, and from that, a large variation in the summer to non-summer ratio. These variations raise a problem regarding selection of a "beginning point" for the modeling process. Arguments can be made for using the most recent years (to capture the most recent effects of any ongoing trends), an average of all the years (capturing both wetter and drier years), or the peak year (focusing on stressed conditions). For the purposes of this model, the multi-year average of all annual results is used to reflect dominant conditions. During a severe drought, demands will be artificially suppressed through state mandates, and so using a peak year is less appropriate for water supply planning than it is for infrastructure capacity analysis (a focus of NJDEP's Water Supply Deficit/Surplus Capacity analysis).

Metric	Density	01/08-	10/08-	10/09-	10/10-	10/11-	10/12-	10/13-	10/14-	Average
		09/08	09/09	09/10	09/11	09/12	09/13	09/14	09/15	
Average Annual	high	68.37	64.99	65.25	65.37	64.00	61.53	58.68	59.38	63.45
Per Capita Per	medium	80.16	66.47	74.59	72.29	68.19	58.89	58.74	63.37	67.84
Day	low	100.29	77.40	91.21	89.12	84.31	69.02	74.11	81.84	83.41
Average	high	73.60	67.07	74.00	73.99	70.51	65.55	62.47	65.12	69.04
Summer Use Per	medium	112.87	80.95	116.65	107.20	102.24	76.47	79.23	92.23	95.98
Capita Per Day	low	153.72	100.42	157.00	138.66	136.80	92.63	107.09	128.69	126.88
Average Non-	high	64.15	63.94	60.85	61.04	60.73	59.52	56.77	56.50	60.44
Summer Use Per	medium	53.74	59.20	53.48	54.77	51.10	50.06	48.46	48.88	52.46
Capita Per Day	low	57.13	65.85	58.18	64.25	57.95	57.17	57.56	58.32	59.55
Ratio of	high	1.15	1.05	1.22	1.21	1.16	1.10	1.10	1.15	1.14
Summer to Non-	medium	2.10	1.37	2.18	1.96	2.00	1.53	1.63	1.89	1.83
Capital Per Day	low	2.69	1.53	2.70	2.16	2.36	1.62	1.86	2.21	2.14

Table 4-7. Example Per Capita Residential Demands and Summer to Non-Summer Demand Ratios

The monthly nature of the water use data allows for an analysis of seasonal differences in water use. For this analysis the months of June, July, August, and September are classified as "Summer" (i.e., growing season) months and the remaining months are classified as "Non-Summer" months. Water use per capita per day during the Summer is greater than water use per capita per day during the Non-Summer across every residential density category. However, as shown in the example of **Table 4-8** below, the ratio of Summer to Non-Summer demands is markedly different for each residential density category. For high density residential development in this example, the median increase in water use per capita per day from non-summer to summer is approximately 47%. For medium density residential development, the median increase is approximately 76%. For low density residential development, the median increase is approximately 120%.

different seasonal relationships. In highly urbanized areas such as Newark, high density residential development shows negligible differences between Summer and Non-Summer demands, approximately 5%.

Residential	Residential	6-Year
Demand Metric	Density	Average
Average Amousl Der	high	53
Average Annual Per	medium	62
Capita Fel Day	low	138
Auguage Summer Has	high	68
Average Summer Use	medium	87
rei Capita rei Day	low	217
Awaraga Nan Summan	high	46
Average Non-Summer	medium	49
Use Fei Capita Fei Day	low	99
Ratio of Summer to	high	1.47
Non-Summer Use	medium	1.76
Per Capital Per Day	low	2.20

Table 4-8. Example Residential Water Demand Per Capita Per Day (gpcd) for a PCWS Service Area

The spatial patterns of seasonal water use are also of interest for this study. **Figure 4-2**below is drawn from an analysis of data from the NJ American Water-Coastal North Division, and shows the ratio of Summer to Non-Summer water use per capita per day. A larger ratio represents a larger

percent increase in water use in the summer months. Although rare, some ratios are less than one which means those areas experienced a decrease in water use per capita per day in the summer. While not explored in this analysis, causes of this anomaly could be residential schools (i.e. colleges) or residences that are vacated during the summer. The map shows that much of the coast, including virtually all the barrier islands in the south, experienced a large increase in water use during the summer months. Appendix D includes figures showing the patterns of per capita demands and seasonal ratios for the major case PCWS systems.

Of interest in this study is the effect that seasonal populations can have on localized water demands. This factor is particularly relevant to coastal and vacation communities that experience a large influx of population during the tourism season, such as the coastal communities

Figure 4-2. Example Ratios of Summer to Non-Summer Per Capita Per Day Water Use

shown in **Figure 4-2** above. To understand the effect of this seasonal population, a classification of "year-round user" was created for the water use data points. The criterion for a year-round user is any customer that has fewer than three months with zero water use. Any customer with three or more months of zero water use is assumed to be a seasonal residence, a vacation property or a rental property that is often vacant during the off-season.

Comparing the water use of year-round residents with the water use of all users provides one approximation of the effect that seasonal populations have on water use, as shown in the example of **Table 4-9**. These results were developed for the PCWS systems for which customer data were provided. Non-Summer uses are not materially different, which is expected as the seasonal increase in users does not affect off-season uses. However, Summer uses are significantly different, with higher per capita uses and Summer to Non-Summer ratios across all residential densities. This effect reflects how the seasonal populations increase water demands within the block group, but the underlying Census population of the block groups is unchanged. The significant shifts shown in this table for Summer uses emphasize the importance of addressing seasonal demands within the projection of water demands to 2040. As coastal residential properties either shift to year-round residents or to rental of previously year-round properties, the ratios of Summer to Non-Summer demands will likewise change. There is no certain mechanism for projecting these shifts, which will be driven by economics, demographic change and possibly storm damages. The method of analysis for other PCWS systems is discussed in the <u>Residential Demands</u> section under <u>Extrapolation to Other PCWS Systems</u>.

All Us	sers			"Year Roun	d" Users	
Analysis	Density	6-Yr Avg	Analys	is	Density	6-Yr Avg
Average Summer Use	high	68	Average	e Summer Use	high	53
Per Capita Per Day	medium	87	Per Cap	pita Per Day	medium	77
	low	217			low	196
Average Non-Summer	high	46	Average	e Non-Summer	high	44
Use Per Capita Per Day	medium	49	Use Per	r Capita Per Day	medium	48
	low	99			low	99
Ratio of Summer to	high	1.47	Ratio o	f Summer to	high	1.21
Non-summer Use Per Capital Per Day	medium	1.76	Non-su Per Car	Non-summer Use Per Capital Per Day		1.59
r er Supriur i er Day	low	2.20	I er oa	ficar i ci Day	low	1.98

 Table 4-9. Example Per Capita Residential Demands, Year-Round versus All Users

The residential water demand data from the case study PCWS systems resulted in a range of per capital water demands for the various land classification categories. **Table 4-10** provides a summary of the median and weighted average water demands (and the percent difference between these values) for high, medium and low density residential development for the full year, Summer and Non-Summer, and the ratio of Summer to Non-Summer demands. The weighted averages are higher in all circumstances, especially for low density development, indicating that the larger systems showed higher demands on average. Summer and Non-Summer demands differ little for high density development, while for low density development differences are very large (especially on a weighted average basis). These values were derived after excluding outliers based on an analysis of all values; results below 15 and above 250 gpcd (gallons per capita day) in annual average demands are considered not representative of legitimate water demands but rather reflecting a difficulty in the dasymetric analysis. In addition, results for areas with very low populations were excluded.

Metric	Density	Median	Weighted	Percent
	_		Average	Difference
Average Annual Per	high	41.67	49.89	19.7%
Capita Per Day	medium	53.51	60.79	13.6%
	low	75.31	87.10	15.7%
Total Summer Use Per	high	45.32	52.96	16.9%
Capita Per Day	medium	67.26	78.23	16.3%
	low	88.14	128.51	45.8%
Average Non-Summer	high	39.10	46.23	18.2%
Use Per Capita Per Day	medium	49.62	52.09	5.0%
	low	58.42	62.93	7.7%
Ratio of Summer Use to	high	1.10	1.15	4.1%
Non-Summer Use (Per	medium	1.31	1.50	14.5%
Capita Per Day)	low	1.32	2.04	54.4%

Table 4-10. Median and Weighted Average Residential Water Demands, Case PCWS Systems

The results were evaluated to determine whether sufficient results were available for each land classification category to support a robust evaluation of per capita demands. Categories with less than roughly 0.5 percent of the total assessed population (17,940 of 3,588,351) were combined with other comparable categories. No categories with N (New Housing) or H (High Precipitation) met this threshold; the only areas with High Precipitation are in the Highlands Region. One category (High Density-Highlands-Flat Slope) was too small to include but there was no other appropriate High Density-Highlands category for merging, and so High Density-Piedmont-Flat Slope was used. The merged categories are as in **Table 4-11**.

Original Category	Parameter with Insufficient Population Results	Population	% of Assessed Population	New Category
HD_N_F_CP_L	Housing Age	2,713	0.08%	HD_O_F_CP_L
HD_N_F_HL_H	Housing Age, Precipitation	292	0.01%	HD_O_F_HL_L
HD_O_F_HL_L	High Density with Flat Slope	4,350	0.12%	HD_O_F_PM_L
HD_O_F_PM_H	Precipitation	5,905	0.17%	HD_O_F_PM_L
LD_N_F_CP_L	Housing Age	1,655	0.05%	LD_O_F_CP_L
LD_O_F_HL_H	Precipitation	360	0.01%	LD_O_F_HL_L
LD_O_F_PM_H	Precipitation	177	0.00%	LD_O_F_PM_L
LD_O_S_PM_L	Steep Slope	127	0.004%	LD_O_F_PM_L
MD_N_F_CP_L	Housing Age	3,038	0.09%	MD_O_F_CP_L
MD_O_F_HL_H	Precipitation	605	0.02%	MD_O_F_HL_L
MD_O_F_PM_H	Precipitation	7,071	0.20%	MD_O_F_PM_L

 Table 4-11. Merged Land Classification Categories due to Low Associated Populations

Where multiple results were available for a single land classification category, the results were evaluated for diversity in per capita rates within the individual PCWS system and among multiple systems (where applicable), using a comparison of the system results to the weighted average of results across all systems. Where variability among the larger systems was relatively small (generally less than 20% plus or minus), the weighted average was used. Results for the smallest systems are assumed to have the largest potential for analytical error, because the dasymetric analysis of population becomes less robust with small populations; the denominator for per capital demands (the associated population) can have a large effect on the results. In some cases, the results showed a wide variety among the systems. In this case, a qualitative evaluation was used to identify an

appropriate value to use in the water demand analysis, based on information regarding the nature of the service areas.

In one instance, High Density in the Highlands, no information was available from systems with monthly data, and therefore values from a nearby area with similar characteristics (e.g., bedrock geology and valley-fill aquifers) was selected, in this case the High Density-Piedmont results from the NJ American Water-Passaic System, at 42.04 gpcd. Values from Roxbury Water Department were considered as a basis for comparison (using quarterly data rather than monthly), as this system is fully within the Highlands; however, Roxbury has almost no high density residential population and the High Density results are anomalous, being much higher than for medium and low density residential demands. For this reason, the High Density-Piedmont results were also used in Roxbury to substitute.

This evaluation was performed for annual demands. Demands for the growing and non-growing seasons were then selected using the same approach. Based on this approach, the per capita residential demands in **Table 4-12** were selected for use. The selected per capital demands are used as the basis for estimating residential demands in all other PCWS systems, as discussed below in <u>Extrapolation to Other PCWS Systems</u>.

Residential Density/Region	Coastal	Piedmont	Highlands and Ridge
	Plain (CP)	(PM)	& Valley (HL)
High Density (HD) Annual	47.92	58.46	42.04
Medium Density (MD) Annual	59.04	61.20	53.52
Low Density (LD) Annual	93.27	73.95	61.09
High Density (HD) Summer	53.49	62.61	42.47
Medium Density (MD) Summer	75.88	76.62	59.42
Low Density (LD) Summer	141.05	108.92	81.75
High Density (HD) Non-Summer	45.13	56.27	41.82
Medium Density (MD) Non-Summer	50.59	53.17	50.62
Low Density (LD) Non-Summer	69.36	56.61	50.84

 Table 4-12. Selected Per Capita Residential Demands (gallons per day)

Results for the larger PCWS case systems are shown in Table 4-13.

Table 4-13. Con	parison of Per	Capita Residential	Demands for Lai	rgest Case PCWS Sy	ystems
-----------------	----------------	--------------------	-----------------	--------------------	--------

Group	NJ0119002	NJ0238001	NJ0327001	NJ0712001	NJ0714001	NJ1345001	NJ2004002
	NJAW-	Suez-	NJAW-	NJAW-	Newark	NJAW-	NJAW-
	Atlantic	Haworth	Delaware	Passaic		Coastal	Raritan
						North	
				Population			
HD_O_F_CP_L	14,211		61,723			84,257	9,373
HD_O_F_PM_L		409,407		182,129	224,518		434,714
LD_O_F_CP_L	7,770		5,509			44,824	40,255
LD_O_F_HL_L				16,729			2,944
LD_O_F_PM_L		25,987		60,409			213,521
MD_O_F_CP_L	80,960		189,134			201,660	7,556
MD_O_F_HL_L				8,333			728
MD_O_F_PM_L		281,938		208,707	1,275		562,122
Grand Total	102,941	717,332	256,366	476,307	225,793	330,742	1,271,213
		Populatio	on by PWSID	as % of Grou	up		
HD_O_F_CP_L	7%		29%			40%	4%
HD_O_F_PM_L		32%		14%	18%		34%
LD_O_F_CP_L	7%		5%			40%	36%
LD_O_F_HL_L				76%			13%

Group	NJ0119002	NJ0238001	NJ0327001	NJ0712001	NJ0714001	NJ1345001	NJ2004002
	NJAW-	Suez-	NJAW-	NJAW-	Newark	NJAW-	NJAW-
	Atlantic	Haworth	Delaware	Passaic		Coastal	Raritan
						North	
LD_O_F_PM_L		8%		20%			69%
MD_O_F_CP_L	15%		34%			36%	1%
MD_O_F_HL_L				37%			3%
MD_O_F_PM_L		26%		19%			52%
		Total De	emand Unwei	ighted Averag	ge		
HD_O_F_CP_L	48.10		38.88			48.97	54.18
HD_O_F_PM_L		69.70		42.04	66.02		51.22
LD_O_F_CP_L	73.81		109.73			128.00	65.91
LD_O_F_HL_L				62.05			51.97
LD_O_F_PM_L		103.49		73.95			50.14
MD_O_F_CP_L	60.86		62.89			57.48	63.43
MD_O_F_HL_L				79.86			55.75
MD_O_F_PM_L		72.53		64.34	47.49		54.75
	- -	Fotal Deman	d as Portion of	of Weighted A	lverage		
HD_O_F_CP_L	3.25		11.41			19.62	2.42
HD_O_F_PM_L		22.65		6.08	11.76		17.67
LD_O_F_CP_L	5.06		5.33			50.62	23.41
LD_O_F_HL_L				47.30			6.97
LD_O_F_PM_L		8.72		14.48			34.71
MD_O_F_CP_L	8.83		21.32			20.78	0.86
MD_O_F_HL_L				29.72			1.81
MD_O_F_PM_L		19.02		12.49	0.06		28.62
Differ	ence between	System and	Total Weight	ed Average I	Demand Diffe	erence (as %)	1
HD_O_F_CP_L	0%		-19%			2%	13%
HD_O_F_PM_L		19%		-28%	13%		-12%
LD_O_F_CP_L	-21%		18%			37%	-29%
LD_O_F_HL_L				2%			-15%
LD_O_F_PM_L		71%		22%			-17%
MD_O_F_CP_L	3%		7%			-3%	7%
MD_O_F_HL_L				49%			4%
MD_O_F_PM_L		19%		5%	-22%		-11%

Commercial and Industrial Demands

Commercial demands include those related to all classes of retail and wholesale businesses, and to office buildings that are not associated with manufacturing. For this analysis, demands from public facilities such as municipal, educational and recreational facilities were also included in the category of Commercial.

Industrial demands are associated with manufacturing and all ancillary demands, such as on-site office space. Water delivered under the category "Fire Protection" was consistently well below 1% of total demands for those case PCWS systems providing data, and therefore is not included in this analysis.

In both cases, only demands that are supplied by the PCWS system are addressed. Self-supplied demands are tracked separately by NJDEP where they involve either a water allocation permit or a non-community water supply, such as an on-site well, and are not addressed in this project.

Most of the case PCWS systems also provide data on the relative demand of Residential (all categories), Commercial (usually with private and public customers separately) and Industrial customers. The results are shown in **Table 4-14**. Residential demands are lowest in Newark and highest in the Ridgewood system. Commercial demands are commonly around 30%, with the highest values in the NJ American Water-Passaic System and Mount Laurel MUA, but Ridgewood is far lower at 13.1%, reflecting its very high Residential components. Only Newark has a high (20.3%) Industrial demand, with the NJ American Water-Raritan System a very distant second at 6.9%. In each case, the percentages were used directly to drive model demands for these systems.

PCWS System	PWSID	Residential Demand	Commercial Demand	Industrial Demand
Mount Laurel MUA (2015)	NJ0323001	67.3%	32.7%	~0%
Newark Water & Sewer Dept (2014)	NJ0714001	57.4%	22.3%	20.3%
NJ American (2014-2016 average)				
Atlantic System	NJ0119002	70.8%	29.2%	~0%
Coastal North System	NJ1345001	73.3%	26.6%	0.1%
Delaware River System	NJ0327001	65.3%	34.0%	0.7%
Mount Holly System	NJ0323001	72.9%	26.6%	0.5%
Passaic System	NJ0712001	61.4%	36.6%	2.0%
Raritan System	NJ2004002	63.2%	30.0%	6.9%
Ridgewood Water Dept (2014)	NJ0257001	86.9%	13.1%	~0%
Suez New Jersey – Haworth (2016)	NJ0239001	72.8%	24%	3.3%
Average	69.1%	27.5%	5.6%	
Median	69.1%	27.9%	2.7%	

Table 4-14. Residential, Commercial and Industrial Demands by Case PCWS System

For each case PCWS system, the ratio of commercial land use to residential land use was compared to utility-reported commercial demands, to determine whether this ratio could serve as a proxy for commercial demands in systems where a residential-industrial-commercial breakdown was not available.

In general, Industrial demands were higher where industrial land area is higher, except the NJ American-Mount Holly System that had low industrial demands despite one of the higher concentrations of industrial land area. The Mount Holly industrial area may be warehouses or similar low-demand but high-area facilities, or there could be a land use coding discrepancy. By comparison, the NJ American-Raritan System has the same industrial land area value as Mount Holly (4%) but a much higher Industrial demand (6.9%, compared to 0.5% for Mount Holly), which may reflect a much more active manufacturing base in the Raritan System (e.g., pharmaceuticals).

Three ratios are provided to help evaluate the relationships of Residential and Commercial demands. The results are shown in **Table 4-15**.

- Ratio of Residential Demand (as %) to Residential Area (as %): This ratio provides a sense of residential demand intensity, similar to population density but reflecting the fact that per capita demands decline as population density increases. Newark has the highest ratio at 2.61, which is reasonable given that nearly its entire residential area is high density. The lowest ratios are in Ridgewood and the NJ American Delaware River and Passaic systems, at less than 1.2. The other systems are in a fairly narrow band (1.37 to 1.65) except for Mount Laurel at 1.87.
- Ratio of Commercial Demand (as %) to Commercial Area (as %): The ratio of Commercial demand relative to Commercial land area is generally much higher than for

Residential, with a median of 3.5. The lowest values are in Ridgewood and Newark; the latter may reflect large commercial areas that have little water demand (as would also be true for warehouse development in many suburbs), despite the existence of many office buildings. The highest ratios are in three NJ American systems – Atlantic, Passaic and Raritan, with ratios ranging from more than 4 to move than 5.

• Ratio of Residential Demand (as %) to Commercial Demand (as %): The values here are quite different among the systems, which Ridgewood being an extreme outlier at 6.63, indicating that the commercial demand supported by its population must be located outside its service area. The other systems have a range of 1.68 (NJ American-Passaic) to 3.03 (Suez). The low value for NJ American-Passaic reflects its high Commercial demand at 36.6%, which was the highest of any system. Of considerable interest is Newark, where a combination of low per capita Residential demands (and perhaps lower household income levels) and a low Commercial demand percentage result in a ratio that is close to that of other systems with far different development patterns (e.g., NJ American-Mount Holly and Coastal North systems).

Newark's ratio of residential demand to residential land area is highest, reflecting its much higher proportion of high density residential development. However, Newark's ratio of Commercial demand to Commercial land area is much lower than all other systems except for Ridgewood. Ridgewood has the highest proportion of residential land area, reflecting its primarily suburban nature with no industrial land uses and roughly average commercial land area.

Interestingly, the amount of commercial land in the service areas ranged only from 7% to 12% while the range for Commercial demand was 13.1% to 36.6%, indicating that the relative intensity of Commercial demand is not related closely to the percentage of service area within that land use. Commercial land area in these systems is generally in the 7% to 10% range, with Newark high at 12%. Industrial land area is even lower, at 1% to 5%, again with Newark high at 10%. One conclusion is that Newark is fundamentally different in composition from the other systems, all of which are either suburban or mixed urban/suburban. Therefore, the results from Newark should only be applied to similar urban core areas.

The ratio of Residential and Commercial demands is mostly in the range of 2:1 to 2.75:1, with a median and average in that range as well. Ridgewood is unusual again, in having a very high ratio of 6.63:1, indicating a lack of commercial land uses supporting that population. The NJ American Water-Passaic System is unusually low, reflecting its high Commercial demand as a percentage of total demand.

PCWS System	Residential Land in WSSA	Commercial Land in WSSA	Industrial Land in WSSA	Ratio RES Demand to Area	Ratio COMM Demand to Area	Ratio of Demand RES:COMM	General Development Pattern
Mount Laurel MUA	36%	9%	2%	1.87	3.63	2.06	Suburban
Newark Water & Sewer Dept	22%	12%	10%	2.61	1.86	2.57	Urban
NJ American Water							
Atlantic System	43%	7%	2%	1.65	4.17	2.42	Suburban
Coastal North System	48%	7%	1%	1.53	3.80	2.76	Suburban
Delaware River System	56%	10%	2%	1.17	3.40	1.92	Suburban
Mount Holly System	44%	8%	4%	1.66	3.33	2.74	Suburban
Passaic System	53%	7%	1%	1.16	5.23	1.68	Suburban
Raritan System	44%	7%	4%	1.44	4.29	2.11	Mixed
Ridgewood Water Dept	76%	8%	1%	1.14	1.64	6.63	Suburban
Suez-NJ – Haworth System	53%	10%	5%	1.37	2.40	3.03	Mixed
Average	47.5%	8.5%	3.2%	1.6	3.4	2.8	
Median	46.0%	8.0%	2.0%	1.5	3.5	2.5	

Table 4-15. Comparison of Residential, Commercial and Industrial Land Uses andDemand Comparisons by Case PCWS System

Case Study Water Losses and Total Water Demands

In some cases, the case PCWS systems provided water loss information, and in other cases the estimates were provided by NJDEP and the Delaware River Basin Commission (DRBC) from submittals received in response to regulatory requirements. The section below on Non-Revenue Water and Water Losses provides more detailed information on this topic from a statewide perspective. Table 4-16 provides the water loss results for the case PCWS systems along with the estimates of residential, industrial and commercial demands based on the analysis described above.

Table 4-16. Annual Average Residential, Industrial and Commercial Demands, and Most RecentWater Loss Estimates by Case PCWS System

PCWS System	Water Loss	Residential	Commercial	Industrial	Total
	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)
Mount Laurel MUA	0.305	2.770	1.390	0.000	4.465
Newark Water & Sewer Dept.	27.884	16.525	12.682	17.205	74.295
NJ American Water					
Atlantic System	0.754	7.005	3.469	0.000	11.229
Coastal North System	6.607	23.160	10.896	0.048	40.711
Delaware River System	1.667	16.769	9.930	0.216	28.581
Mount Holly System	0.450	1.801	0.965	0.020	3.237
Passaic System	10.388	14.351	11.473	0.835	37.047
• Raritan System	28.686	36.332	32.768	9.516	107.302
Suez-NJ – Haworth System	23.672	54.233	22.954	3.937	104.797

A critical point here is that the water losses are based on the most recent reported values of nonrevenue water or unaccounted-for water, while the demands are based on multi-year averages. Water losses (both rates and totals) change from year to year, based on changes in demands and alterations to the systems (in both positive and negative directions). A more appropriate analysis would use annual water loss rates with annual demands and determine an average for both; however, annual water loss rate estimates were not available. Therefore, the water loss estimates should be seen as general estimates, and incorporate some uncertainty.

Extrapolation to Other PCWS Systems

Extrapolation to other PCWS systems requires several steps. First is the estimation of water that is treated and placed into distribution but is not shown as metered demands. Subtracting this amount from the total system delivered water yields an estimate of water that reaches a customer meter. Next, residential demands are estimated using information from the dasymetric analysis and the case studies. Commercial and industrial demands are based on information from the PCWS system, where available, and otherwise on a formula related to residential demands and commercial or industrial land area, respectively, within the PCWS service area, using information from the case studies. The totals are then compared to the maximum annual system water demands provided by NJDEP in the Water Supply Deficit/Surplus Analysis and the NJWaTr database to identify systems where those demands are significantly different from modeled results. Sources of uncertainty are discussed in the final port of this chapter.

Non-Revenue Water and Water Losses

Non-revenue water is the difference between the water that is delivered into the PCWS system and what is measured at the customer meter. This difference is called "Unaccounted-for Water" or UAW, and is the method required by the NJDEP. A more detailed method is the Water Loss Accounting Manual (M36) and associated spreadsheet program from the American Water Works Association, which calculates Non-Revenue Water (NRW) and breaks NRW down into categories of "real" water losses (e.g., leakage, firefighting, water main flushing) and "apparent" losses (e.g., metering inaccuracy, unmetered demands). Infrastructure Leakage Index, or ILI, is the ratio of real losses to the Unavoidable Annual Real Losses (UARL). As ILI approaches one (1), the system approaches zero real water loss that can be addressed cost-effectively through maintenance and replacement. No system can achieve zero real losses, and the cost-effective rate of real losses will vary by system. While national practice is moving away from uniform percent loss thresholds for regulatory purposes (i.e., to define what level of losses is acceptable or unacceptable), the use of reported and projected losses is appropriate for water supply planning purposes.

As infrastructure ages, non-revenue water loss is expected to increase unless the infrastructure is replaced or repaired. Scenarios for water loss rates for this project were developed based on benchmarking for most systems, as insufficient data are available to assess water losses in many utilities outside of the Delaware River Basin. Insufficient information is available to assess water loss trends, though this will become possible over the next decade in the Delaware River Basin if the Delaware River Basin (DRBC) continues with its water loss audit requirements, or if NJDEP includes water loss audits in new regulations implementing the Water Quality Accountability Act of 2017.

Detailed information on system water losses as of 2014 was available from the DRBC for the New Jersey PCWS systems under their jurisdiction (DRBC, 2016). While 2012 and 2014 reports are available, the most recent available year was used, with the assumption that the provided information has become more accurate as PCWS systems gain experience with the reporting requirements and IWA/AWWA Manual M36 process. The recent report on the 2014 submittals (DRBC, 2016) includes the results of 276 water audits in the four states of the Basin, of which 20 systems accounted for roughly 70% of the total volume of water production (with the largest by far being Philadelphia), and only 11 systems exceeding 10 MGD.

The report notes that NRW exceeded 15% of total water produced for 151 of the 276 audits, but indicates that using this percentage as a threshold is not modern practice because it will understate NRW problems in utilities that have inefficient water customers (i.e., higher total volume) but otherwise equivalent NRW volumes. **Figure 4-3** shows the results.

The DRBC 2014 audit results indicate that apparent losses for the 20 largest systems in their region (including the other states) generally range from 3 to 8 gallons per service connection per day (median of roughly 7), a normalized metric that allows comparisons among systems. Real losses for same systems were much higher, at roughly 40 to over 100 gallons per service connection per day, with a median of approximately 65. In other words, for these systems, real losses were most of total water losses, an average of 82%. The same larger utilities in the DRBC region reported a median ILI of roughly 3, with most result ranging from 2.5 to over 9. **Figure 4-4** shows the regional result for all utilities that filed their water audits.

Figure 4-3. Non-Revenue Water as a Percent by Volume of Water Supplied for 276 Systems Reporting Water Audit Results to the Delaware River Basin Commission (DRBC, 2016)

Figure 4-4. Aggregate Summary Graphic for 276 Systems Reporting Water Audit Results to the Delaware River Basin Commission (DRBC, 2016)

Information on water losses was also received from NJDEP based on reporting in response to the recent drought warning. NJDEP requires use of the UAW method at a minimum, but some utilities did provide information using the AWWA method. The combined information from DRBC and NJDEP result in nearly all the reporting utilities having results from within the last five years. Most of the smaller and some of the larger utilities have no reported information on water losses. In all, 228 New Jersey systems are represented.

The New Jersey results for UAW and NRW are shown in the following figures. As can be seen in the scattergrams (**Figure 4-5**), the values range widely and differ significantly between bedrock geology (figures on the left) and coastal geology (figures on the right). The largest systems in bedrock geology all have UAW/NRW of at least 10%, with one outlier of more than 50%. Conversely, many large systems in coastal geology have UAW/NRW below 10%, though the systems reporting zero or near-zero losses are questionable. Again, there are upper outliers among the large coastal systems, but in this case, anything about 25% is highly unusual.

Medium and small systems in the two geology types have similar patterns but are more scattered. Again, the near-zero values are questionable, and the one medium coastal system reporting a negative loss (i.e., a gain) indicates a calculation error. Upper outliers for both bedrock and coastal geology exceed 50% for medium and small systems, with two small coastal systems reporting a startling 90% and 100%. These extreme outliers may also represent incorrect use of the methods.

Figure 4-5. Water Losses for PCWS Systems (Scattergram)

The results are shown in a different manner in **Figure 4-6**, which provides "box and whisker plots" for the PCWS systems by size and whether they are in bedrock or coastal plain geology. The boxes show the range of results from 25th to 75th percentile, with the whiskers indicating the range of all but the outlier results, which are shown as points above and below the whiskers.

Given their outsized impacts, it is worth noting that the largest PCWS systems comprising 80% of the total firm capacity for this group of utilities had a similar range of UAW, from 3% to 52% with a median of 13%. For the larger systems, many of the lowest values are in Coastal Plain systems, which supports anecdotal information from water utility managers that water losses will often be lower in well-maintained systems that have limited topographic relief, allowing for lower pressure zones. Many of the highest results, not surprisingly, are in older urban and inner suburban areas, and in systems with significant topographic relief that requires higher water pressure to provide service to higher elevation areas.

Figure 4-6. Water Losses for PCWS Systems (Box and Whisker Plots)

Table 4-17 provides three simple statistics for each grouping of systems: the mean (average), the median (50th percentile), and the median excluding outliers. The results across all system sizes indicate a very clear distinction between utilities in coastal geology and bedrock geology, with the median (without outliers) UAW/NRW being at least 9% lower for all three sizes. Therefore, the model assigns UAW levels to systems for which UAW/NRW are not available based on the median (no outliers) column, as shown in the final column.

Very small systems (generally, self-supplied facilities) are initially assigned 10%, while mobile home parks and similar small development (e.g., very small municipal or investor-owned systems) are initially assigned 22% in bedrock areas and 11% in the coastal plain. No data are available to know whether these assigned water losses are high or low, but by comparing demands based on per capita times population, some assessment is possible as to whether the actual demands indicate higher or lower water losses. However, on a statewide, county and often municipal or watershed level, the total demands from such facilities are almost uniformly a very small component of total demands.

Category	Mean	Median	Median (no outliers)	Nominal 2010 UAW (PCWS Systems Lacking UAW/NRW Estimates)
Large Systems-Bedrock Geology	23.27%	20.80%	20.40%	20%
Large Systems-Coastal Geology	11.60%	9.99%	9.99%	10%
Medium Systems-Bedrock Geology	19.46%	17.00%	16.65%	17%
Medium Systems-Coastal Geology	13.27%	9.81%	9.97%	10%
Small Systems-Bedrock Geology	22.19%	21.45%	22.30%	22%
Small Systems-Coastal Geology	18.28%	11.00%	11.00%	11%
Very Small Systems				10%

 Table 4-17. Water Loss Statistics by System Size and Geology

The water demand model uses the values in the last column where no other recent information is available.

Residential Demands

Based on the analyses discussed in <u>Per Capita Residential Water Demands by Housing Category</u>, residential per capita rates were estimated for all PCWS systems. The following steps were used:

- 1. For each case study PCWS system, using the results from that specific system, multiply the residential per capita rate for each land classification by the population associated with that area, as estimated through the dasymetric analysis.
- 2. For all other PCWS systems, multiply the relevant derived residential per capita rate for each land classification (Coastal Plain, Piedmont, Highlands/Ridge & Valley) and housing density (High, Medium and Low) by the population associated with that area, as estimated through the dasymetric analysis.
- 3. Compile all resulting residential demands for the PCWS service area.
- 4. Add seasonal demand increases related to tourism for systems with a high proportion of beach communities.

Seasonal Demand Increases Due to Tourism

Seasonal shifts in demand have two components. First, year-round users generally increase their demands during the summer months for outdoor water uses. This increased summer demand by regular customers is incorporated into the residential per-capita demand calculations for all systems.

Second, coastal communities, and especially those with large areas (relative to total municipal land area) on the Atlantic Ocean or back bays, often experience major increases in demand due to tourism, including both day users and those who rent houses, apartments and hotel/motel rooms for multi-day vacations. Seasonal visitors may greatly outnumber year-round residents. Commercial water demands will also increase for all businesses that cater to tourists.

The demand model addresses this complication in two ways. First, for systems that provided residential water demand data, the demands of year-round users were compared to the demands of all users, providing a measure of how much of the demand is attributable to seasonal users. In general, little difference was detected. Second, where water allocation permit reports are available for specific systems (i.e., where the PCWS systems rely entirely on their own supplies), the model includes a comparison of the ratio of summer to non-summer total water withdrawals to the same ratio based on modeled demands for year-round residents. The difference is attributed to seasonal users. This ratio is then used as a multiplier for modeled annual demands to account for seasonal demands related to tourism.

All PCWS systems that have major coastal residential areas and their own water supply sources (as identified through the Water Allocation Permit database) were identified. Monthly system water demands for the years 2015 and 2016 were compiled to determine the ratio between total system demands in the tourism season (May through September, with May being added due to the Memorial Day weekend and clear distinctions between April and May in the system data) and the non-tourism season. These ratios were compared to the ratio of Summer to Non-Summer demands for year-round residents. Where the first ratio is clearly greater than the second, that increased demand was added to the model for those systems only. **Table 4-18** shows the results for the PCWS systems with available water allocation permit results.

PWSID #	WA PI #	County	PCWS System Name	Primary Beach System	Pop. per mi2	Water Alloca -tion Report Ratio	Model Ratio (Year- round users)	Increased Annual Demand Due to Seasonal Users (%)
119002	5206X	Atlantic	New Jersey American Water - Atlantic	N	2,123	144.4%	156.8%	-12.4%
505002	5240	Cape May	Lower Township MUA	Ν	824	158.8%	150.3%	8.5%
516001	5124	Cape May	Woodbine MUA	N	308	152.3%	161.6%	-9.3%
1507005	5000X	Ocean	Suez Toms River	N	2,253	135.0%	149.7%	-14.7%
1516001	5037	Ocean	Little Egg Harbor	N	424	149.1%	142.5%	6.6%
1518005	5043	Ocean	Manchester Township	N	528	187.9%	138.9%	49.0%
102001	5306	Atlantic	Atlantic City MUA	Y	3,681	130.9%	118.6%	12.3%
103001	5322	Atlantic	Brigantine Water Dept	Y	1,479	229.2%	126.4%	102.8%
116001	5108	Atlantic	Margate City Water Dept	Y	4,490	270.7%	120.6%	150.1%
122001	5118	Atlantic	Ventnor City Water & Sewer Dept	Y	5,457	153.6%	118.5%	35.1%
502001	5210	Cape May	Cape May Water and Sewer	Y	1,501	226.4%	127.5%	99.0%
508001	5324X	Cape May	New Jersey American Water - Ocean City	Y	1,848	333.1%	126.4%	206.7%
509001	5133	Cape May	Sea Isle City Water Dept	Y	974	342.3%	118.8%	223.5%
510001	5182	Cape May	Stone Harbor Water Dept	Y	620	452.8%	119.5%	333.3%
514001	5057	Cape May	Wildwood City Water Dept	Y	4,082	225.8%	124.7%	101.1%
1327001	5162	Monmouth	Manasquan Borough Water Dept	Y	4,263	168.9%	144.9%	24.0%
1348001	5089	Monmouth	Spring Lake Borough	Y	2,251	460.8%	151.4%	309.4%
1501001	5205	Ocean	Barnegat Light Water Department	Y	785	319.8%	150.0%	169.8%
1503001	5174	Ocean	Beach Haven Water Department	Y	1,196	270.9%	130.0%	140.9%
1505003	5288	Ocean	Shore Water Company	Y	515	215.6%	118.5%	97.1%
1515001	5136	Ocean	Lavallette Water Dept	Y	2,319	222.9%	125.3%	97.6%
1517002	5112	Ocean	Long Beach Township	Y	561	317.1%	128.4%	188.6%
1520001	5259	Ocean	Ocean Township MUA - Pebble Beach	Y	1,902	193.1%	157.2%	35.9%
1525001	5150	Ocean	Point Pleasant Beach Borough	Y	3,270	196.4%	146.6%	49.8%
1527001	5120	Ocean	Seaside Park Borough	Y	2,429	135.3%	118.5%	16.7%
1528001	5163	Ocean	Ship Bottom Water Department	Y	1,621	224.3%	137.2%	87.2%
1531001	5164	Ocean	Surf City Water Dept	Y	1,617	301.3%	150.0%	151.3%

 Table 4-18.
 Seasonal Demand Analysis for Coastal PCWS Systems

The results are plotted in **Figure 4-7**, to indicate the relationship between population density and the increased demands due to tourism. While not uniformly true, systems with the highest year-round population densities showed more limited effects of tourism demands, and coastal systems with

limited beachfront showed lower effects than systems with a relatively large proportion of beachfront area.

Figure 4-7. Water Demands Effects of Tourism for Coastal and Near-Coastal PCWS Systems

Eight coastal PCWS systems of significant size were identified where a seasonal factor could not be developed. Cape May Point Borough, Lake Como Water, and the Ortley Beach and Pelican Island systems of New Jersey American Water do not have their own water allocation permit. Avon by the Sea and Belmar do have water allocation permits, but use their wells only during the summer season as a supplement to an external source. New Jersey American Water – Coastal North uses a combination of internal and external year-round sources. In several cases, the lack of service area delineations also prevented calculation of demands using the model, specifically for Seaside Heights. **Table 4-19** lists these systems and the basis for not including them in the analysis. In each case, the seasonal demand increase for the system was based on the results for systems in **Table 4-18** above, with the exception of New Jersey American Water – Coastal North, which has a very large nonbeach community service area in addition to the beach communities it serves, and therefor was considered more like the New Jersey American Water – Atlantic system, which did not show a pattern of greatly increased seasonal demands.

PWSID #	WA PI #	County	PCWS System Name	Primary Shore System?	Analytical Problem/ Alternative Used
115001	NA	Atlantic	Longport Water Dept	Y	No Water Allocation Permit Margate used
501001	NA	Cape May	Avalon Water and Sewerage Utilities	Y	No Water Allocation Permit Sea Isle City used
503001	NA	Cape May	Cape May Point Borough Water Department	Y	No Water Allocation Permit Manasquan used
511001	NA	Cape May	New Jersey American Water - Strathmere	Y	No Water Allocation Permit Ocean City used
1305001	5132	Monmouth	Avon by the Sea Water Department	Y	No winter withdrawals Spring Lake Borough used
1306001	5138	Monmouth	Belmar Borough	Y	No winter withdrawals Spring Lake Borough used

Table 4-19. Shore Systems Lacking Seasonal Demand Factors

PWSID #	WA PI #	County	PCWS System Name	Primary Shore	Analytical Problem/ Alternative Used
				System?	
1344001	NA	Monmouth	Sea Girt Water Dept	Y	No winter withdrawals
					Spring Lake Borough used
1345001	5062X	Monmouth	New Jersey American Water	Ν	Mixed year-round water sources
			- Coastal North		No seasonal factor required
1347001	NA	Monmouth	Lake Como Water	Y	No winter withdrawals
			Department		Spring Lake Borough used
1507007	NA	Ocean	New Jersey American Water	Y	No Water Allocation Permit
			- Ortley Beach System		Lavallette used
1507008	N/A	Ocean	New Jersey American Water	Y	No Water Allocation Permit
			- Pelican Island		Lavallette used
1526001	5093	Ocean	Seaside Heights Borough	Y	No model demand projection
					Seaside Park used

Commercial and Industrial Demands

A model to estimate 2040 water demands requires a method for estimating how Commercial demands will increase or decrease based on population changes. Industrial demands are assumed to remain stable. For both categories, system-specific information on the relative Residential, Industrial and Commercial demands is not routinely collected by any agency or entity. Assumptions are therefore required for the model.

The first general assumption is that population is linked to Commercial demands in at least two ways. Commercial development in the form of offices and non-industrial production provides jobs that support populations, and increased populations support retail commercial employment.

Many factors complicate the analysis.

• First, a close correlation between Residential and Commercial demands is more likely in larger water supply service areas, where there is a reduced potential for Commercial development outside the service area to be both a source of jobs and provider of services to residents within the service area. However, in areas where there are many contiguous medium-sized systems, it is reasonable to expect that the externalities will work in both directions, reducing but not avoiding error.

Figure 4-8. Percentage of PCWS Service Area in Commercial Land Uses

- Second, many water supply service areas have no or very little Commercial land area, with 156 systems having none. In **Figure 4-8**, above, nearly 200 PCWS systems have less than 2 percent of their service area in commercial lands, and roughly 440 (75% of all systems) have less than 10 percent. Where Commercial lands are minimal, PCWS system population change would affect Commercial demand outside the service area. The model cannot capture this effect. However, most PCWS systems with minimal or no Commercial land area are small and will experience minimal population change. Therefore, this factor is unlikely to cause major concerns regarding Commercial demands. By comparison, 539 of the 585 PCWS systems have less than 10% Industrial area, and over 300 have none.
- Third, some areas are regional centers of government, jobs, retail commercial, industry, etc. These areas can have much larger Commercial and Industrial water demands relative to residential demand. The question is whether relative demands differ significantly between urban core areas, typical suburban areas, and PCWS systems that serve a mix of the two. Of the systems that provided detailed customer data, Newark is a good example of an urban core configuration (with the highest Commercial and Industrial demand and the lowest residential demands of the group), Mount Laurel and Ridgewood are good examples of suburban areas (with negligible Industrial demand and relatively little Commercial land, and very low Commercial demand in Ridgewood), and Suez-Haworth (aka the Hackensack System) and NJ American-Raritan System as good examples of mixed areas (with significant Industrial and Commercial demands but much less than Newark).
- Fourth, the current location of jobs by municipality and census tract is not clear. Rutgers did not have the opportunity in this project to evaluate whether it would be feasible to estimate job locations (and therefore water demand) by geographic area, for example using the tax assessor data (e.g., building floor area) and commercial development type using the NJDEP Land Use/Land Cover data. The water intensity of commercial, institutional and public facility development can vary widely, as can industry. The model cannot account for these differences.
- Fifth, water purveyors may not all classify water customers in the same manner. Rutgers did not evaluate whether the purveyor classification of commercial and industrial customers matched the NJDEP Land Use/Land Cover for those uses. We did identify situations where a relatively small percentage of residential customers were located in areas mapped as commercial and industrial within the LULC mapping.
- Sixth, the nature, job-intensity and trends for commercial development into the future all appear to be changing, making employment forecasts very difficult statewide, much less on a PCWS basis. Warehouse-based "order fulfillment" centers are generating many thousands of jobs, while "bricks and mortar" stores are struggling or vacant in many places. By 2040, robotics, such as autonomic delivery of purchases to homes, is expected to make major incursions into the job marketplace, further affecting employment and job locations (Economist, 2017). For this reason, any estimates of commercial demands over decades of time is essentially a guess. Industrial activity in New Jersey has long been toward a loss of water-intensive and job-intensive industry; what the future will bring is highly uncertain.

For these reasons, the best assumption for planning purposes is a continuation of existing relationships, which should be periodically tested over time to determine how they may have changed. The question, then, is how to extrapolate from the systems with available data to those for which data are not available.

Approach for Commercial Demands

- 1. For PCWS systems with minimal or no commercial land areas, the Commercial water demand will be assumed as zero.
- 2. For systems with significant commercial land areas, the relationship of Commercial water demands to other factors is less clear than even for Industrial demand. (Note that for each evaluation below, Ridgewood is a clear outlier.) As can be seen in Figure 4-9(a) showing Commercial demands relative to Commercial land area, the systems tend to be bunched rather than showing any linear relationship, indicating that area alone is not determinative. Likewise, in Figure 4-9(b) the relationship between Residential and Commercial demands is also bunched, but in this case there is a clear tradeoff between the two that makes sense given that most systems have little industrial demand and therefore an increase in one percentage causes a decrease in the other. As discussed on the first page, nearly 200 PCWS systems have less than 2 percent commercial lands (considered as minimal or no Commercial demand in the model). Finally, as shown in Figure 4-9(c), Commercial demands perhaps have a relationship with the percentage of residential land (indicated as a hand-drawn orange line), though most results are clustered and there are three outliers to the upper right (NJ American-Delaware and Passaic Systems) and lower area (Newark).

Figure 4-9. Generalized Relationship of Commercial Demands to: (a) Commercial Land Area, (b) Residential Demands, (c) Residential Land

Based on the available information, the modeling approach to Commercial demands is to apportion system water demand between Residential and Commercial demands at a ratio of 2.5:1 (the median for the case study systems), in systems where Commercial land area is more than 6 percent of the service area, and a ratio of 5:1 for less than 6 percent. This ratio would apply to the portion of water demand not assigned to Industrial demands and water losses.

Approach for Industrial Demands

- 1. Most PCWS systems have very little or no industrial land areas, and for those systems the industrial demand will be assumed as zero.
- 2. The case PCWS systems with more than negligible Industrial water demands have a relationship with industrial land area as shown in Figure 4-10. While there are few points for a statistical analysis, a correlation analysis generates a value of 0.907. A general relationship is hand-drawn to suggest a <u>rough</u> relationship between demands and land area as a percentage for the PCWS systems, from 1% demand at 2% land area, to Newark's value of 20% demand in 10% land area, indicating a 2.375% increase in industrial demand for every 1% increase in industrial land area, as shown in the following table. This relationship is used in the model as an approximation for systems that lack Industrial demand data and yet have greater than 2% Industrial land area, as shown in Table 4-20.

Figure 4-10. Generalized Relationship of Industrial Demands and Land Area

Industrial Demand Extrapolations					
Demand	Land	Demand	Land		
	Area		Area		
1.0%	2.0%	12.9%	7.0%		
3.4%	3.0%	15.3%	8.0%		
5.8%	4.0%	17.6%	9.0%		
8.1%	5.0%	20.0%	10.0%		
10.5%	6.0%				

 Table 4-20. Model Assumptions for Industrial Water Demands

Comparison of Model Estimates to Reported System Demands

The totals of water losses, residential demands, commercial demands and industrial demands for each PCWS system are then compared to the actual system water demands provided by NJDEP in the Water Supply Deficit/Surplus Analysis. This comparison allows for identification of systems where local conditions are significantly different from modeled results. Differences of roughly +/-20 percent are to be expected given the assumptions and the use of datasets that were not developed for this purpose. However, in some cases the differences are quite large. **Table 4-21** provides a review of the resulting demands and differences for the systems comprising 80 percent of total PCWS system demands. Amounts highlighted in the last column indicate a large difference.

			Baseline Model	Baseline- D/S	Baseline- D/S
PWSID #	County	Name	Demand (MGD)	Demand (MGD)	Demand (%)
102001	Atlantic	Atlantic City MUA	4.379	-7.193	-62.2%
119002	Atlantic	New Jersey American - Atlantic	11.229	-1.407	-11.1%
217001	Bergen	Fair Lawn Water Department	3.504	-0.282	-7.4%
238001	Bergen	Suez New Jersey - Haworth & Franklin Lakes (PWSID 022001)	106.756	-12.559	-10.5%
251001	Bergen	Ridgewood Water Department	9.151	1.005	12.3%
313001	Burlington	Evesham Township	3.835	-0.212	-5.2%
323001	Burlington	New Jersey American - Mount Holly	3.237	-0.842	-20.6%
324001	Burlington	Mount Laurel Township	4.465	-0.092	-2.0%
327001	Burlington	New Jersey American - Western Division	28.581	-2.290	-7.4%
408001	Camden	Camden City Water Department	10.033	-0.973	-8.8%
415002	Camden	Aqua New Jersey - Blackwood System	4.145	0.036	0.9%
424001	Camden	Merchantville Pennsauken Water Commission	5.248	-0.714	-12.0%
514001	Cape May	Wildwood City Water Department	2.300	-2.017	-46.7%
614003	Cumberland	Vineland City Water and Sewer Utility	5.713	-2.655	-31.7%
701001	Essex	Belleville Township Water Department	3.546	-0.259	-6.8%
702001	Essex	Bloomfield Water Department	8.353	0.921	12.4%
705001	Essex	East Orange Water Commission	9.442	2.075	28.2%
706001	Essex	Essex Fells Borough	0.308	-3.736	-92.4%
710001	Essex	Livingston Township Water Division	3.459	-0.604	-14.9%
712001	Essex	New Jersey American - Passaic Basin	37.047	-4.689	-11.2%
713001	Essex	Montclair Water Department	4.003	-1.510	-27.4%
714001	Essex	Newark Water Department	74.295	-10.458	-12.3%
818004	Gloucester	Washington Township	4.334	-0.362	-7.7%

 Table 4-21. Comparison of Model and Reported PCWS System Demands (Largest Systems)

PWSID #	County	Name	Baseline Model Demand (MGD)	Baseline- D/S Demand (MGD)	Baseline- D/S Demand (%)
901001	Hudson	Bayonne City Water Department	11.568	2.637	29.5%
905001	Hudson	Hoboken Water Services	4.905	0.249	5.4%
906001	Hudson	Jersey City MUA	38.668	-8.751	-18.5%
907001	Hudson	Kearny Town Water Department	7.109	-3.201	-31.1%
1103001	Mercer	Aqua New Jersey - Hamilton Square	3.037	-1.001	-24.8%
1111001	Mercer	Trenton Water Works	20.795	-5.978	-22.3%
1204001	Middlesex	East Brunswick Water Utility	4.994	-2.236	-30.9%
1205001	Middlesex	New Jersey American - Edison	8.476	2.590	44.0%
1209002	Middlesex	Old Bridge Township MUA	4.755	-4.341	-47.7%
1213002	Middlesex	Monroe Township Utility Department	3.131	-1.746	-35.8%
1214001	Middlesex	New Brunswick Water Department	15.930	-0.682	-4.1%
1215001	Middlesex	North Brunswick Water Department	6.504	1.083	20.0%
1216001	Middlesex	Perth Amboy Department of Municipal Utilities	8.541	2.546	42.5%
1219001	Middlesex	Sayreville Borough Water Department	3.658	-2.715	-42.6%
1221004	Middlesex	South Brunswick Township Water Company	4.501	-1.550	-25.6%
1225001	Middlesex	Middlesex Water Company	28.191	-23.954	-45.9%
1316001	Monmouth	Freehold Township Water Department	1.680	-2.559	-60.4%
1326001	Monmouth	Gordons Corner Water Company	4.198	-0.898	-17.6%
1328002	Monmouth	Marlboro Township MUA	2.958	-2.119	-41.7%
1339001	Monmouth	Shorelands Water Company	3.397	-1.683	-33.1%
1345001	Monmouth	New Jersey American - Coastal North	40.711	-6.858	-14.4%
1424001	Morris	Southeast Morris County MUA	7.359	-2.196	-23.0%
1429001	Morris	Parsippany - Troy Hills	5.935	-0.600	-9.2%
1506001	Ocean	Brick Township MUA	7.259	-2.493	-25.6%
1507005	Ocean	Suez Toms River	10.681	-1.523	-12.5%
1514002	Ocean	Lakewood Township MUA	2.936	-0.980	-25.0%
1605002	Passaic	Passaic Valley Water Commission	53.749	-48.166	-47.3%
1614001	Passaic	Wayne Township Division of Water	6.133	-1.664	-21.3%
1808001	Somerset	Franklin Township Department Public Works	5.617	-1.011	-15.3%
2004001	Union	Liberty Water Company	16.212	2.852	21.3%
2004002	Union	New Jersey American - Raritan System	107.302	-30.612	-22.2%
2013001	Union	Suez Rahway	5.374	0.059	1.1%

Possible issues for a few of the systems with larger differences are suggested here. Generic uncertainties associated with the model are addressed in the following section.

- 102001 Atlantic City MUA: The Commercial demands are estimated based on other systems, but Atlantic City is unique in the high demands associated with casinos. In addition, the 2016 Annual Report from ACMUA indicates that NJ American Water-Atlantic System had been a bulk purchase customer of at least 1.5MGD through November 16, 2016. ACMUA reports 10.843 MGD average internal demand in 2016, of which 8.8486 MGD is billable, or 81.16%.
- **706001 Essex Fells Borough**: The NJDEP Depletive/Surplus Capacity analysis for this system notes a lack of sufficient information for assessment of the capacity, which makes it difficult to compare modeled results to actual demands.

- **901001 Bayonne City Water Department**: The modeled results here are unusual in that they overestimate demands, which may be associated with the very large estimated Industrial demand (4.694 MGD of a total demand of 11.568 MGD).
- **1111001 Trenton Water Works**: The water loss rate for Trenton is from 2008, among the oldest used in the analysis. However, even a doubling of the 14% water loss would be insufficient to match the D/S demands from NJDEP. An underestimation of Commercial and Industrial uses is possible, as Trenton Water Works serves both the city and surrounding municipalities.
- 2004002 New Jersey American Raritan System: NJDEP lists the highest annual demand as 137.913 MGD, but New Jersey American indicates that this system has roughly 102 MGD in metered sales and non-revenue water, with the remainder to Passaic system, bulk sales. The model results closely match the 102 MGD value.

Sources of Uncertainty for Baseline Water Demand

As discussed in the prior sections, there are many sources of uncertainty in the identification of appropriate values for application to systems for which data are not available. These uncertainties are summarized here by demand category.

- Residential Demands: Residential demands are based on population as derived through the dasymetric analysis, and per capita demand information derived from the case PCWS systems. As discussed in Sources of Population Uncertainty, the dasymetric analysis relies heavily on the NJDEP 2012 Land Use Land Cover dataset, which characterizes residential development in broad classes with ranges of housing densities. The dasymetric analysis therefore has inherent uncertainties, and these uncertainties are transmitted through to the per capita residential demands, especially for the smaller systems, because population is the denominator in calculating per capita demands. These per capita demand values are then used as surrogate demand estimates for PCWS systems that were not case studies, introducing another uncertainty in that the target systems inevitably will be different from the case study systems. In addition, per capita demand values could not be developed for some categories of development, and so values from other categories were used in their place. Despite these limitations, the results are <u>far</u> more appropriate and relevant than using a single, statewide per capita value for residential demands. Just having information on the differences between high, medium and low density residential per capita uses, and between summer and non-summer uses, is a valuable step forward.
- **Commercial and Industrial Demands**: As discussed in <u>Commercial and Industrial</u> <u>Demands</u>, there are many inherent uncertainties regarding commercial and industrial demands. In total, these uncertainties are likely to be a major factor in discrepancies between model and actual demands. Except where demands were provided by case PCWS systems, the commercial and industrial demands were based on the proportion of these land uses within a service area, but the water intensity of these customers can vary widely. This variation is perhaps most significant for industrial demands, as some industries are very water intensive while others are not. However, few PCWS systems have significant concentrations of industrial lands. Commercial demands can vary widely also, such as between a one-story retail store and a high-rise office building. Both may have the same land area but the demands will differ greatly. Unfortunately, there seems to be no pattern in the difference between modeled and actual (per the NJDEP Water Supply Deficit/Surplus

Capacity Analysis) water demands, on one hand, and the percent commercial land area, on the other. **Figure 4-11** is a simple scattergram showing this relationship. The model overestimates and underestimates demands roughly equally across all ranges of commercial land density, with perhaps more of a tendency to underestimate. However, this pattern does not provide the basis for a modified equation that would correct for the differences.

Figure 4-11. Comparison of Demand Differences to Commercial Land Areas

- Water Losses: Water loss information was available for 228 of the 584 PCWS systems (39%), many of which are large or medium systems. However, water loss information is missing for most systems including several major and many minor systems, and the estimates provided are from two different protocols. For the 61 percent of systems without water loss estimates, regional median results from the available information were used. There is no way to know the extent to which these applied values are appropriate for each system, and therefore water losses can be a major source of error in the model. In addition, water loss rates change from year to year, depending on the improvement or decline of delivery infrastructure and the level and pattern of demands. The model uses a single water loss rate for each system, which introduces additional uncertainty into the water loss estimates.
- **Comparison to Reported Current Demands**: Another source of uncertainty in the model is the current system demand used. NJDEP's Water Supply Deficit/Surplus Analysis data base provides the highest annual, monthly and daily demands for each PCWS system in the previous five calendar years. This report uses the annual demands as an appropriate comparison to annual demands calculated in the model. However, peak years can have a variety of causes, from a major but temporary water loss problem to a dry year without drought restrictions, and may or may not represent the most appropriate base year for demand evaluations. Other options include a multi-year average such as the NJ Water Tracking database, which was also used, or the highest non-drought year. However, various systems have different attributes, and so the selection of a reasonable base year may be different for each system. The Water Supply Deficit/Surplus Analysis results were selected

for simplicity of analysis and completeness of the database, with the NJWaTr database as an auxiliary point of comparison.

Uncertainties of this type can be overcome by more complete information, but achieving this completeness has a significant expense. As for all modeling, some level of uncertainty is accepted as a necessary aspect of the process. For water resources planning, the water demand projections serve as a means of identifying potential concerns regarding whether future demands can be met by existing or anticipated supplies without unacceptable environmental, social and economic risks. Where concerns are raised, more detailed information can be developed to address the specific issue. This approach is far more cost-effective than trying to achieve a high degree of accuracy in the statewide model.

5. Water Demand Projections

This chapter provides the methodology and results regarding water demand projections to the year 2040. Uncertainty is inherent in projections, especially over extended periods as for this project. Therefore, scenarios are used for water demand trends, and are linked with the population trend scenarios discussed previously. It is recognized that each utility service area will have unique issues, some of which can be assessed within a study of this sort but some of which cannot, either because the issues are not yet manifest or because insufficient information is available to determine the net effects of these issues. The results of this study are useful for long-term planning purposes but should not be used as the sole basis for long-term capital projects to supply additional water, where such needs are indicated. Rather, any major capital projects should be based on a more detailed analysis to amplify on the results of this study. A literature survey was developed in support of this project to indicate demand trends (past and projected) and demand projection methods and models.

Water Demand Trends

According to NJGWS studies, New Jersey's total annual average potable water demands have stayed essentially flat since 1990 while the population has increased by 15 percent. However, consumptive water uses per capita appear to have increased slightly (though apparently not strongly enough to be statistically significant), indicating a shift in relative demand from indoor to outdoor uses. The question is how to plan for future residential water demands. The target year of 2040 is over 22 years from now, which is approximately one human generation and multiple generations regarding some types of plumbing fixtures and most appliances.

During this period, many homes and commercial buildings will be extensively modified, and industrial water demands may go through fundamental changes. Water demand rates are expected to shift significantly. Modeling approaches for future water demands vary widely, ranging from single-utility models for relatively short timeframes (e.g., 5 to 10 years), to multi-system models for long-range planning. Some rely on very simple equations while others use more complex techniques such as artificial neural network analysis or multiple regression. This project recognizes that all long-range models have considerable uncertainty and therefore that a multi-scenario approach to planning provides more useful information, as suggested by Dziegielewski and Chowdhury (2012).

The implementation of water conservation and efficiency measures must be considered in this study. In general, conservation is a result of user behaviors, while efficiency is a result of new technology. National and international trends and examples for water demands are useful in helping to examine recent New Jersey trends and possible scenarios. Information is provided below regarding the literature survey, New Jersey's current water conservation requirements, New Jersey overall demand trends and issues regarding water losses. The following section then provides the scenarios used for demand trends in this study. The final section provides results for the largest 37 systems which meet 80 percent of all PCWS customer demands.

Literature Survey for Residential Demands

The literature is replete with examples of water utilities that have experienced declining per capita demands. Some utilities have achieved a reduction in total demands despite major population increases (Goodyear, 2014; Johnson Foundation at Wingspread, 2012), and nationally the per capita use declined roughly 20% from 1980 to 2000 (Gleick, 2003; Hughes et al., 2014). Other utilities with a more stable or even declining customer base are seeing net reductions in demands (Black & Veatch, 2016; CDM, 2010; Coomes, et al., 2009).

Discussion in the literature for this country suggests a minimum water demand rate of roughly 35 gpcd for indoor uses, reflecting the full use of current water-efficient technology and water conservation behaviors. The British Code for new homes targets 33 gpcd (125 liters per capita per day) with even less for various types of "sustainable homes", down to a low of 21 gpcd (80 lpcd) (UKDCLG, 2009). Vickers et al. (2013) suggest that "50 gpcd can often be a realistic goal and water efficiency benchmark for many given current plumbing, appliance, and landscape water conservation standards and practices." Note that this value of 50 gpcd is a high-efficiency scenario that includes outdoor water demands, not just indoor demands. They further suggest that most conservation will be possible in households with the highest per capita demands, which makes implicit sense.

Outdoor water uses for low and medium density development may increase as summer average and peak temperatures increase through global warming (Arbues et al 2002; Corbella and Pujol 2009), to address increased soil moisture deficits caused by the rising temperatures (Dawadi and Ahmad 2013; Dziegielewski and Chowdhury 2012). These increased needs may overcome potential improvements in lawn irrigation practices. Therefore, where the current ratio of Summer to Non-Summer use is lower than the statewide median for low and medium density development, Summer use may increase toward the median ratio. The projected Summer uses for high density development are less likely to change from current levels, as they have limited outdoor uses (Rockaway et al. 2011) and minimal differences between Summer and Non-Summer demands.

Increased water use efficiency and routine water conservation behavior for both indoor and outdoor demands is likely; that is, reductions in demand through improved plumbing fixtures, appliances and lawn irrigation systems along with day-to-day water conservation behavior that limit wasteful water use. Drought conservation behaviors are <u>not</u> included in the assumptions. We can assume an ongoing replacement of old plumbing fixtures, appliances and irrigation systems with new units that meet or improve upon current federal and state requirements, WaterSense and Energy Star standards, etc. These trends are ongoing, as noted for Rockland County (Black & Veatch 2016), where demands have declined from 70 gpcd in 2000 to roughly 57 gpcd in 2014; market penetration of efficient plumbing fixtures and appliances varied considerably, from roughly 75 percent for low-flow faucets to roughly 25 percent for high-efficiency clothes washers.

Recent trends will drive the most probable scenario toward the conservation scenario. Water rates (and sewer rates) have been increasing faster than the Consumer Price Index for many years (Beecher and Chestnutt 2012). Demands are relatively inelastic relative to price, but there still is some elasticity (Alliance for Water Efficiency 2014; Arbues et al 2002). Water price elasticity suggests a long-term impact of roughly -0.4 (i.e., a 4 percent reduction in response to a 10 percent price increase), though lower elasticities exist for low-income households, as they already tend to have low water demands (and will be concentrated in high-density portions of water service areas), and very high incomes may show little or no response because water costs are such a small part of their household budget (Corbella and Pujol 2009; Dawadi and Ahmad 2013; Grafton et al. 2011; Polebitski and Palmer, 2010; Seattle Public Utilities 2013; Whitcomb 2005). Since the Great Recession, new housing in already-developed areas has significantly exceeded development in suburban and exurban "green field" locations. Evans (2016) notes that "Places that are at least 90 percent built-out accounted for a full two-thirds of statewide population growth (66.4 percent) from 2008 to 2015, after having accounted for only 3.6 percent of statewide growth from 2000 to 2008." Water use technology has been and is likely to continue improving, though perhaps not at the same rate of improvement as in the past decades (Rockaway et al. 2011). Finally, existing housing is aging and so retrofit projects will continue to result in the use of new technology.

New Jersey Water Conservation Requirements

New Jersey implements the federal Energy Policy Act requirements for indoor water fixtures:

- Toilets: 1.6 gallons per flush (gpf)
- Urinals: 1.0 gpf
- Showerheads: 2.5 gallons per minute (gpm) at 80 pounds per square inch of water pressure (psi); 2.2 gpm at 60 psi
- Faucets: 2.5 gpm at 80 psi; 2.2 gpm at 60 psi

In addition, New Jersey law at N.J.S.A. 52:27D-123.13 requires that <u>new</u> automatic lawn sprinkler systems "shall be equipped with an automatic rain sensor device or switch that will override the irrigation cycle of the automatic lawn sprinkler system when adequate rainfall has occurred."

The Water Supply Allocation Rules at N.J.A.C. 7:19-6.4 includes a threshold of 15% "unaccounted for water" (UAW) which is defined simply as water that is withdrawn from a water supply source and not measured as being delivered to a customer. This definition lacks the precision of real and apparent water losses as discussed in the <u>Non-Revenue Water and Water Losses section</u> of this report. Under this rule, those purveyors serving a population of more than 500 persons that have the highest levels of UAW are considered "provisionally delinquent" and must take corrective action to eliminate leaks and other UAW, with an annual review. This approach may be changed in response to the Water Quality Accountability Act of 2017.

The Water Supply Allocation Rules at N.J.A.C. 7:19-6.5 require that all PCWS systems submit a Water Conservation and Drought Management Plan with each water allocation permit renewal or major modification, mostly aimed at water conservation during dry and drought periods, but also including leak reduction programs and water rate structures that provide incentives for water conservation. There are no specific standards against which these plans are measured. Given that permit renewals are now every 10 years, the Water Conservation and Drought Management Plans can easily be outdated by the time of renewal, if no major modification is sought in the interim.

New Jersey Water Demand Trends

According to NJGWS studies, New Jersey's average water demands have stayed essentially flat since 1990 (see **Figure 5-1**) while the population has increased by 15 percent. However, consumptive water uses have apparently increased (see **Figure 5-2**), indicating a possible shift in relative demand from indoor to outdoor uses.

Figure 5-1. New Jersey Water Demands by Use Sector, 1990 to 2015, Excluding Power Generation (from New Jersey Water Supply Plan 2017-2022, Figure 2.3)

Figure 5-2. New Jersey Consumptive Water Losses 1990 to 2011 by Use Sector, 1990 to 2015, Excluding Power Generation

(from New Jersey Water Supply Plan 2017-2022, Figure 2.6)

The question is how to plan for future residential water demands. The target year of 2040 is over 22 years from now, which is an entire human generation, less than a generation regarding housing stock, but multiple generations regarding some types of plumbing fixtures and all appliances. Therefore, water demand rates are expected to shift significantly.

Another factor is the rate of water losses. As seen in **Figure 5-3**, below, New Jersey's population grew most quickly during the periods from:

• 1890-1930 – a time of mostly urban and inner-ring suburban growth when cast iron pipes were commonly used for water supply mains; and

• 1950-1970 – a time when nearly the urban areas that grew extensively in prior periods lost roughly 700,000 residents to the outer suburban areas (see **Figure 5-4** for an example of Newark), for a total suburban and exurban growth of roughly 3 million.

Figure 5-3. New Jersey Population and Major Growth Periods

Figure 5-4. Newark Population and Major Growth and Loss Periods (orange for pre-war growth and red for post-war decline)

These population surges mark times when significant new water infrastructure was created. The water mains from both the early 1900s era of urban growth and the post-war suburbanization period are at or beyond their anticipated average lifespan, based on estimates from the American Water Works Association (AWWA 2012), as shown in **Figure 5-5**. **Figure 5-6** provides an indication of housing unit age, where all areas in red (69% of all New Jersey housing, according to the American Community Survey) have an average house construction date of before 1990.

Figure 5-5. Historic Production and Use of Water Pipe by Material, With Selected Estimated Ages (adapted from AWWA, 2012)

Figure 5-6. Percentage of Houses Built Prior to 1990 by Census Block (data from American Community Survey, U.S. Bureau of the Census)

Table 5-1 provide the median results for <u>residential</u> demands in the case study PCWS systems, which have considerable variation around the medians. The section on <u>Residential Annual Average, Non-growing Season and Growing Season Demands</u> provides detailed results. Given the large differences between utility service area sizes, use of the weighted average demands is more appropriate for use in modeling work.

Metric	Density	Median	Weighted
		(gpcd)	Average
			(gpca)
Average Annual Per Capita	high	41.67	49.89
Per Day	medium	53.51	60.79
	low	75.31	87.10
Total Summer Use Per	high	45.32	52.96
Capita Per Day	medium	67.26	78.23
	low	88.14	128.51
Average Non-Summer Use	high	39.10	46.23
Per Capita Per Day	medium	49.62	52.09
	low	58.42	62.93
Ratio of Summer Use to	high	1.10	1.15
Non-Summer Use (Per	medium	1.31	1.50
Capita Per Day)	low	1.32	2.04

 Table 5-1. Residential Water Demands for Case PCWS Systems

Water Demand Trend Scenarios

Water demands will be affected by trends in several components of demand and delivered water. Residential demands are likely to change, and will change in different ways depending on current demands, housing type, landscaping trends, location within the state, and so on. Commercial demands shifted greatly over the last few decades with office complex development and the growth of big-box stores, and now will be changing again with redevelopment of office campuses and a shift to online retail sales. Industrial demands have also changed with a reduction in manufacturing sites and a reduction in water-intensive industries. Finally, water losses are an increasing focus of regulation and practice, and will be affected by the 2017 passage of the Water Quality Accountability Act that requires asset management programs for water purveyors. This section addresses the demand scenarios for these components.

Residential Demand Scenarios

This report uses a two-scenario approach. The first scenario involves no change in current per capita annual, Summer and Non-Summer demands. Where population increases, water demands would be projected to increase proportionally, and vice versa. Therefore, the scenario uses water demand rates appropriate to each area's development density, geographic location, housing age, topography and precipitation quintile.

The second scenario assumes increased water use efficiency and routine water conservation behavior for both indoor and outdoor demands; that is, reductions in demand through improved plumbing fixtures, appliances and lawn irrigation systems along with day-to-day water conservation behavior that limits wasteful water use. Drought conservation behaviors are <u>not</u> included in the assumptions. This scenario will assume an ongoing replacement of old plumbing fixtures, appliances and irrigation systems with new units that meet or improve upon current federal and state requirements, WaterSense and Energy Star standards, etc.

This scenario assumes that indoor per capita demands will trend toward but not go below 35 gpcd. The more that current demand rates exceed 50 gpcd, the more demands will be assumed to decline by 2040. Areas with existing rates near the minimum rate will be assumed to decline minimally. No change will be projected where existing rates are already below the 35 gpcd rate. In summary, the two scenarios are as follows:

1. Static Per Capita Demands

Annual, Summer and Non-Summer per capita demands are assumed to not change. Baseline demand rates are as calculated (for systems that provided data for the case studies) or extrapolated (for all other systems). Multiply population change (positive and negative) by baseline demand rates and add or subtract from existing demands.

2. <u>Conservation Scenario</u>

Assume that 2040 per capita indoor and outdoor residential water demands reflect reductions in demands due to water-efficiency technology and standard water conservation behaviors. Annual, Summer and Non-Summer demands all will be calculated as declining to the weighted averages in **Table 5-2**, where current levels are higher.

Metric	Residential	Weighted	Metric	Residential	Weighted
	Density	Average (gpcd)		Density	Average (gpcd)
Average Annual Per	high	49.89	Average Non-Summer	high	46.23
Capita Per Day	medium	60.79	Use Per Capita Per	medium	52.09
	low	87.10	Day	low	62.93
Total Summer Use	high	52.96	Ratio of Summer Use	high	1.15
Per Capita Per Day	medium	78.23	to Non-Summer Use	medium	1.50
	low	128.51	(Per Capita Per Day)	low	2.04

Table 5-2. Weighted Average Residential Demands and Seasonal Ratios

Where current demands are lower than the current weighted average, they will be reduced by 5 percent over the projection period, but not below 35 gpcd, while per capita demands at or below 35 gpcd will be assumed to remain stable. The values used in this scenario are key assumptions. There is no "magic number" for either value, as we cannot predict with any certainty the technology of water use efficiency or its penetration into the market, especially given the advent of "smart technology" for the home that could allow for micromanagement of home appliances.

These rules will be applied directly to the calculated residential demands for the case PCWS systems. For all other systems, the results for the two scenarios are provided in **Table 5-3**.

Table 5-3. 2040 Residential Demand Scenarios

	2010 and 2040 Static			2040 – Conservation		
Residential Density	СР	PM	HL	СР	PM	HL
High Density (HD) Annual	47.92	58.46	42.04	45.52	49.89	39.94
Medium Density (MD) Annual	59.04	61.2	53.52	56.09	60.79	50.84
Low Density (LD) Annual	93.27	73.95	61.09	87.10	70.25	58.04
High Density (HD) Summer	53.49	62.61	42.47	52.96	52.96	40.35
Medium Density (MD) Summer	75.88	76.62	59.42	72.09	72.79	56.45
Low Density (LD) Summer	141.05	108.92	81.75	128.51	103.47	77.66
High Density (HD) Non-Summer	45.13	56.27	41.82	42.87	46.23	39.73
Medium Density (MD) Non-Summer	50.59	53.17	50.62	48.06	52.09	48.09
Low Density (LD) Non-Summer	69.36	56.61	50.84	62.93	53.78	48.30

* CP=Coastal Plain; PM=Piedmont; HL=Highlands/Ridge & Valley

Commercial and Industrial Demands

As with Residential demands, two scenarios are used in the model for 2040 Commercial demands. Commercial demands are assumed to track residential demands over time, as business development is dependent upon a population base that provides both workers and consumers. Therefore, the 2040 No Conservation scenarios will change Commercial demands from their 2010 estimates in proportion with population changes, either higher or lower. However, conservation measures will also affect commercial demands. The 2040 Conservation scenarios will assume a ten percent reduction in Commercial demands due to conservation.

Industrial demands are assumed to be flat through the entire period. It is more likely that industrial demands will decrease over time due to continued water conservation, process changes and the loss of manufacturing capacity in the state. However, there is no method available to project such demand changes either statewide or by PCWS system. The following 21 PCWS systems have over 640 acres (one square mile) of industrial land use (**Table 5-4**), where significant demand changes would likely have a much larger impact on total demands. There are 60 systems with over 200 acres of industrial land.

PWSID			Industrial	Percent
#	County	PCWS System Name	Land (ac)	Industrial
2004002	Union	New Jersey American Water Company - Raritan System	7325.4	3.8%
238001	Bergen	Suez New Jersey - Haworth & Franklin Lakes (PWSID 022001)	4033.7	4.4%
1302001	Monmouth	Allentown Water Department	3674.1	10.2%
714001	Essex	Newark Water Department	2061.8	10.0%
327001	Burlington	New Jersey American Water Company - Delaware Division	1749.7	3.2%
1221004	Middlesex	South Brunswick Township Water Company	1668.0	6.6%
1605002	Passaic	Passaic Valley Water Commission	1565.1	10.3%
820001	Gloucester	West Deptford Township Water Department	1133.1	9.8%
1111001	Mercer	Trenton Water Works	1132.3	3.3%
1345001	Monmouth	New Jersey American Water Company - Coastal North	999.5	1.1%
424001	Camden	Merchantville Pennsauken Water Commission	961.1	9.7%
1205001	Middlesex	New Jersey American Water Company - Edison	957.0	24.2%
906001	Hudson	Jersey City MUA	947.5	9.7%
614003	Cumberland	Vineland City Water and Sewer Utility	914.5	4.1%
901001	Hudson	Bayonne City Water Department	881.5	23.7%
1808001	Somerset	Franklin Township Department Public Works	743.7	2.5%
1216001	Middlesex	Perth Amboy Department of Municipal Utilities	729.5	23.9%
809002	Gloucester	New Jersey American Water Company - Logan System	689.1	18.6%
707001	Essex	Fairfield Township Water Department	683.7	16.9%
2004001	Union	Liberty Water Company	668.9	12.8%
907001	Hudson	Kearny Town Water Department	653.1	13.3%

Table 5-4: PCWS Systems with Major Industrial Land Uses

Water Loss Projections

Too many variables exist to authoritatively project water loss rates decades into the future. Instead, the 2040 demands model will use two scenarios. One is that all systems achieve the current median values shown in **Figure 5-7**, as listed in **Table 5-5** below. The other is that systems achieve water loss rates roughly equivalent to the better systems, based on recent reporting. The two box and whisker plot sets reflect the current water loss rates for all reporting systems, as previously shown in the section on <u>Non-Revenue Water and Water Losses</u>.

Figure 5-7. Water Losses for PCWS Systems (Box and Whisker Plots)

The bedrock systems (Piedmont, Highlands, Valley & Ridge) show far more variability than the coastal plain systems. While the 25th percentile values vary somewhat within each group, they are still generally at 11-15 percent for bedrock systems and 5-7 percent for coastal plain. Based on these results, the second scenario will use an "Optimum System" approach of 15 percent for bedrock systems and 5 percent for coastal plain systems. A critical point here is that the water losses are based on the most recent reported values of non-revenue water or unaccounted-for water, while the demands are based on multi-year averages. As pointed out in prior sections, in actual practice water loss rates change from year to year, but the pattern cannot be known for the future in so many systems. Therefore, the model uses a single value, and therefore water loss estimates should be considered general estimates, incorporating substantial uncertainty.

Category	Nominal 2040 Water Losses	"Optimum System" 2040 Water Losses
Large Systems-Bedrock Geology	20%	15%
Large Systems-Coastal Geology	10%	5%
Medium Systems-Bedrock Geology	20%	15%
Medium Systems-Coastal Geology	10%	5%
Small Systems-Bedrock Geology	22%	15%
Small Systems-Coastal Geology	13%	5%

Table 5-5. Water Loss Scenarios for 2040 Demands

Application of 2040 Population Forecasts to PCWS Service Areas

PCWS systems often do not serve all of one municipality, or just one municipality. Therefore, municipal population projections are not synonymous with PCWS service area population projections. The creation of a model for projections PCWS water demands to 2040 required several steps:

1. Determine the portion of each municipality and Census block that is not currently developed or environmentally constrained (e.g., preserved lands, wetlands, flood plains). For entirely developed municipalities, it is assumed that all population growth will be through increased density of existing residential areas and through redevelopment of other developed areas.

- 2. Using the dasymetric analysis and PCWS service areas, determine the portion of each municipality's 2010 population that is associated with each PCWS system serving that municipality, and also the portion of the municipal population that is not associated with a PCWS system.
- 3. Ascribe municipal population changes through 2040 to each PCWS system serving the municipality, using population proportions from the 2010 evaluation for High and Medium density residential development. No new population was assigned to Low density development unless the service area was essentially all in that classification. The assumption is that new development will occur in somewhat to much denser forms, based on the increasingly limited land area in New Jersey for low density development, the increase in development within developed areas, the need for density regarding affordable housing requirements, and general needs for density to meet development profitability objectives.
- 4. Aggregate the population changes for each PCWS system. Multiple scenarios will be used, based on different assumptions regarding population trends.

As a check on the results of this analysis, the 2010 and projected 2040 municipal populations were compared to all PCWS systems with 2010 populations of 2,000 or more, where the PCWS system provided service to all or most of one municipality or a defined set of municipalities, making the population comparisons feasible. In all cases, the populations matched well in both years. As discussed in the section on <u>PCWS Service Areas</u>, <u>Populations and Land Use</u>, and particularly <u>Sources of Population Uncertainty</u>, greater discrepancies between actual and dasymetric populations are likely as service area sized diminish.

2040 Water Demands by PCWS

This report uses multiple scenarios in sets of two.

	Demand Scenario	Water Losses			
	Direct Extrapolation Scenarios (Set 1)				
Scenario 1	Population Percent Change X Water Supply	Deficit/Surplus Analysis			
	(Current Peak Demands) with no change to other factors				
Scenario 2	Population Percent Change X NJWaTr database				
	(Current Average Demands) with no change to other factors				
	No Conservation Scenarios (Set 2)				
Scenario 3	Modeled Demand with Constant Per Capita	Current State Median			
Scenario 4	Modeled Demand with Constant Per Capita Current 25 th Per				
	Conservation Scenarios (Set 3)				
Scenario 5	Modeled Demand with Decrease Per Capita	Current State Median			
Scenario 6	Modeled Demand with Decrease Per Capita	Current 25 th Percentile			
	No Conservation Extrapolation S	cenarios (Set 4)			
Scenario 7	Current Peak Demands X	Current State Median			
	Percent Change (2010-2040) from Scenario 3				
Scenario 8	Current Peak Demands X	Current 25 th Percentile			
	Percent Change (2010-2040) from Scenario 4				
Scenario 9	Current Average Demands X	Current State Median			
	Percent Change from Scenario 3				

 Table 5-6.
 2040 Water Demand Scenarios

Scenario 10	Current Average Demands X	Current 25 th Percentile			
	Percent Change from Scenario 4				
	Conservation Extrapolation Scenarios (Set 5)				
Scenario 11	Current Peak Demands X	Current State Median			
	Percent Change (2010-2040) from Scenario 5				
Scenario 12	Current Peak Demands X	Current 25 th Percentile			
	Percent Change (2010-2040) from Scenario 6				
Scenario 13	Current Average Demands X	Current State Median			
	Percent Change (2010-2040) from Scenario 5				
Scenario 14	Current Average Demands X	Current 25 th Percentile			
	Percent Change (2010-2040) from Scenario 6				

Set 1 (scenarios 1 and 2) assumes that annual demands will change in direct proportion to population changes, i.e., that a 5 percent increase in population will drive a 5 percent increase in total demands. This is the most simplistic approach and unlikely to be accurate over a 20-plus year period. The scenarios extrapolate from the current peak annual system demands (from the NJDEP Water Supply Deficit/Surplus Analysis) and average annual system demands (from the NJDEP NJ Water Tracking, or NJWaTr, data set).

Set 2 (Scenarios 3 and 4), called the No Conservation Scenarios, applies the water demand model described in the section Extrapolation to Other PCWS Systems. The model assumptions regarding per capita residential demand rates (gpcd) are from **Table 5-3** as applied to the 2010 and 2040 population to generate residential demands, thus assuming the per capita rates do not change. The scenarios use water demand rates appropriate to each area's development density (High, Medium, Low) and geographic location (Coastal Plain, Piedmont, Highlands/Valley & Ridge). Three other factors – housing age, topography and precipitation quintile – were not used, as insufficient demand data were available to assess their effects on residential demands. Commercial demands are assumed to vary with residential demands (and, therefore, population), while industrial demands are assumed to remain stable. However, 2040 water losses are assumed to be either the current median water loss (Nominal Rate, Scenario 3) or a more aggressive Optimum Rate (Scenario 4) for the relevant purveyor group size (Large, Medium, Small) and service area geology (Bedrock, Coastal Plain).

Set 3 (Scenarios 5 and 6), called the 2040 Conservation Scenarios, is similar to the second, but assumes that higher-than-weighted-average residential rates will decline over time, as discussed in the section on <u>Residential Demand Scenarios</u>. Commercial and industrial demands and water losses are treated in a manner to Scenarios 3 and 4.

Set 4 (Scenarios 7 through 10) uses the percentage (not absolute) changes in demands from 2010 to 2040 from Scenarios 3 and 4 (No Conservation) to extrapolate from the known peak annual system demands (from the NJDEP Water Supply Deficit/Surplus Analysis, Scenarios 7 and 8) and average annual system demands (from the NJDEP NJ Water Tracking, or NJWaTr, data set, Scenarios 9 and 10). This approach is different from the first set of scenarios in that the percent changes are in modeled demands, not population, and therefore reflect more realistic expectations regarding water conservation and efficiencies. Each pair of scenarios tests the effects of the two water loss options.

Set 5 (Scenarios 11 through 14) again uses percentage changes in demands from 2010 to 2040, but this time from the Conservation Scenarios 5 and 6, in the same manner as the fourth set.

As noted, Set 1 is simplistic and unlikely to be realistic. It can be used as a marker for higher demands than are likely to occur. Sets 2 and 3 have more realistic expectations for changes in

residential and commercial demands, and for improvements in water losses, but are constrained by assumptions made regarding residential, commercial and industrial demands. In many cases, these assumptions have resulted in estimated 2010 demands that match neither peak nor average total system demands. Therefore, the model demands are more valuable as indicators for the direction and magnitude of water demand changes than of the actual demands themselves.

Set 4 combines the strength of a known starting point (either peak or average total system demands). Set 4, however, assumes no change in per capita residential demands, an assumption worth testing but at odds with national experience, ongoing improvements in household appliances and water fixtures, applicable water conservation laws, and energy costs. Set 5 provides a more nuanced evaluation of changing residential and commercial demand rates and the potential for savings from water losses. As such, the Set 5 scenarios are recommended for planning use, with the second and third sets being useful to understand the basis for changing system demands from 2010 to 2040. While the absolute values in the second and third sets may not be correct, the pattern of changes is generally defensible.

The scenarios do not incorporate possible shifts in population projections as discussed in the section <u>Evaluation of Sensitivity to Variations in Critical Variables</u>, but rather use the Metropolitan Planning Organization projections as discussed in <u>Statewide and Regional Population Projections</u>. Alterations in population trends (i.e., fertility, mortality, migration) may affect water demands in specific PCWS systems, but there is no mechanism available for this project to assess such population changes at the PCWS service area level. Further, the uncertainties regarding population are in most cases likely to be less than the uncertainties regarding water demands, especially regarding water loss rates. Therefore, individual PCWS systems and those managing water supplies on a regional or statewide basis should be aware of the implications for population trends, and periodically track them.

Recommended Projections from Current Demands

Table 5-7 on provides the results of the Set 5 scenarios for the 37 PCWS systems that provided 80 percent of total average PCWS demands (NJWaTr database)during the period 2008-2015. The results for all 584 systems is provided on a separate MS-Excel spreadsheet, 'NJDEP 2040 Demands Model 2017.10.xlsx'. This set of scenarios is recommended for use in further planning work within the NJ Statewide Water Supply Plan.

For the 37 largest systems, the total of all recent peak demands from the Water Supply Deficit/Surplus analysis is 919.229 MGD, of a total for all systems of 1238.906 MGD. It is important to recognize that the peak years can differ among the systems, occurring any time from 2012 through 2016, and as of the close of 2017 the year 2012 peaks will drop from the analysis and 2017 will be added.

For the 37 largest systems, the total of all 2008-2015 average demands was 702.879 MGD, of a total for all systems of 983.892 MGD. The average demands for all systems are 79.4 percent of the peak demands for all systems.

For the 37 largest systems, the total 2040 demands are higher than recent average demands for the first scenario, that of No Conservation and Nominal Water Losses, at 726.174 MGD. The No Conservation scenario but with Optimum Water Losses is 684.463 MGD, a reduction of 5.75 percent from the first, and a reduction of 2.62 percent from the 2008-2015 average.

Finally, the Conservation scenarios with Nominal and Optimum Water Losses result in demands for the 37 largest systems of 680.541 MGD and 641.464 MGD, respectively. The Conservation scenarios results in a drop of 6.28 percent from each of the No Conservation scenarios. The

difference between the No Conservation/Nominal Water Loss and Conservation/Optimum Water Loss scenarios is 11.67 percent. Based on these projections, modeled customer conservation and water loss reductions have roughly equal effects on reducing water demands. These overall results mask significant variability, however, as seen on **Table 5-7**. Of the 37 systems, 26 systems show flat or declining demands (-71.9 MGD in total), while eleven show increasing demands (10.5 MGD in total). Of the systems with increasing demands, several are within regions with highly interconnected water supply infrastructure (e.g., Jersey City, Liberty – serving Elizabeth City, Bayonne, Franklin Township-Somerset, and South Brunswick), while others do not have the same level of interconnectedness.

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet				NJWaTr	2040 No Co Scer	onservation nario	2040 Conservation Scenario	
PWSID #	County	Name	D/S Peak Annual Demand (MGD)	2008-2015 Average Demand (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)
0238001	Bergen	Suez New Jersey - Haworth & Franklin Lakes (PWSID 022001)	119.315	112.557	124.097	116.797	107.219	100.912
2004002	Union	New Jersey American Water - Raritan System	137.913	97.057	103.994	97.876	101.713	95.730
0714001	Essex	Newark Water Department	84.753	55.247	49.742	46.816	45.585	42.903
1605002	Passaic	Passaic Valley Water Commission	101.915	51.051	44.491	41.873	42.387	39.894
1345001	Monmouth	New Jersey American Water - Coastal North	47.568	37.114	39.483	37.405	36.365	34.451
0712001	Essex	New Jersey American Water - Passaic Basin	41.736	36.508	36.909	34.738	35.490	33.403
0906001	Hudson	Jersey City MUA	47.419	31.100	37.473	35.269	34.518	32.487
0327001	Burlington	New Jersey American Water - Delaware Division	30.872	28.847	31.300	29.653	30.308	28.713
1225001	Middlesex	Middlesex Water Company	52.145	24.977	24.346	22.914	23.295	21.925
1111001	Mercer	Trenton Water Works	26.773	23.930	26.121	24.584	24.832	23.371
2004001	Union	Liberty Water Company	13.360	13.229	15.671	14.749	14.466	13.615
1507005	Ocean	Suez Toms River	12.204	12.778	15.272	14.469	14.527	13.763
0119002	Atlantic	New Jersey American Water - Atlantic	12.635	12.007	16.402	15.538	15.965	15.125
0102001	Atlantic	Atlantic City MUA	11.571	11.004	7.799	7.389	7.550	7.153
1214001	Middlesex	New Brunswick Water Department	16.612	10.864	7.947	7.479	7.464	7.025
0408001	Camden	Camden City Water Department	11.006	10.435	5.616	5.320	5.499	5.209
0901001	Hudson	Bayonne City Water Department	8.932	8.759	10.452	9.838	9.823	9.245
1424001	Morris	Southeast Morris County MUA	9.555	8.374	7.811	7.352	7.536	7.093
0614003	Cumberland	Vineland City Water and Sewer Utility	8.368	8.072	9.833	9.316	9.467	8.969
0705001	Essex	East Orange Water Commission	7.367	7.876	6.242	5.875	5.634	5.303
0251001	Bergen	Ridgewood Water Department	8.146	7.818	6.082	5.725	5.967	5.616
0702001	Essex	Bloomfield Water Department	7.431	7.630	5.552	5.225	5.188	4.883
1614001	Passaic	Wayne Township Division of Water	7.797	7.459	8.641	8.133	8.431	7.935
1204001	Middlesex	East Brunswick Water Utility	7.231	7.013	7.336	6.950	7.084	6.711

Table 5-7. 2040 Water Demand Projections from 2008-2015 Average Demands for Major PCWS Systems

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet				NJWaTr	2040 No Conservation Scenario		2040 Conservation Scenario	
PWSID #	County	Name	D/S Peak Annual Demand (MGD)	2008-2015 Average Demand (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)	Nominal Water Loss Scenario (MGD)	Optimal Water Loss Scenario (MGD)
1429001	Morris	Parsippany - Troy Hills	6.535	6.292	6.205	5.840	5.983	5.631
1209002	Middlesex	Old Bridge Township MUA	9.096	6.058	6.881	6.519	6.577	6.231
0424001	Camden	Merchantville Pennsauken Water Commission	5.962	6.040	6.006	5.690	5.843	5.535
1808001	Somerset	Franklin Township Department Public Works	6.628	6.015	7.082	6.665	6.720	6.324
1205001	Middlesex	New Jersey American Water Company - Edison	5.887	6.004	6.589	6.201	6.401	6.024
0907001	Hudson	Kearny Town Water Department	10.310	5.470	5.917	5.569	5.591	5.262
1221004	Middlesex	South Brunswick Township Sewer & Water Dept	6.052	5.309	7.965	7.496	7.635	7.186
2013001	Union	Suez Rahway	5.315	5.247	4.421	4.161	4.229	3.980
1215001	Middlesex	North Brunswick Water Department	5.421	5.185	5.311	4.999	5.057	4.759
1506001	Ocean	Brick Township MUA	9.752	5.118	6.015	5.699	5.793	5.488
1216001	Middlesex	Perth Amboy Department of Municipal Utilities	5.994	5.079	5.124	4.823	5.026	4.730
1326001	Monmouth	Gordons Corner Water Company	5.096	4.760	5.029	4.765	4.777	4.526
0324001	Burlington	Mount Laurel Township	4.557	4.596	5.017	4.753	4.596	4.354
TOTALS 80 percer	TOTALS (Largest 37 PCWS Systems, representing 80 percent of total 2010 statewide demands)			702.879	726.174	684.463	680.541	641.464
TOTALS (All PCWS Systems) NB: Many very small systems lack available information on current and therefore projected demands			1250.478	994.896	1045.664	985.4604	986.391	929.615

6. Recommendations for Further Evaluation

Through this project, New Jersey now has a great deal of new information regarding residential water demands and how they vary based on housing density and geographic location. A new approach to projecting water demands is possible with this information, but the results still have significant uncertainties for the reasons discussed in the report.

To improve demand projections, the following steps (or actions) are recommended:

- 1. Reconcile the various NJDEP data sets on water demands for use in long-range water supply planning. The Water Supply Deficit/Surplus Analysis was not created for statewide planning purposes, and the NJWaTr data set is not fully compatible with the D/S analysis with regard to PCWS systems and completeness of the data. While both were very useful for the project, improvements to the projections are possible if the data sets are fully compatible.
- 2. Improve the coverage and quality of water loss estimates from all PCWS systems, or at least all systems that serve a significant population. Information was provided by NJDEP and DRBC, and the NJDEP information includes results using two different methods the regulatory Unaccounted-for Water method and the AWWA M36 method. Planning can be improved by requiring the AWWA method uniformly and achieving more complete coverage. While annual loss estimates may not be strictly necessary, they are valuable for all medium and large systems to ensure that the PCWS systems become conversant with the AWWA method, to integrate the use of water loss estimates with asset management requirements of the Water Quality Accountability Act, and to help the public understand system success at reducing water losses.
- 3. Periodic collection of PCWS estimates for the proportion of system water that is Residential, Industrial, Commercial/Institutional, and Water Losses, perhaps every three to five years. The lack of information on Industrial and Commercial/Institutional demands was especially problematic for this project.
- 4. Continued improvement of the PCWS Service Area mapping. Over the life of this project, the mapping improved considerably, but a variety of small systems are still missing from the map, and some areas appear to have inconsistencies between customer locations provided by the case PCWS systems and the NJDEP mapping of the service areas, with customer data clearly located outside of the NJDEP service area boundaries. Examples of this can be seen in the maps of <u>Appendix D</u>.
- 5. Refinement of the dasymetric analysis method for small PCWS systems, to achieve better population estimates for these systems than was possible using the current method.

References

Cited References

- Alliance for Water Efficiency. 2014. Building Better Water Rates for an Uncertain World: Balancing Revenue Management, Resource Efficiency, and Fiscal Sustainability.
- Arbues, F., Garcia-Valinas, M.A., and Martinez-Espineira, R. 2003. Estimation of residential water demand: a state-of-the-art review. *Journal of Socio-Economics (32)*, 81–102.
- American Water Works Association (AWWA). 2012. Buried No Longer: Confronting America's Water Infrastructure Challenge.
- Beecher, J.A., and Chesnutt, T.W. 2012. Declining Water Sales and Utility Revenues: A Framework for Understanding and Adapting. White Paper for the National Water Rates Summit.
- Black & Veatch. 2016. Suez Water New York Inc. Water Conservation Plan. Suez Water New York, Inc.
- Camp Dresser & McKee Inc. (CDM). 2010. State of Colorado 2050 Municipal & Industrial Water Use Projections. Colorado Water Conservation Board.
- Coomes, P. et al. 2009. North America Residential Water Usage Trends Since 1992. Water Research Foundation and USEPA.
- Corbella, H.M., and Sauri, D. 2009. What lies behind domestic water use? A review essay of the drivers of domestic water consumption. *Boletín de la* A.G.E. (50), 297-314.
- Dawadi, S., and Ahmad, S. 2013. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. *Journal of Environmental Management (114)*, 261-275.
- Delaware River Basin Commission (DRBC). 2016. Analysis of Calendar Year 2014 Water Audit Data from Public Water Supply Systems in the Delaware River Basin.
- Dziegielewski, B. and Chowdhury, F.J. 2012. Scenario-Based Forecast of Regional Water Demands in Northeastern Illinois. *Journal American Water Works Association (138) 2*, 80-89. DOI: 10.1061/(ASCE)WR.1943-5452.0000154
- Dziegielewski, B. and Kiefer, J.C. 2010. Appropriate design and evaluation of water use and conservation metrics and benchmarks. *Journal American Water Works Association (102)* 6, 1-15.
- Economist. 2017.04.01. Free Exchange: Will robots displace humans as motorised vehicles ousted horses? Accessed from: https://www.economist.com/news/business-and-finance/21719761-probably-not-humans-have-lot-learn-equine-experience-will-robots
- Evans, Tim. 2016. Built-Out Places Account for Majority of State's Population Growth Since 2008. New Jersey Future. <u>http://www.njfuture.org/2016/05/20/census-built-out-places-growing/</u>
- Gleick, P.H. 2003. Water Use. Annu. Rev. Environ. Resour (28), 275–314. DOI: 10.1146/annurev.energy.28.040202.122849
- Goodyear, S. 2014. These Cities Are Using Smart Tactics to Manage Water for the Future. NextCity. Retrieved from <u>https://nextcity.org/daily/entry/drought-resilience-water-saving-techniques-future</u>

- Grafton, R.Q. et al. 2011. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey. *Water Resources Research (47)*, 1-14.
- Hughes, J. et al. 2014. Defining a Resilient Business Model for Water Utilities. *Water Research Foundation and U.S.EPA*.
- The Johnson Foundation at Wingspread. 2012. Declining Water Sales and Utility Revenues: A Framework for Understanding and Adapting. National Water Rates Summit.
- Kane, Joseph and Lynn E. Broaddus. 2016. Striking a better balance between water investment and affordability. See graph "Increase in Monthly Price of Water and Sewer Services, Consumer Price Index, 2000 to 2016." September 12, 2016. Metropolitan Policy Program at Brookings. Retrieved from: <u>https://www.brookings.edu/blog/the-avenue/2016/09/12/striking-a-better-balance-between-water-investment-and-affordability/</u>
- New Jersey Department of Environmental Protection. 2017. New Jersey Water Supply Plan 2017-2022. Available from: <u>http://www.nj.gov/dep/watersupply/wsp.html</u>.
- Polebitski, A. and Palmer, R. 2010. Seasonal Residential Water Demand Forecasting for Census Tracts. J. Water Resour. Plann. Manage. (136) 1, 27-36. DOI: 10.1061/(ASCE) WR.1943-5452.0000003
- Qi, C. and Chang, N. 2011. System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. *Journal of Environmental Management 92*, 1628-1641. DOI: 10.1016/j.jenvman.2011.01.020
- Rockaway, T.D. et al. (2011). Residential water use trends in North America. Journal American Water Works Association (103) 2, 76-89.
- Seattle Public Utilities. 2013. 2013 Revised Official Yield Estimate and Long-Range Water Demand Forecast. Retrieved from <u>http://www.seattle.gov/util/cs/groups/public/@spu/@water/documents/webcontent/02</u> _030723.pdf
- Vickers, A., Wyatt Tiger, M., and Eskaf, S. 2013. A Guide to Customer Water-Use Indicators for Conservation and Financial Planning. *American Water Works Association*.
- United Kingdom Department for Communities and Local Government. 2009. The Water Efficiency Calculator for New Dwellings. <u>http://sites.wrcplc.co.uk/partgcalculator/</u>

Whitcomb, John B. 2005. Florida Water Rates Evaluation of Single-Family Homes. https://www.swfwmd.state.fl.us/documents/reports/water_rate_report.pdf

Data References

- Centers for Disease Control. Deaths: Final Data for 2013. <u>http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf</u>
- Centers for Disease Control. National Vital Statistics Reports. http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_01.pdf
- Internal Revenue Service. SOI Tax Stats Migration Data New Jersey. <u>http://www.irs.gov/uac/SOI-Tax-Stats-Migration-Data-New-Jersey</u>

- New Jersey Department of Environmental Protection. 2013. New Jersey Water Tracking Database: DGS13-1 Computer Workbook Summarizing New Jersey Withdrawals and Discharges on a HUC11 Basis. Available from: <u>http://www.state.nj.us/dep/njgs/geodata/dgs13-1.htm</u>. (An updated version of this dataset was used for this project.
- New Jersey Department of Environmental Protection. 2017. Public Community Water Supply System Service Areas. Available from: <u>https://njogis-</u> <u>newjersey.opendata.arcgis.com/datasets/new-jersey-public-community-water-purveyor-</u> <u>service-areas</u>
- New Jersey Department of Environmental Protection. 2017. Public Water System Deficit/Surplus. Available from: www.nj.gov/dep/watersupply/pws.html
- New Jersey Department of Labor and Workforce Development. N.D. Population and Labor Force Projections for New Jersey: 2012 to 2032 (slide presentation). Downloaded from: <u>http://lwd.dol.state.nj.us/labor/lpa/dmograph/lfproj/poplfproj2032.pptx</u>
- New Jersey Department of Labor and Workforce Development. N.D. Projections of Total Population by Projection Model: New Jersey, 2014 to 2034 (Excel spreadsheet). Downloaded from: <u>http://lwd.dol.state.nj.us/labor/lpa/dmograph/lfproj/sptab1.xlsx</u>
- U.S. Bureau of the Census. Estimates of the Components of Resident Population Change: April 1, 2010 to July 1, 2014. <u>http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2</u> <u>014_PEPTCOMP&prodType=table</u>
- U.S. Bureau of the Census. Migration/Geographic Mobility. <u>https://www.census.gov/hhes/migration/data/acs/state-to-state.html</u>
- Young, Cristobal, Charles Varner and Douglas S. Massey. 2008. Trends in New Jersey Migration: Housing, Employment, and Taxation. Policy Research Institute for the Region, Princeton University.

http://www.leg.state.vt.us/jfo/Tax%20Commission/Trends%20in%20NJ%20Migration%2 0Study%20-%20Princeton.pdf

Appendices

Appendix A. Methodology for 2010 and 2040 PCWS Population Estimates and Per Capita Water Demand Calculations

As discussed in <u>PCWS Service Areas</u>, <u>Populations and Land Use</u>, 2010 populations were estimated for each PCWS system, by residential development density (High, Medium, Low) for each Census block group. These estimates were generated using a Geographic Information System (GIS) approach known as dasymetric analysis. The following methodology was used to generate the population estimates for 2010.

The estimates for 2040 required disaggregation of municipal population projections to one or more PCWS service areas and any non-service areas in the municipality, based on the relative population distribution in 2010 in lieu of a detailed build-out analyses. The analysis also assumed that population increases would be in High and Medium density residential areas, and not in Low density unless the entire service area was all or mostly all Low density. This approach was selected because population increases are generally driven by either or both of increased household size (which would increase internal demands but not external) or increased housing units (which in most areas will be in more dense developments due to the profit profiles of new development). In both cases, per capita demands for the increases will trend to more efficient rates.

For the few areas with projected population decreases, losses were distributed evenly across existing High, Medium and Low Density areas within the PCWS service area, as such losses will often be related to decreasing average household size.

Methodology

Note: Many of the steps in this methodology require carrying out the same processing steps on multiple layers. The Model Builder tool found in ArcMap can be used to automate the duplication of these steps and save time.

Part 1 -Data download & Acquisition

The following data must be acquired for this methodology. All of the data is publicly accessible with the exception of the Water Use Point Layers. GIS layers are color coded "orange" throughout this methodology.

Name	Туре	Source	Description
"BlockGroups_2010"	Polygon	New Jersey	U.S. Census Block Group delineations
	Shapefile	Geographic	from the year 2010.
		Information Network	
"Counties 2010"	Polygon	New Jersev	U.S. Census County delineations from
	Shapefile	Geographic	the year 2010
	Shaperne	Information Network	the year 2010.
		(NJGIN)	
"CensusPop_2010"	Excel	U.S Census Bureau -	A table with population values for
	Table	American Fact Finder	block groups from the U.S. Census
			Bureaus' 2010 decennial census.
"LULC_2012"	Polygon	New Jersey	A comprehensive polygon layer of land
	Shapefile	Department of	use types in the state of New Jersey.
		Environmental	The layers are organized by Sub-basins
		Protection (NJDEP)	(HU8) and must be individually
			downloaded and combined.
"NJ_Parcels"	Polygon	New Jersey	Delineations of parcels in New Jersey.
	Shapefile	Geographic	The layers are organized by County and
		Information Network	must be individually downloaded and
		(NJGIN)	combined.
Water Use Point	Point	Water Companies	Data from different water companies
Layers	Shapefiles		vary in organization and level of detail.
			The data used in this study are
			organized into individual annual layers.
			Some data used in the study has
			monthly water use and some has
			quarterly water use.

Part 2 - Dasymetric Population Distribution

Dasymetric mapping is a method of using an ancillary data source to spatially distribute data that are initially organized by large or arbitrary boundaries, so as to achieve a greater degree of spatial accuracy. Dasymetric mapping is employed in this study to more accurately distribute population within block groups, the smallest available cartographic units with associated U.S. Bureau of Census Decennial population data.

2.1 - Adjusting the Original LULC dataset

The following steps will adjust the original LULC dataset to fit the needs of this dasymetric analysis. The original dataset has 5 categories of residential land use:

- 1110 (High Density or Multiple dwelling)
- 1120 (Single Unit, Medium Density)
- 1130 (Single Unit, Low Density)
- 1140 (Rural Density)
- 1150 (Mixed Residential)

For the purposed of this study, the rural density category is collapsed into the low density category due to the similarity of water uses associated with these two categories. The mixed use category does not have an inherent density associated with it. Furthermore, it is a rarely used category relative to the other residential types; there are only 54 mixed use polygons in the entire statewide layer. For these reasons, mixed use polygons are manually reassigned to an appropriate residential category.

- 1. Use the 'Select by Attribute' function to select polygons from the "LULC_2012" layer that have a "LU12" field value of 1140
 - a. Use the 'Field Calculator' tool to change the value of the "LU12" field from 1140 to 1130 for all of the selected records.
- 2. Clear all selections. Use the 'Select by Attribute' function to select polygons from the "LULC 2012" layer that have a "LU12" field value of 1150.
 - a. Use the 'Add Data' tab to add a base map
 - b. Use the 'Field Calculator' tool to change the value of the "LU12" field from 1150 to either 1110 (high density), 1120 (medium density), or 1130 (density) based on the base map and surrounding residential land use.

Note: This step uses the judgement of the individual carrying out this analysis. In this study, the vast majority of mixed use residential polygons were reassigned to the medium density category.

- c. Export the resulting layer as a new layer and name it "LULC_2012_Adjusted."
- Use the 'Select by Attribute' function to select polygons from the "LULC_2012_Adjusted" layer using the following expression: LU12 = 1110 OR LU12 = 1120 OR LU12 = 1130
 - a. Export the selected polygons as a new polygon layer and name it "LULC_2012_Residential_Adjusted."
- 4. Use the 'Dissolve' tool to dissolve the "LULC_2012_Adjusted" layer. Use the following fields as dissolve fields:
 - LU12
 - LABEL12

Name the resulting layer "LULC_Key"

5. Add a new field (Type: Double) to the "LULC_Key" layer and name the field "Key."

LABEL12	Key
RESIDENTIAL, HIGH DENSITY OR MULTIPLE DWELLING	100
RESIDENTIAL, SINGLE UNIT, MEDIUM DENSITY	100
RESIDENTIAL, SINGLE UNIT, LOW DENSITY	100
RESIDENTIAL, RURAL, SINGLE UNIT	100
MIXED RESIDENTIAL	100
COMMERCIAL/SERVICES	1
MILITARY INSTALLATIONS	1
INDUSTRIAL	1
AIRPORT FACILITIES	1
INDUSTRIAL AND COMMERCIAL COMPLEXES	1
MIXED URBAN OR BUILT-UP LAND	1
OTHER URBAN OR BUILT-UP LAND	1
ATHLETIC FIELDS (SCHOOLS)	1
STADIUM, THEATERS, CULTURAL CENTERS AND ZOOS	1
CROPLAND AND PASTURELAND	1
AGRICULTURAL WETLANDS (MODIFIED)	1
ORCHARDS/VINEYARDS/NURSERIES/HORTICULTURAL AREAS	1
CONFINED FEEDING OPERATIONS	1
OTHER AGRICULTURE	1
PLANTATION	1
EXTRACTIVE MINING	1
* All Other "LABEL12" Values *	0

a. Populate the "Key" field based on the LABEL12 field in the following manner:

2.2 - Separating the State into Tiers

A 'High Density Residential' LULC polygon in an extremely developed area such as Jersey City is likely to be significantly different from a 'High Density Residential' LULC polygon in a less developed area such as the New Jersey Highlands. In recognition of this discrepancy, New Jersey was broken out into four tiers for the purposes of this study. Individual dasymetric analyses are carried out for each of the four tiers. The four tiers were developed using 2010 Census population density values for New Jersey counties and block groups. The four tiers as designated as follows:

- **Tier 1:** Hudson County
- Tier 2: Essex, Union, Bergen, Passaic, Middlesex, Camden, Mercer Counties
- Tier 3: Monmouth, Somerset, Morris, Ocean, Gloucester, Burlington, and Atlantic Counties
- Tier 4: Cape May, Cumberland, Warren, Hunterdon, Sussex, Salem
- 6. Join the "CensusPop_2010" table to the "BlockGroups_2010" layer. Use the "GEOID10" field as the join field.
 - a. Add a new field (Type:Double) and name it "BGCensusPop"
 - b. Use the 'Field Calculator' to populate the "BGCensusPop" field with block group population values from the "CensusPop_2010" table.
 - c. Remove the join.
- 7. Add a new field (Type: double) to the "BlockGroups_2010" layer. Name the field "BGArea_Acres"

- a. For the "BGArea_Acres" field use the 'Calculate Geometry' function to calculate the area in US acres.
- Use the 'Select by Attribute' tool to select polygons from the "Counties_2010" layer using the following expression: COUNTYFP10 = '017'
 - a. With the selection still active. Clip the "LULC_2012_Residential_Adjusted" layer by the "Counties_2010" layer.
- 9. Use the 'Intersect' tool to intersect the "BlockGroups_2010" layer and the layer created in the previous step. In the 'Intersect' dialogue box, make sure that the layer created in the previous step is above the "BlockGroups 2010" layer.
- 10. Add a new field (Type: Text) to the layer created in the previous step and name it "BG LULC."
 - a. Use the 'Field Calculator' to populate the "BG_LULC" field using the following equation: [GEOID10]&"_"&[LU12]
 - b. Use the 'Dissolve' tool. Use the following fields as dissolve fields.
 - GEOID10
 - LU12
 - BG_LULC
 - BGArea_Acres
 - BGCensusPop

Name the resulting layer "Tier1_Polys."

11. Clear all Selections. Use the 'Select by Attribute' tool to select polygons from the "Counties_2010" layer using the following expression:

 $\overrightarrow{COUNTYFP10} = `003' \text{ OR COUNTYFP10} = `021' \text{ OR COUNTYFP10} = `013' \text{ OR COUNTYFP10} = `007' \text{ OR COUNTYFP10} = `031' \text{ OR COUNTYFP10} = `039' \text{ OR COUNTYFP10} = `023'$

- a. With the selection still active. Clip the "LULC_2012_Residential_Adjusted" layer by the "Counties_2010" layer.
- 12. Use the 'Intersect' tool to intersect the "BlockGroups_2010" layer and the layer created in the previous step. In the 'Intersect' dialogue box, make sure that the layer created in the previous step is above the "BlockGroups 2010" layer.
- 13. Add a new field (Type: Text) to the layer created in the previous step and name it "BG_LULC."
 - a. Use the 'Field Calculator' to populate the "BG_LULC" field using the following equation: [GEOID10]&" "&[LU12]

- b. Use the 'Dissolve' tool. Use the following fields as dissolve fields.
 - GEOID10
 - LU12
 - BG_LULC
 - BGArea_Acres
 - BGCensusPop

Name the resulting layer "Tier2 Polys."

14. Clear all Selections. Use the 'Select by Attribute' tool to select polygons from the "Counties 2010" layer using the following expression:

COUNTYFP10 = '001' OR COUNTYFP10 = '015' OR COUNTYFP10 = '025' OR COUNTYFP10 = '005' OR COUNTYFP10 = '027' OR COUNTYFP10 = '035' OR COUNTYFP10 = '029'

- a. With the selection still active. Clip the "LULC_2012_Residential_Adjusted" layer by the "Counties_2010" layer.
- 15. Use the 'Intersect' tool to intersect the "BlockGroups_2010" layer and the layer created in the previous step. In the 'Intersect' dialogue box, make sure that the layer created in the previous step is above the "BlockGroups 2010" layer.
- 16. Add a new field (Type: Text) to the layer created in the previous step and name it "BG_LULC."
 - a. Use the 'Field Calculator' to populate the "BG_LULC" field using the following equation: [GEOID10]&" "&[LU12]
 - b. Use the 'Dissolve' tool. Use the following fields as dissolve fields.
 - GEOID10
 - LU12
 - BG_LULC
 - BGArea_Acres
 - BGCensusPop

Name the resulting layer "Tier3_Polys."

17. Clear all Selections. Use the 'Select by Attribute' tool to select polygons from the "Counties_2010" layer using the following expression:

COUNTYFP10 = '041' OR COUNTYFP10 = '033' OR COUNTYFP10 = '011' OR COUNTYFP10 = '009' OR COUNTYFP10 = '019' OR COUNTYFP10 = '037'

a. With the selection still active. Clip the "LULC_2012_Residential_Adjusted" layer by the "Counties 2010" layer.

- 18. Use the 'Intersect' tool to intersect the "BlockGroups_2010" layer and the layer created in the previous step. In the 'Intersect' dialogue box, make sure that the layer created in the previous step is above the "BlockGroups 2010" layer.
- 19. Add a new field (Type: Text) to the layer created in the previous step and name it "BG_LULC."
 - a. Use the 'Field Calculator' to populate the "BG_LULC" field using the following equation: [GEOID10]&" "&[LU12]
 - b. Use the 'Dissolve' tool. Use the following fields as dissolve fields.
 - GEOID10
 - LU12
 - BG_LULC
 - BGArea_Acres
 - BGCensusPop

Name the resulting layer "Tier4_Polys."

2.3 - Density Sampling Ratio

The following steps are carried out individually for each of the four tier layers created in the previous section 2.2. When one of these tier layers are used in this section, it will be referred to as "TierX_Polys" as a substitute for "Tier1_Polys," Tier2_Polys," "Tier3_Polys," and "Tier4_Polys."

- 20. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "LU12Area_Acres"
 - a. For the "LU12Area_Acres" field use the 'Calculate Geometry' function to calculate the area in US acres.
 - b. Add a new field (Type: Double) and name it "PercentOfBlockGroup"
 - c. Use the 'Field Calculator' function to calculate the "PercentOfBlockGroup" field using the following equation:

([LU12Area_Acres]/[BGArea_Acres])*100

21. Use the 'Select by Attribute' function to select records from the "TierX_Polys" layer using the following equation:

PercentOfBlockGroup >= 95

- a. Export the selected records as a new layer.
- 22. Use the 'Dissolve' tool to dissolve the layer created in the previous step. Use the "LU12" field as the dissolve field. Add the following statistics fields
 - LU12Area_Acres (Statistic Type: SUM)
 - CensusPop (Statistic Type: SUM)

Name the resulting layer "Sampling_Ratio"

- 23. Add the following fields to the "Sampling_Ratio" layer
 - "Density" (Type: Double)
 - "Density_Sum" (Type: Double)
 - "Sampling_Ratio" (Type: Double)
 - a. Use the 'Field Calculator' function to calculate the "Density" field using the following equation: [SUM_CensusPop] / [SUM_LU12Area_Acres]
 - b. Calculate the sum the "Density" field values of each record. Use the 'Field Calculator' function to populate the "Density_Sum" with that value.
 - c. Use the 'Field Calculator' function to calculate the "Sampling_Ratio" field using the following equation:

[Density] / [Density_Sum]

- 24. Add a new field (Type: Double) to the "TierX_Polys" layer. Name it "Sampling_Ratio"
- 25. Join the "Sampling_Ratio" Layer with the "TierX_Polys" layer. Use "LU12" field as the join field.
 - a. Use the 'Field Calculator' to populate the "Sampling_Ratio" field of the "TierX_Polys" layer with the "Sampling_Ratio" field values from the "Sampling_Ratio" layer.
 - b. Remove the join.

2.4 - Area Ratio

The following steps are carried out individually for each of the four tier layers created in the previous section 2.2. When one of these tier layers are used in this section, it will be referred to as "TierX_Polys" as a substitute for "Tier1_Polys," Tier2_Polys," "Tier3_Polys," and "Tier4_Polys."

26. Use the 'Dissolve' tool to dissolve the "TierX_Polys" layer. Use the "GEOID10" field as the dissolve field. Add the "LU12Area_Acres" as a statistic field (statistic type: SUM).

Name the resulting layer "LU12Area_SUM"

- 27. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the new field "BGResidentialArea"
 - a. Join the "BlockGroup_LULC" layer with the "LU12Area_SUM" layer. Use the "GEOID10" field as the join field.

- b. Use the 'Field Calculator' to populate the "BGResidentialArea" field of the "TierX_Polys" layer with the "SUM_LU12Area_Acres" field values from the "LU12Area_SUM" layer.
- c. Remove the join
- 28. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the new field "Area_Ratio"
 - a. Use the 'Field Calculator' function to calculate the "Area_Ratio" field using the following equation: [LU12Area_Acres] / [BGResidentialArea]

2.5 - Final Ratio

The following steps are carried out individually for each of the four tier layers created in the previous section 2.2. When one of these tier layers are used in this section, it will be referred to as "TierX_Polys" as a substitute for "Tier1_Polys," Tier2_Polys," "Tier3_Polys," and "Tier4_Polys."

- 29. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "Sampling_x_Area"
 - a. Use the 'Field Calculator' function to calculate the "Sampling_x_Area" field using the following equation: [Sampling_Ratio] * [Area_Ratio]
- 30. Use the 'Dissolve' tool to dissolve the "TierX_Polys" layer. Use the "GEOID10" field as the dissolve field. Add the "Sampling_x_Area" field as a statistics field (statistic type: SUM). Name the resulting layer "SamplingAreaDissolve"
- 31. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "BGSUM_Sampling_x_Area"
 - a. Join the "SamplingAreaDissolve" layer to the "TierX_Polys" layer. Use the "GEOID10" field as the join field
 - b. Use the 'Field Calculator' function to populate the "BGSUM_Sampling_x_Area" field of the "TierX_Polys" layer with the "SUM_Sampling_x_Area" field values of the "SamplingAreaDissolve" layer.
 - c. Remove the join
- 32. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "Final_Fraction"
 - a. Use the 'Field Calculator' function to calculate the "Final_Fraction" field using the following equation:

[Sampling_x_Area] / [BGSUM_Sampling_x_Area]

33. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "AssignedPopulation" a. Use the 'Field Calculator' function to calculate the "AssignedPopulation" field using the following equation:

[BGCensus_Pop]*[Final_Fraction]

- 34. Add a new field (Type: Double) to the "TierX_Polys" layer. Name the field "AssignedDensity_Acres"
 - a. Use the 'Field Calculator' function to calculate the "AssignedDensity_Acres" field using the following equation:

[AssignedPopulation] / [LU12Area_Acres]

2.6 - Final Dasymetric Layer

- 35. Use the 'Merge' tool to merge the following layers:
 - "Tier1_Polys"
 - "Tier2 Polys"
 - "Tier3_Polys"
 - "Tier4 Polys"

Name the resulting layer "DasymetricPolys"

36. Create a duplicate of the "DasymetricPolys" layer and rename it "DasymetricPolysExploded"

- a. Select all of the records in the "DasymetricPolysExploded" layer
- b. In the 'Advanced Editing' toolbar, use the 'Explode Multipart Feature' tool to explode the "DasymetricPolysExploded" layer.

Part 3 Assigning Residential Density to Water Use Data Points

The following steps will assign a residential density of High, Medium, or Low to water use data points. This will allow the water use data points to be joined with corresponding population values that are also organized by the same residential categories. Overlaying water use data points with the residential polygons from the 2012 Land Use Land Cover (LULC) dataset results in an unacceptable amount of data loss. To remedy this spatial discrepancy between the data points and the LULC dataset, land uses within parcels are generalized to create a more accurate representation of the predominant land use in each parcel.

3.1 - Preprocessing Steps

The following steps will create the necessary layers to begin generalizing land uses within parcels. The method stars with isolating points that are not overlapped by a residential land use and working off of those points.

- 1. Use the 'Merge' tool to merge all of the water use point layers into one layer. The result is a comprehensive layer containing all of the geographic locations of the data points.
- 2. Use the 'Select By Location' function to isolate points from the layer created in the previous step that do NOT intersect with the "LULC_2012_Residential_Adjusted" layer. Export the selected points as a new point layer.
- 3. Use the 'Select By Location' function to isolate polygons from the "NJ_Parcels" layer that intersect with the point layer created in the previous step. Export the selected polygons as a new polygon layer. Name the layer "IntersectingParcels."

a. 4	Add two new fields to the polygon layer and populate them in the following manner:			
	Field Name	Туре	Calculation Method	
	ParcelArea_Acres	Double	Calculate geometry \rightarrow US Acres	
	Parcel_ID	Double	Field Calculator \rightarrow [ObjectID]	

- b. Use the 'Intersect' Tool to intersect the polygon layer with the "LULC_2012_Adjusted" layer. In the 'Intersect' dialogue box, the polygon layer needs to be above the "LULC_2012_Adjusted" layer.
- 4. Use the 'Dissolve' Tool to dissolve the polygon layer created in the previous step. In the 'Dissolve' dialogue box, select "LU12","Parcel_ID", and "ParcelArea_Acres" as dissolve fields. This groups all of the density types by parcel while preserving the total parcel area value. Name the resulting layer "Parcels_By_LULC"
 - a. Add three new fields to the polygon layer and populate them in the following manner:

Field Name	Туре	Calculation Method
Area_Acres	Double	Calculate geometry \rightarrow US Acres
Percent of Parcel	Double	Field Calculator →([Area_Acres] / [ParcelArea_Acres])*100
Dissolve_Key	Double	Leave empty, populated in the next step

- b. Join the "LULC_Key" layer with the polygon layer created in. Use the "LU12" field as the join field for both the table and the polygon layer. While the table is joined, calculate the "Dissolve_Key" field to be equal to the "Key" field. Remove the join. This step codes the polygons in the following manner:
 - i. All residential categories = 100
 - ii. Non-residential categories associated with water use = 1
 - iii. All other categories = 0
- 5. Use the 'Dissolve' Tool to dissolve the polygon layer created in the previous step (Parcels_By_LULC). In the 'Dissolve' dialogue box, select "Parcel_ID" as the dissolve field. Select the "Dissolve_Key" field as a statistics field and set the statistic type to SUM. Name the resulting layer "Parcels_Coded"

a. The resulting layer will contain a field named "SUM_Dissolve_Key." The following values may occur in this field:

SUM_Dissolve_Key Value	Interpretation
0	No land uses associated with water.
1-99	One or more non-residential land uses associated with water use.
100 or 200 or 300	One or more types of residential use.
101-199 or 201-299 or 301-399	One or more types of residential use and one or more non-residential land uses associated with water use.

3.2 - Situational Rules

The following steps will generalize the land uses within parcels using the following situational rules:

Situation	SUM_Dissolve_Key Value	Rule
One residential land use	100	Assign the residential land use to the entire parcel
Two or more types of residential land use	200 or 300	Identify which type residential land use covers the greatest percentage of the parcel and assign that residential land use to the entire parcel.
One or more types of residential use and one or more non-residential land uses associated with water use.	101-199 or 201-299 or 301-399	For parcels where a residential land use covers at least 50% of the parcel, assign that residential land use to the entire parcel.

- 6. Create a relate between the "Parcels_Coded" layer and the "Parcels_By_LULC" layer. Use the "Parcel ID" field as the common field to relate the two layers. Use the default name of "Relate1."
 - a. Use the 'Select by Attribute' function to select polygons from the "Parcels_Coded" layer that have a "SUM_Dissolve_Key" field value of 100.
 - b. With the selection still active, open the attributes table of "Parcels_Coded." Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "Parcels By LULC" layer.
 - c. Export the selected polygons and name the layer "OneResidentialUse."
- 7. Create a relate between the "OneResidentialUse" layer and the "IntersectingParcles" layer. Use the "Parcel_ID" field as the common field to relate the two layers. Use the default name of "Relate1."

- a. Use the 'Select by Attribute' function to select all of the records from the "OneResidentialUse" that have a "Dissolve_Key" field value of 0. Delete the selected records.
- b. Select all of the remaining records from the "OneResidentialUse" layer and open the attributes table. Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "IntersectingParcels" layer.
- c. Export the selected records from the "IntersectingParcels" layer as a new layer. Name the new layer "Final OneResidentialUse."
- 8. Add a new field (Type: Double) named "LU12" to the "Final_OneResidentialUse" layer.
 - a. Open the attributes table of the "Final_OneResidentialUse" layer. Join the "OneResidentialUse" layer using the "Parcel_ID" field as the join field.
 - b. With the join still active, use the 'Field Calculator' function to populate the "LU12" field from the "Final_OneResidentialUse" layer with the "LU12" field values from the "OneResidentialUse" layer. Remove the join.
- 9. Clear all selections. Use the 'Select by Attribute' function to select polygons from "Parcels_Coded" layer that have a "SUM_Dissolve_Key" Value of 200 or 300.
 - a. With the selection still active, open the attributes table of "Parcels_Coded." Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "Parcels_By_LULC" layer.
 - b. Export the selected records as a new layer and name it "MultipleResidentalUses."
- 10. Use the 'Select by Attribute' function to select all of the records from the "MultipleResidentalUses" that have a "Dissolve_Key" field value of 0. Delete the selected records.
 - a. Use the 'Dissolve' Geoprocessing Tool to dissolve the "MultipleResidentalUses" layer. In the 'Dissolve' dialogue box, select "Parcel_ID" as the dissolve field. Select the "PercentOfParcel" field as a statistics field and set the statistic type to MAX. Name the resulting layer "MultipleResidentalUses Dissolve."
- 11. Add a new field (Type: Double) named "PercentCode" to the "MultipleResidentalUses" layer.
 - a. Open the attributes table of the "MultipleResidentalUses" layer. Join the "MultipleResidentalUses Dissolve" layer using the "Parcel ID" field as the join field.
 - b. With the join still active, use the 'Field Calculator' function to calculate the "PercentCode" field using the following equation: [PercentOfParcel] / [MAX_PercentOfParcel]

- c. Remove the join. Create a relate between the "MultipleResidentialUses" layer and the "IntersectingParcels" layer. Use the "Parcel_ID" field as the common field to relate the two layers. Use the default name of "Relate1"
- d. Use the 'Select by Attribute' function to select all of the records from the "MultipleResidentalUses" that have a "PercentCode" field value of 1.
- e. With the selection still active, open the attribute table of "MultipleResidentalUses" layer. Under the 'Table Options' tab, choose 'switch selection.' Delete the selected records.
- f. Select all of the remaining records from the "MultipleResidentalUses" layer and open the attributes table. Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "IntersectingParcels" layer.
- g. Export the selected polygons from the "IntersectingParcels" layer as a new layer. Name the new layer "Final MultipleResidentialUse."
- 12. Add a new field (Type: Double) named "LU12" to the "Final MultipleResidentialUse" layer.
 - a. Open the attributes table of the "Final_MultipleResidentialUse" layer. Join the "MultipleResidentialUse" layer using the "Parcel_ID" field as the join field.
 - b. With the join still active, use the 'Field Calculator' function to populate the "LU12" field from the "Final_MultipleResidentialUse" with the "LU12" field values from the "MultipleResidentialUse" layer. Remove the join.
- 13. Clear all selections. Use the 'Select by Attribute' function to select polygons from "Parcels_Coded" layer using the following expression:

(SUM_Dissolve_Key >100 AND SUM_Dissolve_Key <200) OR (SUM_Dissolve_Key >200 AND SUM_Dissolve_Key <300) OR (SUM_Dissolve_Key >300 AND SUM_Dissolve_Key < 400)

- a. With the selection active, open the attributes table of "Parcels_Coded." Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "Parcels_By_LULC" layer.
- b. Export the selected polygons from the "Parcels_By_LULC" layer as a new layer. Name the new layer "MultipleIUses."
- 14. Create a relate between the "MultipleUses" layer and the "IntersectingParcels" layer. Use the "Parcel_ID" field as the common field to relate the two layers. Use the default name of "Relate1."
 - a. Use the 'Select by Attribute' function to select all of the records from the "MultipleUses" layer using the following expression:

Dissolve_Key =100 AND PercentOfParcel >=50

- b. With the selection still active, open the attribute table of the "MultipleUses" layer. Under the 'Table Options' tab, choose 'switch selection.' Delete the selected records.
- c. Select all of the remaining records in the "MultipleUses" layer and open the attributes table. Open the 'Related Tables' dropdown menu and select "Relate1." The displayed attributes table should now change to the "IntersectingParcels" layer.
- d. Export the selected polygons from the "IntersectingParcels" layer as a new layer. Name the new layer "Final_MultipleUses."
- 15. Add a new field (Type: Double) named "LU12" to the "Final_MultipleUses" layer.
 - a. Open the attributes table of the "Final_MultipleUses" layer. Join the "MultipleUses" layer using the "Parcel_ID" field as the join field.
 - b. With the join still active, use the 'Field Calculator' function to populate the "LU12" field from the "Final_MultipleUses" layer with the "LU12" field values from the "MultipleUses" layer. Remove the join.

3.3 - Creating the Final Generalized layer

The following steps will use the generalized parcel layers created using the situational rules and combine them with residential LULC polygons to create a final layer for assigning residential density. Even after this process, there may still be data points that are not overlapped by the final layer and therefore not assigned a residential density.

- 16. Clear all selections. Use the 'Merge' Tool to merge the "Final_OneResidentialUse" layer, the "Final_MultipleResidentialUse" layer.
- 17. Use the 'Erase' Tool to erase the "LULC_2012_Residential_Adjusted" layer from the polygon layer created in the previous step.
- 18. Use the 'Merge' Tool to merge the "LULC_2012_Residential_adjusted" layer and the layer created in the previous step. Name the resulting layer "Final_AssigningDensity."
- 19. Use the 'Spatial Join' tool spatially join the "Final_AssigningDensity" layer to all of the water use point layers located. In the 'Spatial Join' dialogue box, uncheck the 'Keep All Target Features' option so only data points that are overlaid by the "Final_AssigningDensity" layer a included in the outputs. The resulting data point layers now contain residential density values in the 'LU12' field.

Part 4 Assigning Population to All Water Use Data Points

The following steps will combine water use data points and population values to create water use per capita values. All of the steps in this part (steps 1 - 14) are carried out for each available year of data.

4.1 - Water Use Per Capita for All Users

The following steps will combine population and water use values and create a polygon layer with water use per capita values for all users.

- 1. Use the 'Spatial Join' tool to join the "GEOID10" field from the "BlockGroup_2010" layer to the water use point layers with density values that were created in the final step of Part 3.
- 2. Add a new field (Type:Text) to the new point layer created in the previous step. Name the field "BG LULC."
 - a. Use the 'Field Calculator' function to calculate the "BG_LULC" field using the following expression: [GEOID10]&"_"& [LU12]
 - b. Use the 'Dissolve' Tool. In the 'Dissolve' dialogue box, make sure the 'Create multipart features' option is checked and select the following fields as dissolve fields:
 - i. LU12
 - ii. GEOID10
 - iii. BG_LULC

Add the following statistic fields:

- iv. Oct (statistic type: SUM)
- v. Nov (statistic type: SUM)
- vi. Dec (statistic type: SUM)
- vii. Jan (statistic type: SUM)
- viii. Feb (statistic type: SUM)
- ix. Mar (statistic type: SUM)
- x. Apr (statistic type: SUM)
- xi. May (statistic type: SUM)
- xii. Jun (statistic type: SUM)
- xiii. Jul (statistic type: SUM)
- xiv. Aug (statistic type: SUM)
- xv. Sep (statistic type: SUM)
- xvi. Premis_ID (statistics type:COUNT)

Name the resulting layer "BG_LULC_Points"

3. Use the 'Select By Location' Tool to select polygons from the "DasymetricPolysExploded" layer that intersect with the "BG_LULC_Points" layer. Export the selected polygons as a new polygon layer.

- 4. Use the 'Dissolve' Tool to dissolve the layer from the previous step. In the 'Dissolve' dialogue box, make sure the 'Create multipart features' option is checked and select the following fields as dissolve fields:
 - LU12
 - GEOID10
 - BG_LULC
 - AssignedDensity_Acres
- 5. Join the "BG_LULC_Points" layer to the polygon layer created in the previous step.
 - a. While the join is still active, export the polygon layer as a new layer.
- 6. Add the following fields to the polygon layer created in the previous step. Calculate each of the fields using the following methods:

Field Name	Field Type	Calculation Method
Area_Acres	Double	'Calculate Geometry' US Acres
Assigned_Population_Adjusted	Double	[Area_Acres]*[AssignedDensity_Acres]
AnnualTotal	Double	[SUM_Oct] + [SUM_Nov] + [SUM_Dec] + [SUM_Jan] + [SUM_Feb] + [SUM_Mar] + [SUM_Apr] + [SUM_May] + [SUM_Jun] + [SUM_Jul] + [SUM_Aug] + [SUM_Sep]
AnnualPerCapita	Double	[AnnualTotal] / [Assigned_Population_Adjusted]
AnnualPerCaptiaPerDay	Double	[AnnualPerCapita]/365
SummerTotal	Double	[SUM_Jun] + [SUM_Jul] + [SUM_Aug] + [SUM_Sep]
SummerPerCapita	Double	[SummerlTotal] / [Assigned_Population_Adjusted]
SummerPerCapitaPerDay	Double	[SummerlPerCapita] /122
NonSummerTotal	Double	[SUM_Oct] + [SUM_Nov] + [SUM_Dec] + [SUM_Jan] + [SUM_Feb] + [SUM_Mar] + [SUM_Apr] + [SUM_May]
NonSummerPerCapita	Double	[NonSummerlTotal] / [Assigned_Population_Adjusted]
NonSummerPerCapitaPerDay	Double	[NonSummerPerCapita] /243
AnnualPerPremisID	Double	[AnnualTotal] / [COUNT_Premise_ID]
AnnualPerPremisIDPerDay	Double	[AnnualPerPremisID] /365
SummerPerPremisID	Double	[SummerlTotal] / [COUNT_Premise_ID]
SummerPerPremisIDPerDay	Double	[SummerlPerPremisID] /122
NonSummerPerPremisID	Double	[NonSummerlTotal] / [COUNT_Premise_ID]
NonSummerPerPremisIDPerDay	Double	[NonSummerPerPremisID] /243

- a. After all of the fields have been added and populated use the 'Dissolve' tool. Use the "LU12" Field as the dissolve field. Choose the following fields as statistics field and set the statistic type to SUM.
 - i. AnnualTotal
 - ii. PopTotal
 - iii. PremisIDTotal
 - iv. SummerTotal
 - v. NonSummerTotal
- b. Use the "Table To Excel" tool to export layer to Excel spreadsheet. Calculate each of the fields using the following methods:

Field Name	Field Type	Calculation Method
AnnualPerCapita	Double	AnnualTotal/PopTotal
AnnualPerCapitaPerDay	Double	AnnualTotal/PopTotal/365
SummerPerCapita	Double	SummerTotal/ PopTotal
SummerPerCapitaPerDay	Double	SummerTotal/ PopTotal/122
NonSummerPerCapita	Double	NonSummerTotal/ PopTotal
NonSummerPerCapitaPerDay	Double	NonSummerTotal/ PopTotal/243
AnnualPerPremisID	Double	AnnualTotal/PremisIDTotal
AnnualPerPremisIDPerDay	Double	AnnualTotal/PremisIDTotal/365
SummerPerPremisID	Double	SummerTotal/PremisIDTotal
SummerPerPremisIDPerDay	Double	SummerTotal/PremisIDTotal/122
NonSummerPerPremisID	Double	NonSummerTotal/PremisIDTotal
NonSummerPerPremisIDPerDay	Double	NonSummerTotal/PremisIDTotal/122

4.2 - Water Use Per Capita for 'Year Long' Users

The following steps will combine population and water use values and create a polygon layer with water use per capita values for 'year long' users. This analysis defines year long users as data points with no more than three months of zero water use. Negative values are not considered a water use of zero because they represent a billing adjustment carried out by the water company.

- 7. Use the 'Spatial Join' tool to join the "GEOID10" field from the "BlockGroup_2010" layer to the water use point layers with density values that were created in the final step of Part 3.
- 8. Add the following fields (Type Double) to the point layer created in the previous step:
 - Nov_1
 - Dec_1
 - Jan_1
 - Feb_1
 - Mar_1
 - Apr_1

- May_1
- Jun_1
- July_1
- Aug_1
- Sep_1

These fields will be coded with the values 1 or 0, depending on value in the field of the corresponding month. A value of 0 is given if the corresponding month also has a value of 0. A value of 1 is given if the corresponding month has a value that is NOT 0. For example, if a record has an Oct field value of 20, then the Oct_1 field for that record is given a value of 1. However, If a record has an Oct field of 0, then the Oct_1 field is given a value of 0.

The fields can be calculated using python script. The script shown below is used to calculate the "Oct_1" field. To calculate the other fields, "Oct" must be replaced with the name of the other months wherever it appears in the script.

Show Codeblock	* / & + - =
Pre-Logic Script Code:	
def CODE (Oct): if (Oct == 0): return 0 else: return 1	~ ~
<	>
Y_Oct =	
CODE (!Oct!)	^
	\sim

- 9. After the fields have been coded, add a new field (Type: Double) and name it "YearLongCode."
 - a. Use the 'Field Calculator' function to calculate the "YearLongCode" field using the following expression:
 [Oct_1] + [Nov_1] + [Dec_1] + [Jan_1] + [Feb_1] + [Mar_1] + [Apr_1] + [May_1] + [Jun_1] + [Jul_1] + [Aug_1] + [Sep_1]
 - b. Use the 'Select By Attribute' Function to select records that have a "YearLongCode" field value greater than 8.
 - c. Export the selected records as a new point layer.
- 10. Add a new field (Type:Text) to the new point layer created in the previous step. Name the field "BG_LULC."
 - a. Use the 'Field Calculator' function to calculate the "BG_LULC" field using the following expression: [GEOID10]&"_"& [LU12]

- b. Use the 'Dissolve' Tool. In the 'Dissolve' dialogue box, make sure the 'Create multipart features' option is checked and select the following fields as dissolve fields:
 - i. LU12
 - ii. GEOID10
 - iii. BG_LU12

Add the following statistic fields:

- iv. Oct (statistic type: SUM)
- v. Nov (statistic type: SUM)
- vi. Dec (statistic type: SUM)
- vii. Jan (statistic type: SUM)
- viii. Feb (statistic type: SUM)
- ix. Mar (statistic type: SUM)
- x. Apr (statistic type: SUM)
- xi. May (statistic type: SUM)
- xii. Jun (statistic type: SUM)
- xiii. Jul (statistic type: SUM)
- xiv. Aug (statistic type: SUM)
- xv. Sep (statistic type: SUM)
- xvi. Premis_ID (statistics type: COUNT)

Name the resulting layer "YearLong_BG_LULC_Points"

- 11. Use the 'Select By Location' Tool to select polygons from the "DasymetricPolysExploded" layer that intersect with the use point layers from the "YearLong_BG_LULC_Points" layer. Export the selected polygons as a new polygon layer.
- 12. Use the 'Dissolve' Tool to dissolve the layer from the previous step. In the 'Dissolve' dialogue box, make sure the 'Create multipart features' option is checked and select the following fields as dissolve fields:
 - LU12
 - GEOID10
 - BG_LULC
 - AssignedDensity_Acres
- 13. Join the "YearLong_BG_LULC_Points" layer to the polygon layer created in the previous step.
 - a. While the join is still active, export the polygon layer as a new layer.
- 14. Add the following fields to the polygon layer created in the previous step. Calculate each of the fields using the following methods:

Field Name	Field Type	Calculation Method
Area_Acres	Double	'Calculate Geometry' US Acres
Assigned_Population_Adjusted	Double	[Area_Acres]*[AssignedDensity_Acres]
AnnualTotal	Double	[SUM_Oct] + [SUM_Nov] + [SUM_Dec] + [SUM_Jan] + [SUM_Feb] + [SUM_Mar] + [SUM_Apr] + [SUM_May] + [SUM_Jun] + [SUM_Jul] + [SUM_Aug] + [SUM_Sep]
AnnualPerCapita	Double	[AnnualTotal] / [Assigned_Population_Adjusted]
AnnualPerCaptiaPerDay	Double	[AnnualPerCapita]/365
SummerTotal	Double	[SUM_Jun] + [SUM_Jul] + [SUM_Aug] + [SUM_Sep]
SummerPerCapita	Double	[SummerlTotal] / [Assigned_Population_Adjusted]
SummerPerCapitaPerDay	Double	[SummerlPerCapita] /122
NonSummerTotal	Double	[SUM_Oct] + [SUM_Nov] + [SUM_Dec] + [SUM_Jan] + [SUM_Feb] + [SUM_Mar] + [SUM_Apr] + [SUM_May]
NonSummerPerCapita	Double	[NonSummerlTotal] / [Assigned_Population_Adjusted]
NonSummerPerCapitaPerDay	Double	[NonSummerPerCapita] /243
AnnualPerPremisID	Double	[AnnualTotal] / [COUNT_Premise_ID]
AnnualPerPremisIDPerDay	Double	[AnnualPerPremisID] /365
SummerPerPremisID	Double	[SummerlTotal] / [COUNT_Premise_ID]
SummerPerPremisIDPerDay	Double	[SummerlPerPremisID] /122
NonSummerPerPremisID	Double	[NonSummerlTotal] / [COUNT_Premise_ID]
NonSummerPerPremisIDPerDay	Double	[NonSummerPerPremisID] /243

- a. After all of the fields have been added and populated use the 'Dissolve' tool. Use the "LU12" Field as the dissolve field. Choose the following fields as statistics field and set the statistic type to SUM.
 - i. AnnualTotal
 - ii. PopTotal
 - iii. PremisIDTotal
 - iv. SummerTotal
 - v. NonSummerTotal
- b. Use the "Table To Excel" tool to export layer to Excel spreadsheet. Calculate each of the fields using the following methods:

Field Name	Field	Calculation Method
	Туре	
AnnualPerCapita	Double	AnnualTotal/PopTotal
AnnualPerCapitaPerDay	Double	AnnualTotal/PopTotal/365
SummerPerCapita	Double	SummerTotal/ PopTotal
SummerPerCapitaPerDay	Double	SummerTotal/ PopTotal/122
NonSummerPerCapita	Double	NonSummerTotal/ PopTotal
NonSummerPerCapitaPerDay	Double	NonSummerTotal/ PopTotal/243
AnnualPerPremisID	Double	AnnualTotal/PremisIDTotal
AnnualPerPremisIDPerDay	Double	AnnualTotal/PremisIDTotal/365
SummerPerPremisID	Double	SummerTotal/PremisIDTotal
SummerPerPremisIDPerDay	Double	SummerTotal/PremisIDTotal/122
NonSummerPerPremisID	Double	NonSummerTotal/PremisIDTotal
NonSummerPerPremisIDPerDay	Double	NonSummerTotal/PremisIDTotal/122

Appendix B. Residential Demands Model Construction

The spreadsheet model for 2010 and 2040 residential demands (Model RES 2010_2040 Demands 2017.08.01.xlsx) includes over 20 individual worksheets, which are described below. For each worksheet, the individual columns are described with the information source and equations as appropriate. The worksheets are grouped as:

- PCWS Population
- Annual Demands for 2010 and 2040, No Conservation and Conservation Scenarios
- Summer Demands for 2010 and 2040, No Conservation Scenario
- Non-Summer Demands for 2010 and 2040, No Conservation Scenario
- Lookup Tables
- Per Capita Calculations for Case PCWS Systems

Caveats - #1

As mentioned in the Caveats worksheet, the populations associated with each type of area are based on the dasymetric analysis and PCWS service areas using a June 2017 version of the NJDEP PCWS Service Area GIS mapping, which is not public and may have inaccuracies. However, the June 2017 service area coverage was not used in its entirety, as that would have required a complete reanalysis of the entire project, including the dasymetric analysis and all subsequent steps. The project schedule and budget did not allow for a complete reanalysis of this type. However, the population estimates for each PCWS service area are consistent through the model and report.

PCWS Population 2010 Pivot Table - #2

<u>PCWS Pop 2010</u>. For each PCWS system, provides a 2010 population estimate for each Group Code, the combination of residential density, housing age, topographic slope, geophysical area and precipitation density, as discussed in <u>Per Capita Residential Water Demands by Housing Category</u>. These population estimates are from the GIS-based dasymetric evaluation described in <u>Appendix A</u>.

PCWS Population 2040 Pivot Table - #3

<u>PCWS Pop 2040</u>. For each PCWS system, provides a 2040 population estimate for each Group Code. These population estimates are derived as described in <u>Appendix A</u>.

PCWS Population by Residential Development Density - #4

<u>PCWS Pop HDMDLD</u>. For each PCWS system, provides a 2010 and 2040 population estimate for each combination of residential density.

Annual Demands Table - #5

<u>Annual</u>. For each PCWS system, provides 2010 and 2040 estimates of demand for each relevant Group Code. Per capita demands for each Group Code are drawn from the worksheet #20 "2010 Lookup" for the 2010 and the 2040 No Conservation (Static) scenarios, and from the worksheet #21 "2040 Lookup" for the 2040 Conservation scenario. Populations are drawn from worksheets #2 "PCWS Pop 2010" and #3 "PCWS Pop 2040" respectively.

Annual Demands 2010 Pivot Table - #6

<u>Ann2010</u>. Pivot table drawn from worksheet #5 "Annual," with 2010 annual demands for each relevant Group Code and the complete PCWS.

Annual Demands 2040 No Conservation Scenario Pivot Table - #7

<u>Ann2040 NC</u>. Pivot table drawn from worksheet #5 "Annual," with 2040 annual demands under the No Conservation scenario for each relevant Group Code and the complete PCWS.

Annual Demands 2040 Conservation Scenario Pivot Table - #8

<u>Ann2040 Cons</u>. Pivot table drawn from worksheet #5 "Annual," with 2040 annual demands under the Conservation scenario for each relevant Group Code and the complete PCWS.

Summer Demands Table - #9

<u>Summer</u>. The information here is developed in the same manner as worksheet #5 "Annual" but for Summer demands.

Summer Demands 2010 Pivot Table - #10

<u>S 2010</u>. The information here is developed in the same manner as worksheet #6 "Ann2010" but for Summer demands.

Summer Demands 2040 No Conservation Scenario Pivot Table - #11

<u>S 2040 NC</u>. The information here is developed in the same manner as worksheet #7 "Ann2040 NC" but for Summer demands.

Summer Demands 2040 Conservation Scenario Pivot Table - #12

<u>S 2040 Con</u>. The information here is developed in the same manner as worksheet #8 "Ann2040 Cons" but for Summer demands.

Non-Summer Demands Table - #13

Non-Summer. The information here is developed in the same manner as worksheet #5 "Annual" but for Non-Summer demands.

Non-Summer Demands 2010 Pivot Table - #14

<u>N-S 2010</u>. The information here is developed in the same manner as worksheet #6 "Ann2010" but for Non-Summer demands.

Non-Summer Demands 2040 No Conservation Scenario Pivot Table - #15

<u>N-S 2040 NC</u>. The information here is developed in the same manner as worksheet #7 "Ann2040 NC" but for Non-Summer demands.

Non-Summer Demands 2040 Conservation Scenario Pivot Table - #16

<u>N-S 2040 Cons</u>. The information here is developed in the same manner as worksheet #8 "Ann2040 Cons" but for Non-Summer demands.

2010 Demands Summary Table - #17

<u>2010 Summary</u>. For each PCWS system, provides the sum of demands for Annual, Summer and Non-Summer from worksheets #6 "Ann2010", #10 "S 2010" and #14 "N-S 2010."

2040 Demands No Conservation Scenario Summary Table - #18

<u>2040 NC Summary</u>. For each PCWS system, provides the sum of demands for Annual, Summer and Non-Summer from worksheets #7 "Ann2040 NC", #11 "S 2040 NC" and #15 "N-S 2040 NC."

2040 Demands Conservation Scenario Summary Table - #19

<u>2040 Cons Summary</u>. For each PCWS system, provides the sum of demands for Annual, Summer and Non-Summer from worksheets #8 "Ann2040 Cons", #12 "S 2040 Cons" and #16 "N-S 2040 Cons."

2010 Lookup Table for Per Capita Residential Demand Rates - #20

<u>2010 Lookup</u>. Provides the applicable per capita rates by relevant Group Code for use in both the 2010 and 2040 No Conservation scenarios. The rates are derived from the results from the case PCWS systems, using the median values for each Group Code (excluding outlier values). Where results for a Group Code were unavailable or too sparse for an appropriate median, the results for another relevant Group Code were used. As shown in the worksheet, the result is that per capita demands could not be differentiated based on housing age, slope or precipitation. Only geophysical province and residential density were found to provide useable results.

2040 Lookup Table for Per Capita Residential Demand Rates, Conservation Scenario - #21

<u>2040 Lookup</u>. Provides the applicable per capita rates by relevant Group Code for use in the 2040 Conservation scenario. The scenario is discussed in <u>Residential Demand Scenarios</u>. The rates are derived from the results from the 2010 Lookup Table. These rates were modified using the Conservation scenario where rates were assumed to trend lower unless they were already at or below 35 gpcd, at which point they remained stable.

Per Capita Demand Estimates for Case PCWS Systems - #22

<u>gpcd for Case PCWS</u>. This table summarizes the 2010 per capital residential demands by development density for each PCWS system that provided residential demand data, for Annual, Summer and Non-Summer periods. These values are pasted from separate spreadsheets for each system, and those spreadsheets were derived from GIS analyses of the raw data using the methodology discussed in <u>Per Capital Residential Water Demands by Housing Category</u>.

The table also provides 2040 values for the Conservation scenario that are used in direct calculation of these demands for these systems only. The values are based on the methodology described in <u>Residential Demand Scenarios</u> in the same manner as for other PCWS systems, but using the actual values for each case PCWS system rather than the nominal values used for the other systems.

Water Needs through 2040 for New Jersey Public Community Water Supply Systems

Appendix C. PCWS System Demands Model Construction

The NJDEP 2040 Demands Model spreadsheet is multiple models within a single spreadsheet. The models are:

- <u>Case PCWS Systems Models</u> Developed only for systems for which useable data were provided, as discussed in <u>Evaluation of Current Water Demands</u>. Results are calculated for 2010, 2040 (No Conservation) and 2040 (Conservation) scenarios.
 - 1. **2010**: The residential demands are based on the calculated per capita rates using system-specific data. The commercial and industrial demands are based on either available data or estimates using relative commercial and industrial land uses. Water losses are based on available data or the application of values based on other systems for which water loss rates were available.
 - 2. **2040**: The residential demands as for the 2010 demands, but using population changes for 2040 (No Conservation Scenario). For the Conservation Scenario, the model applies modified per capita rates using the same assumptions on per capita rates as for other systems, as discussed in "2040 Conservation Scenario Calculated Model" below.
- <u>2010 Baseline Model</u> Calculated for all systems, including the case PCWS systems, using the 2010 Residential demands as discussed in Appendix B, and estimates of commercial and industrial demands based on either available data or estimates using relative commercial and industrial land uses. Water losses are based on available data or the application of values based on other systems for which water loss rates were available.
- <u>2040 No Conservation Scenario Calculated Model</u> Calculated for all systems, including the case PCWS systems, using the 2040 Residential demands as discussed in Appendix B. Commercial demands for 2010 were assumed to change proportional to changes in residential demands, and industrial demands were assumed to remain stable from 2010. Water losses are based on two scenarios (Nominal and Optimal), using the current median and 25th percentile results, respectively, from systems for which water loss rates were available.
- <u>2040 No Conservation Scenario Extrapolation Models</u> Two sets of three scenarios are used here. The first set uses the peak demands from the Water Supply Deficit/Surplus calculations of NJDEP for each system as the starting point (i.e., initial demands), while the second set uses as its starting point the average demands for 2008 to 2015 from the NJ Water Tracking model (NJWaTr) as provided by NJDEP in August 2017. Because the first set uses a peak year as its initial demand, it is likely to overestimate future average demands. The second set, being based on average demands, is likely to underestimate peak stresses in the future. Each has its value but also its limitations. For each set of models, there are three scenarios.
 - 1. Assumes that initial demands will increase or decrease proportionally to population change with no alteration of water losses.
 - 2. Applies the Nominal water loss values along with the effects of population change
 - 3. Applies the Optimum water loss values along with the effects of population change.

- <u>2040 Conservation Scenario Calculated Model</u> Calculated in the same manner as for the 2040 No Conservation Scenario Calculated Model except that the model applies modified per capita rates using assumptions as discussed in <u>Residential Demand Scenarios</u>.
- <u>2040 Conservation Scenario Extrapolation Models</u> These estimates are developed in the same manner as for the 2040 No Conservation Scenario Extrapolation Models. However, for each set of models, there are only two scenarios.
 - 1. Applies the Nominal water loss values along with the effects of population change
 - 2. Applies the Optimum water loss values along with the effects of population change.

Worksheet Explanations

Comparisons of All Model Results

<u>Model Comparisons</u>. This worksheet includes available information on PCWS system capacity and recent demands, and incorporates the results of all the modeling scenarios discussed above. By worksheet Column, the provided information is as follows:

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- D. **PWCS Data?** "Y" indicates that the PCWS system provided residential demand data used in the analysis.
- E. **Top 80% Cumulative Demand**. "Y" indicates that the PCWS system is among the largest systems in terms of total demand, not firm capacity. All of the indicated systems add to 80% of total supplied demand in Column G.
- F. Firm Capacity (MGD). As provided by NJDEP. Not all systems have available values.
- G. **Peak Annual D/S Demand (MGD)**. The highest annual demand in the last five completed years for which data were compiled by NJDEP. Most recent spreadsheet provided in May 2017. Not all systems have available values.

2010 Baseline Model Demands

- H. Baseline Model Demand (WL on D/S) (MGD). From worksheet 'Baseline Model' Column T.
- I. Baseline Model Demand (WL on NJWaTr) (MGD). From worksheet 'Baseline Model' Column U.

2040 No Change Scenarios

- J. Total Demand (Nominal WL) (MGD). From worksheet 'Baseline Model' Column AE.
- K. Total Demand (Optimum WL) (MGD). From worksheet 'Baseline Model' Column AG.

2040 Conservation Scenarios

- L. Total Demand (Nominal WL) (MGD). From worksheet 'Conservation Model' Column M.
- M. Total Demand (Optimum WL) (MGD). From worksheet 'Conservation Model' Column O.

2040 NC Scenario Extrapolations from D/S Demands

- N. Pop Change % X D/S Annual (MGD). From worksheet 'Baseline Model' Column AN.
- O. 2040 NC Change % (Nominal WL) X D/S Annual (MGD). From worksheet 'Baseline Model' Column AO.
- P. 2040 NC Change % (Optimal WL) X D/S Annual (MGD). From worksheet 'Baseline Model' Column AP.

2040 NC Scenario Extrapolations from NJWaTr Demands

- Q. Pop Change % X NJWaTr Avg (MGD). From worksheet 'Baseline Model' Column AQ.
- R. 2040 NC Change % (Nominal WL) X NJWaTr Avg (MGD). From worksheet 'Baseline Model' Column AR.
- S. 2040 NC Change % (Optimal WL) X NJWaTr Avg (MGD). From worksheet 'Baseline Model' Column AS.

2040 Cons Extrapolations from D/S Demands

- T. Model Change % (Nominal WL) X D/S Annual (MGD). From worksheet 'Conservation Model' Column W.
- U. Model Change % (Optimal WL) X D/S Annual (MGD). From worksheet 'Conservation Model' Column X.

2040 Cons Extrapolations from NJWaTr Demands

- V. Model Change % (Nominal WL) X NJWaTr (MGD). From worksheet 'Conservation Model' Column Y.
- W. Model Change % (Optimal WL) X NJWaTr (MGD). From worksheet 'Conservation Model' Column Z.

Baseline Models for 2010 and 2040 No Conservation Scenarios

<u>Baseline Model</u>. This worksheet includes available information on PCWS system capacity and recent demands, and calculates or provides the results of the case PCWS system and calculated modeling for 2010 and for 2040 No Conservation scenarios. By worksheet Column, the provided information is as follows:

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet

- A. **PWSID** #. The PWSID associated with the PCWS system
- B. **County**. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- D. **PWCS Data?** "Y" indicates that the PCWS system provided residential demand data used in the analysis.
- E. **Top 80% Cumulative Demand**. "Y" indicates that the PCWS system is among the largest systems in terms of total demand, not firm capacity. All of the indicated systems add to 80% of total supplied demand in Column G.
- F. Firm Capacity (MGD). As provided by NJDEP. Not all systems have available values.
- G. **Peak Annual D/S Demand (MGD)**. The highest annual demand in the last five completed years for which data were compiled by NJDEP. Most recent spreadsheet provided in May 2017. Not all systems have available values.

NJWaTr 2008-2015 Demands and Comparisons

- H. NJWaTr 2008-2015 Average Demand (MGD). Provided by NJDEP August 2017. Not all systems have available values.
- I. **Peak D/S NJWaTr Avg (MGD)**. Comparison of the demands in Columns G and H, with a positive indicating that the D/S peak annual demand is higher. A negative indicates that the 2008-2015 average is higher, which could be explained by high demands prior to 2012 (the most recent year included in the D/S spreadsheet) or inconsistencies in the demands included within the two spreadsheets.
- J. **Peak D/S NJWaTr Avg (% of Peak D/S)**. Column I expressed as a percentage of Column G. As can be seen, some values are highly positive or negative, indicating that additional analysis of the underlying data may be appropriate.

Estimated Water Losses-D/S Demand

K. Estimated Total Water Loss 2015 (MGD). From the worksheet 'WL Filled', Column P, based on a percentage of Column G.

L. Estimated Delivered Water 2015 (MGD). Column K subtracted from Column G. *Estimated Water Losses-NJWaTr Demand*

M. Estimated Total Water Loss 2015 (MGD). From the worksheet 'WL Filled', Column Q, based on a percentage of Column H.

N. Estimated Delivered Water 2015 (MGD). Column M subtracted from Column H. Summary Calculations for Initial Demand Scenarios

- O. RES 2010 (MGD). From worksheet 'PCWS 2010 RES' Column AJ.
- P. COMM 2010 (MGD). From worksheet '2010 COMM' Column I
- Q. IND 2010 (MGD). From worksheet 'INDUSTRIAL' Column J
- R. Baseline Model Demand (WL on D/S) (MGD). Sum of Columns K,O,P,Q
- S. **Baseline Model Demand (WL on NJWaTr) (MGD)**. Sum of Columns Q,P,O,M *Model v D/S Demand Comparison*
 - T. Baseline-D/S Demand (MGD). Column R subtracted from Column G

U. **Baseline-D/S Demand** (%). Column T as a percentage of Column G Model v NJWaTr Demand Comparison

- V. Baseline-NJWaTr Demand (MGD). Column S subtracted from Column H
- W. Baseline-NJWaTr Demand (%). Column V as a percentage of Column H
- X. Change in % Difference from D/S to NJWaTr. Column U subtracted from Column W. A negative indicates that the estimates based on NJWaTr are lower than those based on the D/S Demand as an initial value. See Column J for further notes.

2040 Annualized Water Demand Calculations Summary (No Change in Residential gpcd from 2010 Calculations)

- Y. RES 2040 (MGD). From worksheet 'PCWS 2040 RES NC Scenario' Column AJ
- Z. COMM 2040 (MGD). From worksheet '2040 COMM' Column E

AA. 2040 RIC Demand (MGD). Sum of Columns Y,Z,Q.

AB. Water Loss 2040 "Nominal Rates" (MGD). Back-calculation of water losses in MGD by subtracting RIC demand of Column AA from total demand of Column AC3 AC. 2040 Total Demand (Nominal WL) (MGD). Calculated by dividing Column AA by the fraction (1 minus the WL percentage from worksheet 'WL Filled' Column R) AD. Water Loss 2040 "Optimal System" (MGD). Back-calculation of water losses in MGD by subtracting RIC demand of Column AA from total demand of Column AE AE. 2040 Total Demand (Optimum WL) (MGD). Calculated by dividing Column AA by the fraction (1 minus the WL percentage from worksheet 'WL Filled' Column AE

Comparisons (Water Losses based on D/S Demands)

AF. Total Demand (Nominal WL) Change 2010 to 2040 (MGD). Column AC minus Column R. Column R demands incorporate water losses using a percentage of the D/S Demands, which will be different from water losses based on the same percentage of NJWaTr demands. Nominal Water Losses are used for this calculation. AG. Change from 2010 Totals (%) (Nominal WL) (MGD). Column AF divided by Column R as a percentage. High positive and negative percentages indicate greater change from the 2010 demands.

AH. **Total Demand (Optimal WL) Change 2010 to 2040 (MGD)**. Column AE minus Column R. Column R demands incorporate water losses using a percentage of the D/S Demands, which will be different from water losses based on the same percentage of NJWaTr demands. Optimal Water Losses are used for this calculation, and so generally the result is slight to major reductions in demand.

AI. Change from 2010 Totals (%) (Optimum WL). Column AH divided by Column R as a percentage. High positive and negative percentages indicate greater change from the 2010 demands.

AJ. Firm Capacity - 2040 Total (Nominal WL) (MGD). Column F minus Column AC, provided a measure of remaining Firm Capacity as of 2040 in this scenario.

AK. **2040 - D/S Annual (MGD)**. Column AC minus Column G. Indicates whether 2040 demands in this scenario are higher or lower than the current D/S peak demands. *Extrapolations from D/S Demands*

AL. **Pop Change % X D/S Annual (MGD)**. Straight population-based extrapolation of the D/S Demand to 2040. Column G plus Column G times Column O from worksheet 'PCWS Pop 2010-40'.

AM. **2040 NC Change % (Nominal WL) X D/S Annual (MGD)**. Extrapolation based on D/S Demands and the calculations of change using Nominal Water Loss rates. Column G plus Column G times Column AG.

AN. 2040 NC Change % (Optimal WL) X D/S Annual (MGD). Extrapolation based on D/S Demands and the calculations of change using Optimum Water Loss rates. Column G plus Column G times Column AI.

Extrapolations from NJWaTr 2008-2015 Average Demands

AO. **Pop Change % X NJWaTr Avg (MGD)**. Straight population-based extrapolation of the NJWaTr Demand to 2040. Column H plus Column H times Column O from worksheet 'PCWS Pop 2010-40'.

AP. **2040 NC Change % (Nominal WL) X NJWaTr Avg (MGD)**. Extrapolation based on NJWaTr Demands and the calculations of change using Nominal Water Loss rates. Column H plus Column H times Column AG.

AQ. 2040 NC Change % (Optimal WL) X NJWaTr Avg (MGD). Extrapolation based on NJWaTr Demands and the calculations of change using Optimum Water Loss rates. Column H plus Column H times Column AI.

2040 Seasonal Water Demand Calculations Summary (No Change in Residential gpcd from 2010 Calculations)

AR. **RES Non-Summer 2040 (MGD)**. From worksheet 'PCWS 2040 RES NC Scenario' Column AK

AS. COMM/IND Non-Summer 2040 (MGD). Sum of Columns Z+Q

AT. Water Loss Nominal Rates 2040 (MGD). Back-calculation of water losses by subtracting RIC demands (Columns Q+AR+AS) from total demand of Column AU.

AU. 2040 Non-Summer Demand (MGD). Calculated by dividing the sum of Columns AR+AS by the fraction (1 minus the WL percentage from worksheet 'WL Filled' Column R). This calculation uses Nominal Water Losses. AV. Firm Capacity - 2040 Non-Summer (MGD). Column F minus Column AU, provided a measure of remaining Firm Capacity as of 2040 in this scenario. AW. RES Summer 2040 (MGD). From worksheet 'PCWS 2040 RES NC Scenario' Column AL AX. COMM/IND Summer 2040 (MGD). Sum of Columns Z+Q AY. Water Loss Nominal Rates 2040 (MGD). Back-calculation of water losses by subtracting RIC demands (Columns Q+AW+AX) from total demand of Column AZ. AZ. 2040 Summer Demand (MGD). Calculated by dividing the sum (of Columns Q+AW+AX+Column AC of the worksheet 'PCWS 2040 RES NC Scenario') by the fraction (1 minus the WL percentage from worksheet 'WL Filled' Column R). This calculation uses Nominal Water Losses. The value from Column AC of the worksheet 'PCWS 2040 RES NC Scenario' is an estimate of tourism-driven summer demands. BA. Firm Capacity - 2040 Summer (MGD). Column F minus Column AZ.

2040 Conservation Scenario Models

<u>Conservation Model</u>. This worksheet includes available information on PCWS system capacity and recent demands, and calculates or provides the results of the case PCWS system and calculated modeling for the 2040 Conservation scenario. By worksheet Column, the provided information is as follows:

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet

- A. **PWSID** #. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. Name. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- D. **PWCS Data?** "Y" indicates that the PCWS system provided residential demand data used in the analysis.
- E. **Top 80% Cumulative Demand**. "Y" indicates that the PCWS system is among the largest systems in terms of total demand, not firm capacity. All of the indicated systems add to 80% of total supplied demand in Column G.
- F. Firm Capacity (MGD). As provided by NJDEP. Not all systems have available values.
- G. **Peak Annual D/S Demand (MGD)**. The highest annual demand in the last five completed years for which data were compiled by NJDEP. Most recent spreadsheet provided in May 2017. Not all systems have available values.
- H. NJWaTr 2008-2015 Average Demand (MGD). Provided by NJDEP August 2017. Not all systems have available values.

2040 Annualized Water Demand Calculations Summary (Residential gpcd Conservation Rates)

- I. RES 2040 (MGD). From worksheet 'PCWS 2040 RES Cons Scenario' Column AJ
- J. COMM 2040 (MGD). From worksheet '2040 COMM' Column E
- K. 2040 RIC Demand (MGD). Sum of I+J+Column Q from worksheet 'Baseline Model'
- L. Water Loss 2040 "Nominal Rates" (MGD). Back-calculation of water losses in MGD by subtracting RIC demand of Column K from total demand of Column M.

- M. **2040 Total Demand (Nominal WL) (MGD)**. Calculated by dividing Column K by the fraction (1 minus the WL percentage using worksheet 'WL Filled' Column R).
- N. Water Loss 2040 "Optimal System" (MGD). Back-calculation of water losses in MGD by subtracting RIC demand of Column K from total demand of Column O.

O. 2040 Total Demand (Optimum WL) (MGD). Calculated by dividing Column K by the fraction (1 minus the WL percentage using worksheet 'WL Filled' Column S).

Comparisons

- P. Change from 2010 Totals (Nominal WL) (MGD). Calculated by subtracting the 2010 demands (Column R from worksheet 'Baseline Model') from Column M.
- Q. Change from 2010 Totals (%) (Nominal WL). Column P divided by Column R from worksheet 'Baseline Model'.
- R. Change from 2010 Totals (MGD) (Optimal WL). Calculated by subtracting the 2010 demands (Column R from worksheet 'Baseline Model') from Column O.
- S. Change from 2010 Totals (%) (Optimal WL). Column R divided by Column R from worksheet 'Baseline Model'.
- T. **2040 Reductions from No Change to Cons (Optimal WL)**. Column O from the worksheet 'Conservation Model'! minus Column AE from the worksheet 'Baseline Model'.
- U. Firm Capacity 2040 Cons Total (Nominal WL) (MGD). Column F minus Column M.
- V. D/S Annual -2040 Cons (MGD). Column G minus Column M.
- 2040 Cons Extrapolations from D/S Demands
 - W. Model Change % (Nominal WL) X D/S Annual (MGD). Extrapolation based on D/S Demands and the calculations of change using Nominal Water Loss rates. Column G plus Column G times Column Q.
 - X. Model Change % (Optimal WL) X D/S Annual (MGD). Extrapolation based on D/S Demands and the calculations of change using Optimum Water Loss rates. Column G plus Column G times Column S.

2040 Cons Extrapolations from NJWaTr Demands

- Y. Model Change % (Nominal WL) X NJWaTr (MGD). Extrapolation based on NJWaTr Demands and the calculations of change using Nominal Water Loss rates. Column H plus Column H times Column Q.
- Z. Model Change % (Optimal WL) X NJWaTr (MGD). Extrapolation based on NJWaTr Demands and the calculations of change using Optimal Water Loss rates. Column H plus Column H times Column S.

2040 Seasonal Water Demand Calculations Summary (Residential gpcd Conservation Rates)
 AA. RES Summer 2040 (MGD). From worksheet 'PCWS 2040 RES Cons Scenario'
 Column AK

AB. **COMM/IND Non-Summer 2040 (MGD)**. Column J plus Column Q from worksheet 'Baseline Model'

AC. Water Loss Nominal Rates 2040 (MGD). Back-calculated as Column AD minus the sum of Columns AA+AB.

AD. **2040 Non-Summer Demand (MGD)**. Calculated by dividing sum of Columns AA+AB by the fraction (1 minus the WL percentage using worksheet 'WL Filled' Column R).

AE. Firm Capacity -2040 Non-Summer (MGD). Column F minus Column AD. AF. RES Summer 2040 (MGD). From worksheet 'PCWS 2040 RES Cons Scenario' Column AL. AG. **COMM/IND Summer 2040 (MGD)**. Value from Column AB.

AH. Water Loss Nominal Rates 2040 (MGD). Back-calculated as Column AI minus the sum of Columns AF+AG.

AI. **2040 Summer Demand (MGD)**. Calculated by dividing sum of Columns AF+AG by the fraction (1 minus the WL percentage using worksheet 'WL Filled' Column R). AJ. **Firm Capacity - 2040 Summer (MGD)**. Column F minus Column AI.

Table of PCWS System Populations for 2010 and 2040

<u>PCWS Pop 2010-2040</u>. This table provides the results of the dasymetric analysis of populations by PCWS system and development density. Values are available only for those PCWS systems that have been mapped by NJDEP as of June 2017. By worksheet Column, the provided information is as follows:

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet

- A. **PWSID** #. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- D. **PWCS Data?** "Y" indicates that the PCWS system provided residential demand data used in the analysis.
- E. **PWID**. Where a value is shown, it matches the PWSID in Column A and indicates that a mapped service area existed and therefore the dasymetric analysis was feasible for the system. All other PCWS systems are blank from Column E through S.
- F. **HD Total**. High Density Residential population estimate for 2010.
- G. MD Total. Medium Density Residential population estimate for 2010.
- H. LD Total. Low Density Residential population estimate for 2010.
- I. 2010 TOTAL. Total population for the PCWS System in 2010.
- J. HD Total. High Density Residential population estimate for 2040.
- K. MD Total. Medium Density Residential population estimate for 2040.
- L. LD Total. Low Density Residential population estimate for 2040.
- M. 2010 TOTAL. Total population for the PCWS System in 2040.
- N. Change. Change in total population (2040 minus 2010).
- O. % Change. Change based on Column N as a percent of Column I.
- P. HD Pop Change. Change in High Density population (2040 minus 2010).
- Q. MD Pop Change. Change in Medium Density population (2040 minus 2010).
- R. LD Pop Change. Change in Low Density population (2040 minus 2010).
- S. LD %. Low Density population as a percent of total population in 2010. Column H as a percent of Column I.

Residential Demands by PCWS System for 2010 Baseline Model

<u>PCWS 2010 RES</u>. This worksheet includes two modeling approaches for 2010 residential demands. One applies only to the case PCWS systems and uses the per capita residential rates derived from their residential demand data to calculate demands. The other uses the information from the "Model RES 2010_2040 Demands 2017.08.01" spreadsheet discussed in Appendix B. The results of the PCWS 2010 RES worksheet are used in the Baseline Model worksheet. By worksheet Column, the provided information is as follows:

PCWS System Listing from NJDEP Water Supply Deficit/Surplus Spreadsheet

- A. **PWSID** #. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- D. **PWSID Check**. This column is included to ensure that the results of Columns E through G (from the "Model RES 2010_2040 Demands 2017.08.01" spreadsheet) are properly associated with the value in Column A. Where there is no listing in Column D, no information was available from the "Model RES 2010_2040 Demands 2017.08.01" spreadsheet, for the reasons discussed in Appendix B.
- Based on Calculated Residential gpcd Rates from Purveyor Data
 - H J; N O; T V. **Case PCWS Per Capita Rates**. For case PCWS only, the values shown are per capita residential demand rates (gpcd) from the analysis of their system demand data, for High, Medium and Low density residential, respectively. Annual, Non-Summer and Summer rates are shown.
 - K M; Q S; W Y. Case PCWS Residential Density-Related Demands. For case PCWS only, the values shown are the relevant per capita residential demand rates (gpcd) for High, Medium and Low density residential, respectively, multiplied by the relevant 2010 population for the system, for Annual, Non-Summer and Summer demands.
 - Z AB. **Case PCWS Total Demands**. For case PCWS only, the values shown are sum of demands for High, Medium and Low density residential, as Annual, Non-Summer and Summer.
 - AC. Seasonal Component (MGD). PCWS systems with a major component of their service areas along the Atlantic Ocean coast have distinctive demand patterns driven by summer tourism, both residential and commercial. The spreadsheet "Seasonal Coastal Users Demand Factors" provides an analysis of the extent to which increased summer demands exceed the ratios normally associated with summer to non-summer demands, resulting in a "Seasonal Component" of demand that is listed in this column.
- Totals Based on Calculated Demands
 - AD. **Total Annual Demand (MGD)**. If Column Z=0, then this column is the sum of Columns E+AC (the generic model demand plus the Seasonal Component); otherwise it is the sum of Columns Z+AC (the case PCWS demand plus the Seasonal Component) for Annual Demands.
 - AE. **Total Non-Summer Demand (MGD)**. Likewise, if Column AA=0, then this column has the value of Column F (the Seasonal Component is not relevant to Non-Summer demands); otherwise it is Column AA (the case PCWS demand) for Non-Summer Demands.
 - AF. **Total Summer Demand (MGD)**. Likewise, if Column AB=0, then this column is the sum of Columns G+AC (the generic model demand plus the Seasonal Component); otherwise it is the sum of Columns AB+AC (the case PCWS demand plus the Seasonal Component) for Summer Demands.

Totals Based on D/S Demands. There are PCWS systems where no demands could be calculated due to the lack of GIS-based service areas and other key data. In these cases, the peak annual demand from the D/S spreadsheet is used as a surrogate demand.

- AG. Total Annual Demand (MGD). If Column AD=0, then the value from the worksheet 'DeficitSurplus 2017' Column K is used. Otherwise, the value FALSE is logged.
- AH. **Total Non-Summer Demand (MGD)**. If Column AE=0, then the value from the worksheet 'DeficitSurplus 2017' Column K is used. Otherwise, the value FALSE is logged.
- AI. Total Summer Demand (MGD). If Column AF=0, then the value from the worksheet 'DeficitSurplus 2017' Column K is used. Otherwise, the value FALSE is logged.
- Applicable Totals
 - AJ. Total Annual Demand (MGD). If Column AD is >0, then the AD value is shown; otherwise the Column AG value is shown.
 - AK. **Total Non-Summer Demand (MGD)**. If Column AE is >0, then the AE value is shown; otherwise the Column AH value is shown.
 - AL. **Total Summer Demand (MGD)**. If Column AF is >0, then the AF value is shown; otherwise the Column AI value is shown.

Residential Demands by PCWS System for 2040 No Conservation Scenario

<u>PCWS 2040 RES NC Scenario</u>. This spreadsheet is structured the same as the worksheet 'PCWS 2010 RES', but uses 2040 population estimates. All other factors and equations are the same as 'PCWS 2010 RES'.

Residential Demands by PCWS System for 2040 Conservation Scenario

<u>PCWS 2040 RES Cons Scenario</u>. This spreadsheet is structured the same as the worksheets 'PCWS 2010 RES' and 'PCWS 2040 RES NC Scenario', but uses 2040 population estimates and conservation rates for per capita residential demands. All other factors and equations are the same as the prior two worksheets.

Land Uses of Water Supply Service Areas

<u>WSSA LU</u>. The values in this worksheet were derived in GIS from the PCWS Service Area information provided to Rutgers by NJDEP, with the latest version being June 2017. The service area mapping is not complete and therefore is not a publicly available product. By worksheet Column, the provided information is as follows:

- C. **PWSID #**. The PWSID associated with the PCWS system
- D. County. The primary county for the PCWS system as listed by NJDEP
- E. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez)
- F. **PWSID Check**. This column is included to ensure that the results of Columns G through X are properly associated with the value in Column C. Where there is no listing in Column G, no information was available for land uses in the PCWS service area, for the reasons discussed in Appendix B.
- G. **PCWS Acres**. Total acres in the PCWS service area for all types of land use and undeveloped areas.
- H. **1110 HDR Acres**. Total acres of High Density Residential (Anderson Code 1110) within the PCWS service area.
- I. **1110 HDR %**. Column H as a percentage of Column G.

- J. **1120 MDR Acres**. Total acres of Medium Density Residential (Anderson Code 1120) within the PCWS service area.
- K. 1120 MDR %. Column J as a percentage of Column G.
- L. **1130 LDR Acres**. Total acres of Low and Rural Density Residential (Anderson Codes 1130 and 1140) within the PCWS service area.
- M. 1130 LDR %. Column L as a percentage of Column G.
- N. **1200 COMM**. Total acres of Commercial land use (Anderson Code 1200) within the PCWS service area.
- O. **1200 C %.** Column N as a percentage of Column G.
- P. **1300 IND**. Total acres of Industrial land use (Anderson Code 1300) within the PCWS service area.
- Q. 1300 IND %. Column P as a percentage of Column G.
- R. **Total Acres**. Total acres in the PCWS service area for developed land uses only, from Columns H, J, L, N and P.
- S. Total %. Column R as a percentage of Column G.
- T. Comm/Res Ratio. Column N divided by the sum of Columns H, J and L.
- U. **<=2% Commercial**. Y or N value regarding whether Column O is equal to or less than 2%.
- V. **<=6% Commercial**. Y or N value regarding whether Column O is equal to or less than 6%.
- W. >6% Commercial. Y or N value regarding whether Column O is greater than 6%.
- X. **<=2% Industrial**. Y or N value regarding whether Column Q is equal to or less than 2%.

Commercial Demands 2010

<u>2010 COMM</u>. This worksheet calculates estimated Commercial demands based on the relative PCWS service area within Commercial land use, as provided in the worksheet 'WSSA LU.' The equations used for Commercial demands are discussed in <u>Commercial and Industrial Demands</u> under the section <u>Extrapolation to Other PCWS Systems</u>. By worksheet Column, the provided information is as follows:

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez).
- D. **Purveyor Provided** %. Some purveyors provided information on the percent of total demand that is metered to Commercial Customers. These values are used here.
- E. **COMM Purveyor**. Equal to Column D times Column L of the worksheet 'Baseline Model', which is the estimated delivered water for the PCWS system. In some cases, the PCWS system provided actual Commercial demand, which is noted here without a corresponding value in Column D.
- F. **<=2% Commercial**. If Column U from worksheet 'WSSA LU' is "Y", then the value is zero (0). Otherwise, the value is "NA". The model assigns no Commercial demand if the Commercial land use percentage is less than 2%.
- G. <=6% Commercial. If Column V from worksheet 'WSSA LU' is "Y" then the value here is the 2010 Residential demand from Column AD of worksheet 'PCWS 2010 RES' divided by 5. Otherwise, the value is NA.

- H. **>6% Commercial**. If Column W from worksheet 'WSSA LU' is "Y" then the value here is the 2010 Residential demand from Column AD of worksheet 'PCWS 2010 RES' divided by 2.5. Otherwise, the value is NA.
- I. **COMM (MGD)**. This column enters either Column E if greater than zero (0) or the maximum value in Columns F, G and H. This value also is shown as Column P in the worksheet 'Baseline Model'.

Commercial Demands 2040

<u>2040 COMM</u>. This worksheet calculates the 2040 Commercial demand estimates as the 2010 demand times the percent change in population, for both the No Conservation and Conservation scenarios. By worksheet Column, the provided information is as follows:

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. **County**. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez).
- D. %Pop Change 2010-2040. From Column O of worksheet 'PCWS Pop 2010-40'.
- E. **2040 COMM NC Demand (MGD)**. Calculated as the 2010 Commercial demand (Column P of worksheet 'Baseline Model') plus that value times Column D. The assumption is that Commercial demand is linear with changes in population.
- F. **2040 COMM Cons Demand (MGD)**. Calculated as Column E times 0.9 to reflect a 10% reduction in demand due to conservation.

Industrial Demands

<u>INDUSTRIAL</u>. This worksheet calculates estimated Industrial demands based on the relative PCWS service area within Industrial land use, as provided in the worksheet 'WSSA LU.' The equations used for Industrial demands are discussed in <u>Commercial and Industrial Demands</u> under the section <u>Extrapolation to Other PCWS Systems</u>. By worksheet Column, the provided information is as follows:

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. Name. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez).
- D. **Purveyor Provided** %. Some purveyors provided information on the percent of total demand that is metered to Industrial customers. These values are used here.
- E. **IND 2010 Purveyor**. Equal to Column D times Column L of the worksheet Baseline Model', which is the estimated delivered water for the PCWS system. In some cases, the PCWS system provided actual Industrial demand, which is noted here without a corresponding value in Column D.
- F. <=2% Industrial. Inserts Column X from worksheet 'WSSA LU' as "Y" or "N".
- G. %IND Land. Inserts Column Q from worksheet 'WSSA LU' as a percentage
- H. **Imputed % IND**. Calculates an industrial demand factor for any PCWS where Column F is "Y". The value is equal to "0.01+((G2-0.02)*2.375)".
- I. Imputed IND (MGD). Column H2 times Column G in the worksheet 'Baseline Model'.
J. **IND Demand (MGD)**. This column enters either Column E if greater than zero (0) or Column I. This value also is shown as Column Q in the worksheet 'Baseline Model'.

Water Losses Values for 2010 and 2040 Models

<u>WL Filled</u>. This worksheet is based on the next worksheet, 'WL Analysis' and has many of the same fields. However, this worksheet includes estimated water losses for all systems that lack direct information. By worksheet Column, the provided information is as follows:

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. County. The primary county for the PCWS system as listed by NJDEP
- C. Name. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez).
- D. Total Limits (MGM). From Column I of worksheet 'D_S 2017'.
- E. System Size: L (>=300MGM); M (>=30MGM); S (<30MGM). Based on Column D.
- F. **Baseline WL (%) Reported**. Percentage water losses as reported. No value is shown for PCWS systems that did not report recent estimates to NJDEP or the Delaware River Basin Commission. Problematic values are highlighted in orange.
- G. Year Reported. Most recent year for water loss estimate.
- H. **PWCS Data?** "Y" indicates that a case PCWS provided demand data. From Column D of 'Baseline Model'.
- I. UAW or NRW Method. As relevant.
- J. Peak Annual D/S Demand (MGD). From Column G of 'Baseline Model'.
- K. NJWaTr Average Demand. From Column H of 'Baseline Model'.
- L. **Topography: CP=Coastal Plain; BR=Bedrock**. Based on predominant location of the PCWS service area.
- M. 2010 WL (%) for Model. For PCWS systems that reported values to NJDEP or DRBC, the value in Column F is used except for highlighted values, where the 25th percentile value is substituted. For all other PCWS systems, a value is Assigned based on a table of median water losses, by Topography and System Size.
- N. Basis. Recent Estimate, 25th Percentile or Assigned.
- O. Total UAW/NRW (D/S Demands). Column M times Column J.
- P. Total UAW/NRW (NJWaTr Demands). Column M times Column K.
- Q. 2040 WL Nominal Value (%). "Business as Usual" percentage. Discussed in <u>Water</u> Loss Projections.
- R. 2040 WL "Optimum System" Value (%). "Aggressive Water Loss Reduction" percentage. Discussed in <u>Water Loss Projections</u>.

Water Losses Analysis

<u>WL Analysis</u>. This worksheet uses available information from NJDEP and the Delaware River Basin Commission to develop Water Loss percentages to use for systems lacking recent Water Loss estimates, and as a basis for assumed 2040 water losses. The worksheet includes all PCWS, but only those with Water Loss information (228 of 584 systems) are shown. By worksheet Column, the provided information is as follows:

- A. **PWSID #**. The PWSID associated with the PCWS system
- B. **County**. The primary county for the PCWS system as listed by NJDEP
- C. **Name**. The PCWS system name as listed by NJDEP (with limited modifications to update names, such as from United Water to Suez).
- D. Total Limits (MGM). From Column I of worksheet 'D_S 2017'.
- E. System Size: L (>=300MGM); M (>=30MGM); S (<30MGM). Based on Column D.
- F. **Baseline WL (%) Reported**. Percentage water losses as reported. Problematic values are highlighted in orange.
- G. Year Reported. Most recent year for water loss estimate.
- H. UAW or NRW Method. As relevant.
- I. Annual Demand Per NJDEP D/S (MGD). From Column G of 'Baseline Model'.
- J. **Topography: CP=Coastal Plain; BR=Bedrock**. Based on predominant location of the PCWS service area.
- K. **2010 WL (%) for Model**. The value in Column F is used except for highlighted values, where the 25th percentile value is substituted.
- L. **Basis**. Recent Estimate or 25th Percentile.
- M. Comments. Used to capture ILI values were available.
- N. Total UAW/NRW. Column K times Column I.
- O. Assumed Real Losses (82%). Column O times 0.82, based on DRBC findings that "real" losses are 82% of total losses, on weighted average.

NJDEP May 2017 Water Supply Deficit/Surplus Spreadsheet

<u>D S 2017</u>. This spreadsheet is a direct copy of the spreadsheet provided by NJDEP. One value (Column O for Garfield City Water Department, PWSID 0221001) was corrected with information confirmed by the NJDEP Bureau of Water Allocation. Some names were updated, especially from United Water to Suez New Jersey (Suez-NJ).

Appendix D. Case PCWS System Per Capita Residential Rates and Seasonal Ratios

The following pages show paired figures of per capita residential demand rates (gpcd) and seasonal ratios for thirteen case PCWS systems. The figures are followed by tables of per household and per capita residential water demands for all the case study PCWS systems.

Page | 130

NJ0324001, Mount Laurel Municipal Utilities Authority

NJ0327001, New Jersey American Water – Delaware Division (also known as Western Division)

Page | 135

Page | **136**

Page | **138**

Water Needs through 2040 for New Jersey Public Community Water Supply Systems Mount Laurel MUA (PWSID 0324001)

Year Long Users												
	Density	01/08-09/08	10/08-09/09	10/09-09/10	10/10-09/11	10/11-09/12	10/12-09/13	10/13-09/14	10/14-09/15	Average		
	high	14,502	14,502	14,502	14,502	14,502	14,502	14,502	14,502	14,502		
Population 13-14	medium	20,171	20,171	20,171	20,171	20,171	20,171	20,171	20,171	20,171		
	low	4,419	4,419	4,419	4,419	4,419	4,419	4,419	4,419	4,419		
Average Annual Use	high	259,122	329,229	329,230	329,143	322,553	313,301	298,906	300,834	321,087		
(1000 gallon)	medium	429,275	473,093	528,029	517,490	496,261	429,260	424,600	457,019	487,265		
(2000 84)	low	179,828	177,673	221,862	212,862	202,249	158,162	170,421	187,963	196,370		
Average Annual Per	high	23,888.73	22,701.60	22,701.67	22,695.64	22,241.25	21,603.31	20,610.66	20,743.61	22,148		
Capita	medium	28,454.02	23,454.43	26,177.97	25,655.46	24,602.99	21,281.31	21,050.31	22,657.54	24,167		
	low	54,413.16	40,210.22	50,211.04	48,174.07	45,772.17	35,794.73	38,568.96	42,539.09	44,460		
Average Annual Per	high	65.45	62.20	62.20	62.18	60.93	59.19	56.47	56.83	60.68		
Capita Per Day	medium	77.96	64.26	71.72	70.29	67.41	58.30	57.67	62.08	66.21		
	low	149.08	110.16	137.56	131.98	125.40	98.07	105.67	116.55	121.81		
Average Summer Use	high	120,865	110,789	119,476	120,416	115,290	108,824	102,754	106,752	113,146		
(1000 gallon)	medium	266,013	191,075	272,517	253,183	244,594	184,181	187,248	218,748	227,195		
(8,	low	126,217	81,631	137,052	119,513	116,214	74,582	90,190	104,929	106,291		
Average Summer Use	high	8,334	7,639	8,238	8,303	7,950	7,504	7,085	7,361	7,802		
Per Capita	medium	13,188	9,473	13,510	12,552	12,126	9,131	9,283	10,845	11,264		
	low	28,565	18,475	31,017	27,048	26,301	16,879	20,411	23,747	24,055		
Average Summer Use	high	68.31	62.62	67.53	68.06	65.16	61.51	58.08	60.34	63.95		
Per Capita Per Day	medium	108.10	77.65	110.74	102.89	99.39	74.85	76.09	88.89	92.32		
,	low	234.14	151.43	254.24	221.70	215.58	138.35	167.31	194.65	197.18		
Average NonSummer	high	138,258	218,440	209,754	208,727	207,263	204,478	196,152	194,082	210,970		
Use (1000 gallon)	medium	163,262	282,018	255,512	264,307	251,667	245,079	237,353	238,271	258,510		
	low	53,612	96,041	84,810	93,348	86,035	83 <i>,</i> 580	80,231	83,034	87,948		
Average NonSummer	high	15,342	15,062	14,463	14,393	14,292	14,099	13,525	13,383	14,320		
Use Per Capita	medium	13,025	13,982	12,667	13,103	12,477	12,150	11,767	11,813	12,623		
•	low	19,526	21,736	19,194	21,126	19,471	18,916	18,158	18,792	19,615		
Avreage NonSummer	high	63.13	61.98	59.52	59.23	58.81	58.02	55.66	55.07	58.93		
Use Per Capita Per	medium	53.60	57.54	52.13	53.92	51.34	50.00	48.42	48.61	51.95		
Day	low	80.35	89.45	78.99	86.94	80.13	77.84	74.72	77.33	80.72		
Ratio of Summer	high	108.2%	101.0%	113.5%	114.9%	110.8%	106.0%	104.3%	109.6%	108.5%		
to NonSummer Use	medium	201.7%	135.0%	212.4%	190.8%	193.6%	149.7%	157.1%	182.9%	177.9%		
Per Capital Per Day	10W	291.4%	169.3%	321.9%	255.0%	269.0%	1/7.7%	223.9%	251.7%	245.0%		
DramidD Count	nign	7,865	7,865	7,865	7,865	7,865	7,865	7,865	7,865	7,865		
Premisid Count	mearum	6,463	6,463	0,403	0,403	0,403	0,403	0,403	6,463	6,463		
	IOW	2,282	2,282	2,282	2,282	2,282	2,282	2,282	2,282	2,282		
Average Annual Use	modium	52,945	41,059	41,659 91,606	41,646	41,010	66 / 15	56,005	70 710	40,560		
Per PremisID	low	78 806	75,190	07,090	02,005	70,781	60,415	74 692	70,710	75,508		
	high	120.68	114.69	97,220	95,262	112.26	100 12	104 12	104 79	03,330		
Average Annual Use	medium	2/13 20	200.54	222.82	210.36	210.36	109.13	104.12	104.79	201		
Per PremisID Per Day	low	243.23	200.34	223.02	219.50	210.30	181.90	204.61	225.67	201		
	high	15 367	14.086	15 190	15 310	14 658	13 836	13 064	13 573	14 245		
Average Summer Use	medium	13,307	29 563	13,130	29 172	27 8/12	28 496	28 071	23 8//	3/ 202		
Per PremisID	low	55 312	25,505	60.060	52 37/	50 928	32 684	39 5 24	/5 983	45 332		
	high	125.96	115.46	124 51	125.49	120 15	113 41	107.08	111 25	43,332		
Average Summer Use	medium	227.35	242 32	345.60	321 08	310.19	233 58	237.47	277 41	281		
Per PremisID Per Day		A22 27	242.52	297 30	429.30	<u>417 44</u>	255.58	237.47	276.01	201		
	high	17 578	233.22	26 669	26 538	26 352	25,998	24 939	24 676	26 135		
Average NonSummer	medium	25 260	43 633	39 533	40.893	38.938	37 918	36 723	36 865	39 215		
Use Per PremisID	low	23,200	42 088	37 166	40,000	37 703	36.627	35,159	36 388	38.006		
Average NonSummer	high	116	114	110	10,308	108	107	103	102	108		
Use Per PremisID Per	medium	167	180	163	168	160	156	151	152	161		
Dav	low	156	173	153	168	155	151	145	150	156		

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Ava			
	high	264.791	264.791	265.933	264.791	264.791	264.791	264.982			
Population	medium	710	710	710	710	710	710	710			
	low	2	2	2	2	2	2	2			
A	high	6,010,772	6,239,865	6,078,380	5,983,167	5,868,240	5,966,035	6,024,410			
Average Annual Use	medium	28,697	28,868	28,656	27,424	26,700	27,156	27,917			
(10005)	low	80	56	59	148	29	31	67			
	high	22,700.03	23,565.21	22,856.84	22,595.78	22,161.75	22,531.08	22,735.12			
Average Annual Use	medium	40,411.86	40,652.67	40,354.12	38,619.19	37,599.63	38,241.78	39,313.21			
	low	33,980.82	23,786.58	25,060.86	62,864.52	12,318.05	13,167.57	28,529.73			
Average Appual Per	high	62.19	64.56	62.62	61.91	60.72	61.73	62.29			
Capita Per Dav	medium	110.72	111.38	110.56	105.81	103.01	104.77	107.71			
	low	93.10	65.17	68.66	172.23	33.75	36.08	78.16			
Average Summer Use	high	2,006,443	2,167,693	2,124,154	2,105,536	2,077,907	2,067,024	2,091,460			
('1000s)	medium	10,499	12,467	11,815	10,502	10,363	10,018	10,944			
(10000)	low	20	15	11	39	9	12	18			
Average Summer Use	high	7,577	8,186	7,988	7,952	7,847	7,806	7,893			
Average Summer Use Per Capita	medium	14,785	17,556	16,638	14,789	14,593	14,108	15,412			
	low	8,495	6,371	4,672	16,566	3,823	5,097	7,504			
Average Summer Use	high	62.11	67.10	65.47	65.18	64.32	63.99	64.69			
Per Capita Per Day	medium	121.19	143.90	136.38	121.22	119.62	115.64	126.32			
. ,	low	69.63	52.22	38.30	135.78	31.33	41.78	61.51			
Average NonSummer	high	4,004,329	4,072,172	3,954,226	3,877,631	3,790,333	3,899,011	3,932,950			
Use ('1000s)	medium	18,198	16,401	16,841	16,922	16,337	17,138	16,973			
. ,	low	60	41	48	109	20	19	50			
Average NonSummer Use Per Capita	high	15,123	15,379	14,869	14,644	14,314	14,725	14,842.34			
	medium	25,627	23,096	23,716	23,830	23,006	24,134	23,901.58			
	low	25,486	17,415	20,388	46,299	8,495	8,070	21,025.63			
Avreage NonSummer	high	62.23	63.29	61.19	60.26	58.91	60.60	61.08			
Use Per Capita Per Day	medium	105.46	95.05	97.60	98.07	94.68	99.32	98.36			
	low	104.88	/1.6/	83.90	190.53	34.96	33.21	86.53			
Ratio of Summer to	high	100%	106%	107%	108%	109%	106%	106%			
NonSummer	medium	115%	151%	140%	124%	126%	116%	129%			
	IOW	25.000	73%	46%	71%	90%	126%	79%			
PromicID Count	nign	25,800	27,943	27,081	27,277	27,425	27,511	27283			
	low	211	211	211	210	209	208	210			
	low	1	1	210 597	210 249	212 074	216.960	220 010			
Average Annual Use	modium	126 005	126 915	125 910	120 500	127 751	120 559	122 022			
Per PremisID	low	20,000	56,000	50,000	1/12 000	20,000	21 000	67 167			
	high	636.91	611.20	601.61	140,000 600 Q5	526 22	50/ 1/	605.26			
Average Annual Use	medium	372.62	27/ 2/	372 08	257 72	350.23	357.60	26/ 17			
Per PremisID Per Day	low	219 18	153 //2	161.64	/05 /8	79.45	207.03 8/1 Q3	18/1 02			
	high	77 589	77 576	76 737	77 191	75.45	75 134	76 666			
Average Summer Use	medium	49 758	59 085	55 995	50 010	49 584	48 163	52 099			
Per PremisID	low	20,000	15 000	11 000	39,000	9,000	12 000	17 667			
	high	635.97	635.86	628.99	632.71	621.04	615.86	628			
Average Summer Use	medium	407.85	484.31	458.98	409.91	406.42	394.78	427			
Per PremisiD Per Day	low	163.93	122.95	90.16	319.67	73.77	98.36	145			
	high	154.846	145.731	142.850	142.158	138.207	141.726	144.253			
Average NonSummer	medium	86.246	77.730	79.815	80.581	78.167	82.394	80.822			
Use Per PremisID	low	60.000	41.000	48.000	109.000	20.000	19.000	49.500			
Average NonSummer	high	637	600	588	585	569	583	594			
Use Per PremisID Per	medium	355	320	328	332	322	339	333			
Day	low	247	169	198	449	82	78	204			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Atlantic (PWSID 0119002)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high	17,239	17,239	17,239	17,239	17,239	17,239	17,239			
Population 13-14	medium	85,777	85,777	85,818	85,831	85,853	85,853	85,818			
	low	9,884	9,989	9,986	9,994	10,038	10,087	9,996			
Average Annual Lise	high	2,688,580	2,787,150	2,730,850	2,615,550	2,614,890	2,581,926	2,669,824			
(100 gallon)	medium	19,558,400	21,959,790	20,417,300	19,411,547	18,410,020	18,519,780	19,712,806			
(,	low	2,774,080	3,047,440	2,859,790	2,713,680	2,599,650	2,647,490	2,773,688			
Average Annual Per	high	15,595.52	16,167.29	15,840.71	15,171.90	15,168.07	14,976.86	15,487			
Capita	medium	22,801.41	25,600.98	23,791.35	22,616.11	21,443.66	21,571.50	22,971			
	low	28,067.26	30,509.26	28,639.05	27,153.72	25,898.92	26,246.45	27,752			
Average Annual Per	high	43	44	43	42	42	41	42			
Capita Per Dav	medium	62	70	65	62	59	59	63			
	low	77	84	78	74	71	72	76			
	high	958,690	1,032,190	1,001,150	953,880	936,390	891,146	962,241			
Average Summer Use	medium	8,577,010	11,181,790	9,943,140	9,008,970	8,209,020	8,155,320	9,179,208			
	low	1,165,040	1,486,980	1,307,100	1,200,420	1,113,660	1,031,220	1,217,403			
Average Summer Use	high	5,561.03	5,987.38	5,807.32	5,533.13	5,431.67	5,169.23	5,582			
Per Capita	medium	9,999.18	13,035.86	11,586.29	10,496.22	9,561.72	9,499.17	10,696			
	low	11,787.50	14,886.81	13,089.81	12,011.69	11,094.80	10,223.22	12,182			
Average Summer Lise	high	46	49	48	45	45	42	46			
Per Capita Per Dav	medium	82	107	95	86	78	78	88			
	low	97	122	107	98	91	84	100			
Average NonSummer	high	1,729,890	1,754,960	1,729,700	1,661,670	1,678,500	1,690,780	1,707,583			
Use	medium	10,981,390	10,778,000	10,474,160	10,402,577	10,201,000	10,364,460	10,533,598			
	low	1,609,040	1,560,460	1,552,690	1,513,260	1,485,990	1,616,270	1,556,285			
Average NonSummer	high	10,034.49	10,179.91	10,033.39	9,638.77	9,736.40	9,807.63	9,905			
Use Per Capita	medium	12,802.23	12,565.12	12,205.06	12,119.89	11,881.94	12,072.33	12,274			
•	low	16,279.75	15,622.45	15,549.24	15,142.04	14,804.12	16,023.23	15,570			
Avreage NonSummer	high	41	42	41	40	40	40	41			
Use Per Capita Per Day	medium	53	52	50	50	49	50	51			
	low	67	64	64	62	61	66	64			
Ratio of Summer	high	110%	117%	115%	114%	111%	105%	112%			
to NonSummer Use	medium	156%	207%	189%	172%	160%	157%	173%			
Per Capital Per Day	low	144%	190%	168%	158%	149%	127%	156%			
	high	5,263	5,263	5,263	5,263	5,263	5,263	5,263			
PremisiD Count	medium	24,415	24,415	24,415	24,415	24,415	24,415	24,415			
	low	3,473	3,473	3,473	3,473	3,473	3,473	3,473			
Average Annual Use	high	51,085	52,957	51,888	49,697	49,684	49,058	50,728			
Per PremisID	medium	80,108	89,944	83,626	/9,50/	75,405	75,854	80,741			
	IOW	/9,8/6	87,747	82,344	/8,136	/4,853	76,231	79,864			
Average Annual Use	high	139.96	145.09	142.16	136.16	136.12	134.41	139			
Per PremisID Per Day	medium	219.47	246.42	229.11	217.83	206.59	207.82	221			
	10W	218.84	240.40	225.60	214.07	205.08	208.85	219			
Average Summer Use	nign	18,216	19,612	19,022	18,124	17,792	16,932	18,283			
Per PremisID	meaium	35,130	45,799	40,726	36,899	33,623	33,403	37,597			
	IOW	33,546	42,815	37,636	34,564	32,066	29,692	35,053			
Average Summer Use	nign	149.31	160.76	155.92	148.56	145.84	138.79	150			
Per PremisID Per Day	meaium	287.95	375.40	333.82	302.45	275.60	2/3.79	308			
	iOW	274.90	350.95	308.49	283.31	202.84	243.38	28/			
Average NonSummer	nign	32,869	33,345	32,865	31,5/3	31,892	32,126	32,445			
Use Per PremisID	hedium	44,978	44,145	42,901	42,607	41,782	42,451	43,144			
	IOW	46,330	44,931	44,707	43,572	42,787	46,538	44,811			
Average NonSummer	modium	135	107	135	130	131	132	134			
Dav	Ineaium	185	182	1//	1/5	1/2	1/5	1/8			
Day	IOW	191	185	184	179	1/6	192	184			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Belvidere (PWSID 2103001)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	1,685	1,685	1,685	1,685	1,685	1,685	1,685		
Population 13-14	medium	2,035	2,035	2,035	2,035	2,035	2,035	2,035		
	low	70	62	62	62	62	62	63		
	high	158,320	154,080	152,950	150,640	144,130	144,090	150,702		
Average Annual Use	medium	386,860	400,680	391,940	387,920	373,060	359,400	383,310		
	low	16,830	18,230	17,950	17,150	16,910	18,270	17,557		
Average Appual Per	high	9,395.97	9,144.33	9,077.27	8,940.17	8,553.82	8,551.44	8,944		
Capita	medium	19,008.75	19,687.80	19,258.36	19,060.83	18,330.67	17,659.47	18,834		
	low	24,006.80	29,397.38	28,945.85	27,655.79	27,268.77	29,461.88	27,789		
Average Annual Per	high	26	25	25	24	23	23	25		
Capita Per Dav	medium	52	54	53	52	50	48	52		
	low	66	81	79	76	75	81	76		
	high	53,280	55,610	53,210	53,010	48,060	47,910	51,847		
Average Summer Use	medium	134,450	147,200	145,170	144,970	135,300	124,590	138,613		
	low	6,390	6,450	6,590	6,260	6,030	6,400	6,353		
Average Summer Use	high	3,162.06	3,300.34	3,157.90	3,146.03	2,852.26	2,843.36	3,077		
Per Capita	medium	6,606.33	7,232.82	7,133.07	7,123.24	6,648.10	6,121.85	6,811		
	low	9,114.88	10,401.16	10,626.92	10,094.77	9,723.87	10,320.53	10,047		
Average Summer Use	high	26	27	26	26	23	23	25		
Per Capita Per Dav	medium	54	59	58	58	54	50	56		
	low	75	85	87	83	80	85	82		
Average NonSummer	high	105,040	98,470	99,740	97,630	96,070	96,180	98,855		
Use	medium	252,410	253,480	246,770	242,950	237,760	234,810	244,697		
	low	10,440	11,780	11,360	10,890	10,880	11,870	11,203		
Average NonSummer	high	6,233.91	5,843.99	5,919.36	5,794.14	5,701.56	5,708.08	5,867		
Use Per Capita	medium	12,402.41	12,454.99	12,125.29	11,937.59	11,682.57	11,537.62	12,023		
	low	14,891.92	18,996.22	18,318.93	17,561.02	17,544.90	19,141.35	17,742		
Avreage NonSummer	high	26	24	24	24	23	23	24		
Use Per Capita Per Day	medium	51	51	50	49	48	47	49		
	low	61	78	75	72	72	79	73		
Ratio of Summer	high	101%	112%	106%	108%	100%	99%	104%		
to NonSummer Use	medium	106%	116%	117%	119%	113%	106%	113%		
Per Capital Per Day	low	122%	109%	116%	114%	110%	107%	113%		
	high	360	349	350	351	350	356	353		
PremisID Count	medium	652	650	647	646	652	634	647		
	low	24	27	27	27	28	28	27		
Average Annual Use	high	43,978	44,149	43,700	42,917	41,180	40,475	42,733		
Per PremisID	medium	59,334	61,643	60,578	60,050	57,218	56,688	59,252		
	low	70,125	67,519	66,481	63,519	60,393	65,250	65,548		
Average Annual Use	high	120.49	120.96	119.73	117.58	112.82	110.89	117		
Per PremisID Per Day	medium	162.56	168.89	165.97	164.52	156.76	155.31	162		
	low	192.12	184.98	182.14	1/4.02	165.46	1/8.//	180		
Average Summer Use	high	14,800	15,934	15,203	15,103	13,731	13,458	14,705		
Per PremisID	medium	20,621	22,646	22,437	22,441	20,752	19,651	21,425		
	low	26,625	23,889	24,407	23,185	21,536	22,857	23,750		
Average Summer Use	high 	121.31	130.61	124.61	123.79	112.55	110.31	121		
Per PremisID Per Day	medium	169.03	185.62	183.91	183.94	170.09	161.08	176		
	low	218.24	195.81	200.06	190.04	176.52	187.35	195		
Average NonSummer	high	29,178	28,215	28,497	27,815	27,449	27,017	28,028		
Use Per PremisID	medium	38,713	38,997	38,141	37,608	36,466	37,036	37,827		
	low	43,500	43,630	42,074	40,333	38,857	42,393	41,798		
Average NonSummer	high 	120	116	117	114	113	111	115		
Use Per PremisiD Per	medium	159	160	157	155	150	152	156		
Day	low	179	180	173	166	160	174	172		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Bridgeport (PWSID 0809001)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high										
Population 13-14	medium	461	461	461	461	461	461	461			
	low	253	253	253	253	253	253	253			
Average Appuel Lles	high										
Average Annual Ose (100 gallon)	medium		96,330	92,050	95,420	86,100	83,130	90,606			
(roo ganon)	low		61,360	55,690	58,760	50,040	52,130	55,596			
Assessed Assessed Day	high										
Average Annual Per	medium		20,886.93	19,958.91	20,689.62	18,668.79	18,024.81	19,646			
Capita	low		24,279.93	22,036.33	23,251.12	19,800.65	20,627.65	21,999			
A	high		-	-	-	-	-	-			
Average Annual Per	medium		57	55	57	51	49	54			
Capita Fel Day	low		67	60	64	54	57	60			
	high										
Average Summer Use	medium		39,140	36,940	36,650	31,270	28,130	34,426			
	low		26,640	22,920	24,820	18,340	18,380	22,220			
	high						,				
Average Summer Use	medium		8,486.60	8,009.58	7,946.70	6,780.17	6,099.34	7,464			
Per Capita	low		10,541.35	9,069.36	9,821.18	7,257.07	7,272.90	8,792			
	high		-	-	-	-	-	-			
Average Summer Use	medium		70	66	65	56	50	61			
Per Capita Per Day	low		86	74	81	59	60	72			
	high										
Average NonSummer Use	medium		57 190	55 110	58 770	54 830	55 000	56 180			
	low		34 720	32 770	33 940	31,700	33 750	33 376			
	high		#DIV/01	#DIV/01	#DIV/01	#DIV/01	#DIV/01	#DIV/01			
Average NonSummer	medium		12 400 33	11 949 33	12 742 91	11 888 61	11 925 48	12 181			
Use Per Capita	low		13 738 58	12,966,97	13 429 93	12 543 58	13 354 75	13 207			
	high		13,730.30	12,500.57	13,423.33	12,343.30	13,334.75	13,207			
Avreage NonSummer	medium		51	19	52	19	<u> 19</u>	50			
Use Per Capita Per Day	low		57	53	55	52	55	50			
Ratio of Summer	high		5,			52		51			
to NonSummer Use	medium		136%	134%	124%	114%	102%	122%			
Per Capital Per Day	low		153%	139%	146%	115%	108%	132%			
i or cupitari or bay	high		13370	13370	14070	113/0	100/0	132/0			
PremisiD Count	medium		152	152	150	1///	138	1/17			
i ionitale count	low		132	20	150 01	<u>144</u> 90	130	90			
	high		52	00	51	50	00	50			
Average Annual Use	medium		63 375	60 559	63 613	59 792	60 239	61 516			
Per PremisID	low		66 696	63 28/	64 571	55,600	50,239	61 272			
	high		-	-		-	-	-			
Average Annual Use	medium		172.62	165.02	17/ 28	162.81	165.04	160			
Per PremisID Per Day	low		173.03	105.52	174.20	152.32	162.30	100			
	high		102.75	175.58	170.91	152.55	102.50	170			
Average Summer Use	modium		25 750	24 202	24 422	21 715	20 284	22 217			
Per PremisID	low		23,730	24,303	24,433	21,713	20,384	23,317			
	high		20,937	20,043	21,213	20,378	20,880	24,708			
Average Summer Use	modium		-	-	-	-	167.09	- 101			
Per PremisID Per Day	low		211.07	199.20	200.27	177.99	107.08	191			
	low		237.35	213.49	223.50	107.03	1/1.20	203			
Average NonSummer	nign		27.025	26.257	20,100	20.070	20.055	20.400			
Use Per PremisID	healum		37,625	30,257	39,180	38,076	39,855	38,199			
	low		37,739	37,239	37,297	35,222	38,352	37,170			
Average NonSummer	high		-	-	-	-	-	-			
Use Per PremisiD Per	medium		155	149	161	157	164	157			
Day	low		155	153	153	145	158	153			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Cape May Courthouse (PWSID 0506010)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	1,439	1,439	1,439	1,439	1,439	1,439	1,439		
Population 13-14	medium	2,639	2,732	2,732	2,732	2,732	2,779	2,724		
	low	818	819	819	816	822	830	820		
Average Annual Lise	high	111,940	110,320	107,050	108,820	109,450	102,300	108,313		
(100 gallon)	medium	463,380	512,170	494,540	478,160	446,820	468,190	477,210		
	low	316,250	353,680	335,510	327,580	302,510	312,690	324,703		
Average Annual Per	high	7,778.15	7,665.58	7,438.37	7,561.35	7,605.13	7,108.31	7,526		
Capita	medium	17,557.18	18,749.02	18,103.64	17,504.01	16,356.75	16,846.57	17,520		
•	low	38,670.18	43,206.86	40,987.14	40,149.47	36,822.67	37,676.40	39,585		
Average Annual Per	high	21	21	20	21	21	19	21		
Capita Per Day	medium	48	51	50	48	45	46	48		
	low	106	118	112	110	101	103	108		
	high	41,820	44,340	43,030	41,530	40,980	36,650	41,392		
Average Summer Use	medium	204,180	242,880	238,370	218,440	197,910	192,540	215,720		
	low	147,280	182,800	178,910	158,550	143,110	142,250	158,817		
Average Summer Use	high	2,905.86	3,080.96	2,989.94	2,885.71	2,847.49	2,546.62	2,876		
Per Capita	medium	7,736.25	8,891.11	8,726.02	7,996.44	7,244.90	6,928.04	7,920		
•	low	18,008.99	22,331.52	21,856.31	19,432.50	17,419.89	17,139.88	19,365		
Average Summer Use	high	24	25	25	24	23	21	24		
Per Capita Per Day	medium	63	73	72	66	59	57	65		
	low	148	183	179	159	143	140	159		
Average NonSummer	high	70,120	65,980	64,020	67,290	68,470	65,650	66,922		
Use	medium	259,200	269,290	256,170	259,720	248,910	275,650	261,490		
	low	168,970	170,880	156,600	169,030	159,400	170,440	165,887		
Average NonSummer	high	4,872.29	4,584.62	4,448.43	4,675.64	4,757.64	4,561.69	4,650		
Use Per Capita	medium	9,820.93	9,857.90	9,377.62	9,507.58	9,111.85	9,918.53	9,599		
	low	20,661.18	20,875.33	19,130.84	20,716.97	19,402.77	20,536.52	20,221		
Avreage NonSummer	high	20	19	18	19	20	19	19		
Use Per Capita Per Day	medium	40	41	39	39	37	41	40		
	low	85	86	79	85	80	85	83		
Ratio of Summer	high	119%	134%	134%	123%	119%	111%	123%		
to NonSummer Use	medium	157%	180%	185%	168%	158%	139%	164%		
Per Capital Per Day	low	1/4%	213%	228%	18/%	1/9%	166%	191%		
	high	265	269	256	260	268	247	261		
Premisid Count	medium	701	704	704	706	/13	709	/06		
	IOW	386	395	409	408	418	415	405		
Average Annual Use	nign	42,242	41,011	41,816	41,854	40,840	41,417	41,530		
Per PremisID	meaium	66,103	72,751	70,247	67,728	62,668	55,035	67,589		
	10W	81,930	89,539	82,032	80,289	111.00	75,347	80,251		
Average Annual Use	nign me e di une	115.73	112.36	114.57	114.67	111.89	113.47	114		
Per PremisID Per Day	low	181.10	199.32	192.40	210.07	1/1.09	180.92	200		
	high	15 701	16 492	16 900	15 072	190.20	14 929	15 962		
Average Summer Use	modium	20 127	24 500	22,850	20.041	15,291	14,050	20 557		
Per PremisID	low	29,127	34,300	33,039	20,941	27,757	27,157	20,257		
	luw	120.25	40,270	43,743	120.02	125 24	121.62	39,239		
Average Summer Use	medium	123.55 729.75	282.11	137.70 277 EA	250.95	123.34 227 52	222.02	250		
Per PremisID Per Day	low	238.75	202.79	277.54	233.01	227.32	222.39	230		
	high	26 /60	373.33 24 520	220.22	25 001	260.05	260.90	25 667		
Average NonSummer	medium	20,400	29, 320	25,008	25,001	23,343	20,373	23,007		
Use Per PremisID	low	/2 775	12 261	28 200	/1 /20	28 124	/1 070	40.002		
Average Neg Comme	high	43,773	45,201	30,209	41,429	30,134	41,070	40,995		
Use Per Premisin Per	medium	109	101	105	107	103	160	152		
Dav		192	170 170	150	170	144	160	160		
Duy	10W	100	1/0	961	1/0	121	109	109		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Coastal North (PWSID 1345001)

Density08-0909-0110-1111-1212-1313-146-Y1 AvgPopulation 13-14medium199.133201.490197.237216.005216.303250.405207.847Average Annual Losminitum13.805.40445.927.2015.527.5015.214.0744.726.24043.053.2443.053.24Average Annual Per Capita Per Datihigh40.057.0115.224.5215.224.9215.265.164.718.5315.066.2115.082.24Average Annual Per Capita Per Datihigh40.057.0115.244.2415.224.9215.265.164.718.5315.066.2115.031.01Average Annual Per Capita Per Dati10.05.0015.262.2017.056.3620.92.67.920.30520.92.67.920.305Average Annual Per Iow11112.8611711110.91112111511211121112Average Summer Use medium15.942.2019.865.2017.98.505.314.9715.27.91.8515.948.30115.93.9015.929.20Average Summer Use medium19.962.215.728.105.701.305.568.455.449.4015.949.2714.929.9015.949.27Average NonSummer Use medium19.862.2017.87.262.948.7116.27.97.1815.92.1015.93.9015.929.27Average NonSummer Use medium11.945.0411.47.1811.452.6711.354.9011.93.5611.942.90Average NonSummer Use medium11.945.0411.457.8111.354.9011.95.1613.97.9	Year-Long Users										
high Population 121 (100 gallo		Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
Population 13-14 (medium) medium (medium) 209,393 201,293 216,300 216,300 20,3948 50,224 Average Annual terr (100 gallon) high (100,804.90) 15,297,300 15,297,300 15,297,478 14,742,340 15,082,477 14,900,3127 Average Annual terr (100,707.70) 15,224,521 15,214,521 15,214,521 15,214,521 15,214,521 15,214,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 15,204,521 10,205,521 20,205,772 20,306 10,205,521 10,205,521 20,204,501 10,305,521 20,306 10,302,511 10,303,511 10,304,511 10,304,511 10,304,5		high	93,899	100,280	100,280	100,166	100,166	100,173	99,161		
low 49,367 49,367 49,547 50,918 50,918 50,928 50,278 50,278 50,278 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 15,278/20 12,210,520 20,630,633 20,29,675 20,889,384 42,107,79 20,889,384 42,105,20 20,661,633 20,29,675 20,889,384 42,106,420 15,661 14,718,53 15,066,121 15,081 Average Annual Per Capita medium 10,516,00 12,365,20 20,868,16 20,050,92 19,575,16 20,02,13 20,365 10,90 20,365 10,90 10,30 11,12 20,365 10,90 11,12 11,1 11,10 10,11 11,12 11,11 10,10 11,11 10,12 11,11 11,11 10,10 11,11 11,11 10,10 11,11 10,12 11,11 11,11 10,10 11,11 11,11 11,11 11,11 11,11 11,11 11,11 11,11 11,11 11,11 <th>Population 13-14</th> <th>medium</th> <th>199,139</th> <th>201,490</th> <th>197,257</th> <th>216,405</th> <th>216,390</th> <th>216,405</th> <th>207,847</th>	Population 13-14	medium	199,139	201,490	197,257	216,405	216,390	216,405	207,847		
high (100 gallor) high (100 gallor) 15,291,701 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,702 12,291,502 12,001,603 12,015,802 12,001,603 12,015,802 12,001,603 12,015,802 12,001,603 12,015,802 12,001,603 12,015,802 12,001,603 12,011,803 13,001,103 13,001,103 12,001,003 12,001,003 12,001,003 12,001,003 12,001,003 14,003,003		low	49,367	49,974	49,547	50,948	50,919	50,948	50,284		
medium medium 40,138,40 40,203,200 43,291,178 42,358,617 42,415,558 42,172,719 Average Annual Per Capiti ingh 40,705,70 22,05,720 20,005,720 13,556.1 15,061.1 15,061.1 15,061.1 15,081.1 Average Annual Per Capiti ingh 40,052.40 42,086.1 40,464.83 37,071.41 40,494.35 15,062.11 10,001.10 Average Annual Per Capiti ingh 40 42,882.44 42,808.61 40,464.83 37,071.41 41,941.3 41,905.70 Average Summer Use ingh 504.305 573.380 553.858.45 531.427 53.791.80 53.858.47 53.858.47 53.858.47 53.858.45 <th>Average Annual Lise</th> <th>high</th> <th>13,808,490</th> <th>15,267,200</th> <th>15,257,570</th> <th>15,291,478</th> <th>14,742,940</th> <th>15,082,247</th> <th>14,908,321</th>	Average Annual Lise	high	13,808,490	15,267,200	15,257,570	15,291,478	14,742,940	15,082,247	14,908,321		
interminterm21,210,2021,210,2020,210,67320,210,7520,203,20521,005,73021,005,20310,005,73010,005,73010,005,73010,204,2010,524,0210,524,0210,524,0310,505,33110,003,105Average Annual Per Capita Per Dev Per Capitaimedium0.02,9440,808,2020,864,3620,050,2019,575,1620,062,1920,306Average Summer Us Per Capitaimedium105158107111109112115Average Summer Us Per Capitaimedium10,349,21019,846,22017,884,32018,818,54417,889,71718,779,865,483,841Average Summer Us Per Capitaimedium30,9005,982,725,971,205,685,4055,331,4275,379,1865,483,841Average Summer Us Per Capita Per Dev Towimedium6,07020,772,105,685,4055,649,045,322,605,339,3010,830,5710,949,237Average NonSummer Use Per Capitaimedium6,7010,847,72020,788,7020,71686,669,598,277,538,447,1317,773,067,278,20Average NonSummer Use Per Capitaingh8,764,1309,478,20020,558,1809,537,3739,41,1319,773,0617,242,480Average NonSummer Use Per Capitaingh8,764,1309,478,2029,558,1809,537,3739,41,1319,773,0619,424,480Migh10,35810,206,29810,206,29820,558,1809,537,3739,41,1319,773,	(100 gallon)	medium	40,138,410	42,931,250	40,801,300	43,391,178	42,358,617	43,415,558	42,172,719		
hyerage Annual Per Capita high bit bit bit bit bit 14,705.70 (32,3052) 15,224.52 (32,068.43) 15,226.16 (40,902.92) 14,705.70 (3009.02) 15,751.66 (3009.02) 15,751.76 (3009.02) 15,751.76 (3009.02) 15,751.76 (3009.02) 15,751.76 (3009.02) 15,751.76 (3009.02) 15,752.76 (3009.02) 15,752.77 (3009.02) 15,772.77 (3009.02) 15,772.77 (3009.02) 15,772.77 (3000.02) 17,772 17,772 17,772 17,772 17,772 17		low	20,057,720	23,431,790	21,210,520	20,610,653	20,219,675	20,859,334	21,064,949		
Netting in medium political problem medium 20,156.00 21,056.02 20,056.22 19,575.16 20,061.19 20,306.11 20,306.11 20,306.11 20,306.11 20,306.11 20,306.11 20,306.11 20,306.11 20,307.10 <th>Average Annual Per</th> <th>high</th> <th>14,705.70</th> <th>15,224.52</th> <th>15,214.92</th> <th>15,266.16</th> <th>14,718.53</th> <th>15,056.21</th> <th>15,031</th>	Average Annual Per	high	14,705.70	15,224.52	15,214.92	15,266.16	14,718.53	15,056.21	15,031		
InvInv40,623.4842,808.1440,44.4839,709.1440,902.3541,905Average Annual Per Capita Per Day Intmedium 165558<	Capita	medium	20,156.00	21,306.92	20,684.36	20,050.92	19,575.16	20,062.19	20,306		
Average Annual Py Capita Pr Day high medium (box 400 42 42 42 40 41 41 Average Summer Use Per Capita high (box 5 58 57 55 55 55 Average Summer Use Per Capita high (box 5,043,360 5,783,280 5,703,300 5,658,405 5,331,427 18,275,941 5,838,431 Average Summer Use Per Capita high 5,372,120 5,572,10 10,835,541 10,239,120 18,381,541 7,239,1520 8,447,10 8,758 Average Summer Use Per Capita high 5,372,10 5,565,45 5,604,040 5,220 0,330,75 0,166 8,695.99 8,271,52 8,447,10 8,758 Average NonSummer Use medium 6,20 100 120 108 168 165 174 171 68 669 72 Lise Per Capita high 9,335,80 9,555,180 9,630,73 9,1151 9,026,63 9,606,63 9,606,63 9,505,180 10,532,73 9,806,633 9,505,180	•	low	40,629.48	46,888.24	42,808.61	40,454.48	39,709.14	40,942.35	41,905		
Capita Per Day (mediummedium155558558558558558Average Summer Use Per Capitahigh5,044,3605,788,2805,701,3905,658,4055,331,4275,379,1865,488,381Average Summer Use Per Capitahigh5,372,12013,385,00111,172,06010,437,91810,239,12210,883,5740,994,9275Average Summer Use Per Capitahigh5,372,1225,772,105,685,4555,649,045,322,605,369,905,529Average Summer Use Per Capita Per Day Ideihigh8,203,959,89,759,017,1696,865,998,271,526,442,1008,778Average NonSummer Use Per Capitahigh8,764,1309,478,9209,551,809,633,0739,411,5139,730,66112,391,220Average NonSummer Use Per Capitahigh8,764,1309,478,9209,551,809,633,0739,411,5139,730,66112,391,220Average NonSummer Use Per Capitahigh8,764,1309,478,9209,551,809,633,739,411,5139,730,66112,391,520Average NonSummer Use Per Capitahigh9,333,859,452,429,529,479,617,129,395,939,568,339,502Migh1,345,331,161,26711,354,3311,612,6711,354,3311,613,66111,654High1,345,341,612,571,354,331,303,641,6151,68411,657Migh1,354,331,364,6613,657,181,5831,5841,193	Average Annual Per	high	40	42	42	42	40	41	41		
Iow 111 128 117 111 109 112 115 Average Summer Use medium 16,349,210 19,846,220 17,894,520 18,818,544 17,898,717 18,279,948 18,181,193 Average Summer Use per Capin per Capin per Capin 5,683,405 5,694,904 5,203,206 5,889,907 10,437,918 10,229,129 10,830,576 10,949,237 Average Summer Use per Capin Per Day figh 5,472,140 2,674,101 2,274,282 20,487,49 20,108,48 21,258,07 21,782 Merdium 167 181 7,4 74 46 44 44 45 Merdium 167 181 7,4 74 168 165 17,4 179 Average NonSummer migh 8,764,130 9,478,920 9,556,180 9,633,073 9,411,513 9,703,061 9,424,400 Use Per Capin 10,942,690 10,042,781 9,909,541 10,028,75 10,517.51 10,5108 11,548 10,172	Capita Per Day	medium	55	58	57	55	54	55	56		
high 5,044,300 5,783,280 5,701,390 5,683,405 5,371,316 5,483,841 Average Summer Use Per Capita init 9,630,730 13,385,010 11,172,060 10,437,918 10,239,122 10,840,574 13,7989,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,7999,717 18,799,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 19,702,717 10,712,717		low	111	128	117	111	109	112	115		
Average Summer Us Per Capitamedium16,349.21019,346,22017,849.52018,381,34417,988.7118,781,93818,181,193Average Summer Us Per Capitahigh5,372.125,772.105,685.455,649.0410,239.12310,830.57610,949,237Average Summer Us Per Capita Per Day Ushigh4,372.959,849.759,071.698,695.998,271.528,447.108,758Average NonSummer Ushigh4,444474774.664.444.444.45Medium67817716.88169772Average NonSummer Ushigh3,764,1309,478,9209,555,1809,633,0739,411,5139,703,0619,424,480Average NonSummer Use Per Capitahigh3,735,1809,478,9209,555,1800,633,0739,441,5139,703,0619,424,480Average NonSummer Use Per Capitahigh9,333.589,452.429,529,479,617,129,395,939,686.319,502Medium Use Per Capita9,333.589,452.429,529,479,617,129,395,939,686.3111,51611,517,17Average NonSummer Use Per Capita Per Dayhigh33333939403338823134.6431.38Ratio of Summer Per PremisD Counhigh11,55811,51711,51711,51811,612.6711,53811,63411,61811,618Redum Per PremisD Per Dayingh22,14422,507 <t< th=""><th></th><th>high</th><th>5,044,360</th><th>5,788,280</th><th>5,701,390</th><th>5,658,405</th><th>5,331,427</th><th>5,379,186</th><th>5,483,841</th></t<>		high	5,044,360	5,788,280	5,701,390	5,658,405	5,331,427	5,379,186	5,483,841		
Iow 9,630,730 13,385,010 11,12,260 10,237,918 10,239,137 10,389,0576 10,949,237 Average Summer Use Per Capita Per	Average Summer Use	medium	16,349,210	19,846,220	17,894,520	18,818,544	17,898,717	18,279,948	18,181,193		
Average Summer Uss Per Capita high (metium (metium Per Capita Per Day (metium Ber Day (metium Ber Capita Per Day (metium Ber Day (metium B		low	9,630,730	13,385,010	11,172,060	10,437,918	10,239,129	10,830,576	10,949,237		
Per Capits medium 8,209.96 9,804.75 9,071.69 8,695.99 8,271.52 8,447.10 8,785 Average Summer Uss high 44 47 747 46 44 44 Per Capita Per Day ion 100 100 21,982.07 21,982.07 21,982.07 Average NonSummer medium 67 81 74 71 68 69 72 Average NonSummer medium 8,764,130 9,478,290 9,551.80 9,633.03 9,411,513 9,703,061 9,424,480 Medium 10,467,990 10,046,780 10,038.40 10,172,735 9,980.54 10,028,758 10,115,712 Average NonSummer high 333.58 9,424 9,524 9,524 9,524 9,524 9,524 9,523 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 9,503 9,686.31 <	Average Summer Use	high	5,372.12	5,772.10	5,685.45	5,649.04	5,322.60	5,369.90	5,529		
Iow19,508,2826,784,1022,548,2620,487.4920,108.4812,28.0712,782.07Average Summer Use Per Capita Per Day Usehigh44474746444445Medium6761174746444445Average NonSummer Use Per Capitahigh endium8,764,1309,478,9209,556,1309,633,0739,411,5139,703,0619,424,480Average NonSummer Use Per Capita9,333,589,452.429,529,479,617.129,999,54610,028,75810,115,712Average NonSummer Use Per Capita9,1349,451.3111,612.6711,343.4311,303.6411,615.0811,548Bigh9,333,589,452.429,529.479,617.129,999.54610,028,75810,115,748Average NonSummer Use Use Per Capita Per Day10%21,212.0220,104.1320,200.3519,966.9919,600.6519,684.2820,123Average Annual Use Per PremisD Court115%115%115%115%115%115%115%115%115%Average Annual Use Per PremisD Per Day10%115%115.8222,6642,62853,96430,966.3112,15%12,15%Average Annual Use Per PremisD Per Day16%12,74425,5725,80724,56425,80724,56425,80524,661Average Annual Use Per PremisD Per Day16%115%115,82116,917121,459123,85633,94633	Per Capita	medium	8,209.96	9,849.75	9,071.69	8,695.99	8,271.52	8,447.10	8,758		
Average Summer Use Per Capita Per Day imediumhigh medium64474746444445Average NonSummer Usehigh medium8,764,1309,478,9209,556,1809,633,0739,411,5139,703,0619,424,480Average NonSummer Usehigh medium23,789,20023,086,78024,572,63424,459,90025,135,61023,991,526Average NonSummer Use Per Capitahigh medium9,333,589,452.429,529.479,617,129,980,54610,028,75820,115,713Average NonSummer Use Per Capita Per Dayhigh medium1,946,041,457.181,161.26711,354.9311,33.641,161.50.881,154NonSummer Use Per Capita Per Dayhigh nedium20,21.2120,104.1320,20.3319,960.9919,900.659,684.2820,21.23Needium Use Per Capita Per Dayhigh nedium115581222%119%117%113%10.06145.98Needium Per Capital Per Dayhigh nedium11578122%119%117%113%110%116%Needium Per PremisD Counthigh nedium22,51252,51552,50724,66425,00524,661Needium Per PremisD Per Dayhigh nedium22,62849,26854,82853,96453,82651,619Needium Per PremisD Per Dayhigh nedium22,64422,81722,62912,625116,83712,83233,16633,276Needium Per Prem		low	19,508.28	26,784.10	22,548.26	20,487.49	20,108.48	21,258.07	21,782		
Per Capita Per Day low medium 67 81 74 71 68 69 72 Average NonSummer Use Inigh 8,764,130 9,478,920 9,556,180 9,633,073 9,411,513 9,703,061 9,424,480 Average NonSummer Use Inigh 9,333,58 9,962,42 10,046,780 10,046,780 10,017,738 9,980,546 10,028,778 10,115,171 Average NonSummer Use Per Capita Per Day Inigh 9,333,58 9,452,42 9,529,47 9,6171,12 9,395,39 9,686,31 9,502 Average NonSummer Use Per Capita Per Day Inigh 9,333,58 9,452,42 10,529,47 9,171,2 9,395,39 9,686,31 9,502 Medium 10,946,04 11,457,18 11,612,67 11,354,93 11,303,64 11,618,68 11,548 Iuse Per Capita Per Day Inigh 038 39 400 39 400 39 Per Capita Per Day Inigh 11578 1171% 11586 1158 1166 1166 1168 1166 <t< th=""><th>Average Summer Use</th><th>high</th><th>44</th><th>47</th><th>47</th><th>46</th><th>44</th><th>44</th><th>45</th></t<>	Average Summer Use	high	44	47	47	46	44	44	45		
Iow100220135168165174173Average NonSumme Usehigh medium23,082,00022,905,70024,572,63424,499,00025,135,61023,983,526Average NonSumme Use Per Capita09,333,389,452.429,529.479,617.129,389.3610,115,712Average NonSummer Use Per Capita Per Day10,940.041,145.7181,162.671,1354.931,130.641,115.78Avreage NonSummer Use Per Capita Per Dayhigh medium1,940.041,145.7181,115.641,154.941,154.94Avreage NonSummer Use Per Capita Per Dayhigh medium115820,201.380,900.351,960.591,960.651,968.2820,123Avreage Annual Use Per Capita Per Dayhigh medium1158122.84119.9611.7811.3351,113.84110.86116.88Needium Per Capital Per Dayhigh medium1158122.85119.9611.37811.336.931,416.1511.548Needium Per Premisib Cenuhigh medium122.9422.97225.19525.80724.65425.90524.661Needium Per Premisib Per Dayhigh medium22.38826.92854.82853.96453.82651.616Needium Per Premisib Per Dayhigh medium22.64423.87422.88527.97324.65522.09824.248Needium Per Premisib Per Dayhigh medium22.64423.87422.88553.96453.82653.826	Per Capita Per Day	medium	67	81	74	71	68	69	72		
Average NonSummer Use high medium (a) 8,764,130 9,478,920 9,556,130 9,633,073 9,411,513 9,703,061 9,424,480 Average NonSummer Use Per Capita iow 10,426,990 10,006,780 10,006,780 10,0172,735 9,980,546 10,028,758 10,115,712 Average NonSummer Use Per Capita high 9,333.58 9,452.42 9,529,47 9,617.12 9,395.93 9,686.31 9,502. Avreage NonSummer Use Per Capita Per Day high 38 39 39 40 33 40 39 Ratio of Summer high 38 39 39 40 38 40 38 Per Capita Per Day indv 115% 122% 119% 113% 110% 115% Per Capital Per Day indv 1337% 171% 156% 153% 146% 145% 215% Per Capital Per Day indv 145,53 40,256 40,248 54,828 53,945 53,6151 Indeium 145,657 122,149		low	160	220	185	168	165	174	179		
medium 23,789,200 23,085,030 22,906,780 24,572,63 24,459,900 25,135,610 23,991,526 Average NonSummer Use Per Capita high 9,333.58 9,452.42 9,529.47 9,617.12 9,930.536 10,15,712 Average NonSummer Use Per Capita high 9,333.58 9,452.42 9,529.47 9,617.12 9,305.33 1,666.31 10,502 Average NonSummer Use Per Capita Per Day high 33 33 93 940 39 40 39 Bedium 11946.04 11,457.18 11,612.67 11,354.33 11,303.64 11,615.08 11,548 Meedium 12,727 20,103.35 19,66.99 19,600.65 19,664.28 20,103 Neght 115% 1222% 110% 117% 113% 110% 116% Ibits medium 137% 122% 110% 117% 113% 110% 115% Per Capital Per Day low 18,452 49,265 42,225 20,461 115% <tr< th=""><th>Average NonSummer</th><th>high</th><th>8,764,130</th><th>9,478,920</th><th>9,556,180</th><th>9,633,073</th><th>9,411,513</th><th>9,703,061</th><th>9,424,480</th></tr<>	Average NonSummer	high	8,764,130	9,478,920	9,556,180	9,633,073	9,411,513	9,703,061	9,424,480		
Iow 10,426,590 10,048,780 10,038,460 10,127,735 9,380,546 10,028,788 10,115,712 Average NonSummer Use Per Capita high nedium 11,345.04 11,457.18 11,612.67 11,354.93 11,303.64 11,615.08 11,538 Avreage NonSummer Use Per Capita Per Day high medium 38 39 39 400 39 400 39 Ratio of Summer to NonSummer Use medium high medium 115% 122% 119% 117% 113% 110% 116% Pre Capita I Per Day low 878 64,577 16,577 15,587 14,688 115% 116% Pre Capital Per Day low 137% 171% 155% 153% 146% 145% 115% Pre Capital Per Day low 184% 22,505 25,807 24,654 25,905 24,661 medium 48,563 49,266 49,268 54,828 53,964 53,826 51,619 low 16,677 16,836 16,255 17,3	Use	medium	23,789,200	23,085,030	22,906,780	24,572,634	24,459,900	25,135,610	23,991,526		
Average NonSummer use Per Capitalhigh medium9,333.889,452.429,529.479,17.129,355.399,686.319,502medium11,346.0411,457.1811,1364.9311,336.4911,015.0811,548low21,212.2020,010.4120,260.3519,966.9919,060.5519,684.2820,123Avreage NonSummer Use Per Capital Per Dayhigh medium49447448447447448448low21,212.2020,201.4130,202.0311,354.9311.0144848low81748383382841848low117%112%115%117%113%110%115%Per Capital Per Daynedium137%171%156%153%146%415%215%Per Capital Per Dayhigh22,14425,07225,19552,80724,65425,09524,661medium96,67716,83616,82517,38117,29417,17417,031Average Annual Use Per PremisDhigh102,027139,177126,065118,582116,917121,459123,745Average Annual Use Per PremisDhigh17,081162,341165,831166,92513,836165,91162,341163,83164,66166Medium22,644238,7422,62921,62521,43522,24733,26633,24633,96133,266Average Annual Use Per PremisDhigh <td< th=""><th></th><th>low</th><th>10,426,990</th><th>10,046,780</th><th>10,038,460</th><th>10,172,735</th><th>9,980,546</th><th>10,028,758</th><th>10,115,712</th></td<>		low	10,426,990	10,046,780	10,038,460	10,172,735	9,980,546	10,028,758	10,115,712		
Use Per Capita Indiana 11,946,04 11,457,18 11,612,67 11,334,39 11,305,64 11,615,08 11,518,08	Average NonSummer	high	9,333.58	9,452.42	9,529.47	9,617.12	9,395.93	9,686.31	9,502		
high use Per Capita Per Dayhigh medium383939403940394039Avreage NonSummer Use Per Capita Per Daymedium49474847444848low878383828181813Ratio of Summer to NonSummer Use Per Capital Per Dayhigh115%122%119%117%113%110%116%PremisD Countmedium137%171%156%153%146%250524,661PremisD Counthigh2,2144250725,15525,0724,65425,09524,661Needium48,56349,26649,26854,82853,96453,82651,619Per PremisDneedium48,56349,26649,26517,38117,29417,17417,031Average Annual Use Per PremisD Per Dayhigh170.84166.83165,91118,582116,917121,459123,745Average Summer Use Per PremisD Per Dayhigh170.84166.83165,91162.34163.83164.66166Medium32,65640,22436,32134,32333,16833,96135,287Average Summer Use Per PremisD Per Dayhigh186,72189,23185,48179,72177,25175,70182Medium32,65640,22436,21134,32333,16833,96135,28736,6036,61654,227485,30165,9266,	Use Per Capita	medium	11,946.04	11,457.18	11,612.67	11,354.93	11,303.64	11,615.08	11,548		
Avreage NonSumme Use Per Capita Per Day mediumingin medium3.83 4.003.93 4.004.003.93 4.004.003.93 4.00Ratio of Summer to NonSummer Use mediumhigh115%1.22%1.19%1.17%1.13%1.10%1.16%Per Capital Per Day Per Capital Per Daylow1.84%2.65%2.22%2.04%2.04%2.5,052.16%Per Capital Per Day mediummedium1.84%2.5,072.5,1552.5,072.4,6542.5,0552.2,66Per MemisD Outmedium4.8,5634.9,2664.9,2685.4,8285.3,6245.3,8265.1,619Nearge Annual Use Per PremisD Per Denhigh6.2,3586.0,8936.0,5585.9,2535.9,7996.0,1016.0,494Nearge Annual Use Per PremisD Per Denhigh1.2,2721.39,1771.26,0651.18,5821.16,9171.21,4591.23,745Average Annual Use Per PremisD Per Denhigh1.20,2721.39,1771.26,0651.18,5821.16,9171.21,4591.23,745Average Annual Use Per PremisD Per Denhigh1.20,2783.33,1433.34,883.20,2323.32,763.33Average Annual Use Per PremisD Per Denhigh1.20,2783.31,813.43,833.24,883.20,2323.22,763.33Average Annual Use Per PremisD Per Denhigh1.20,2783.33,7613.34,883.20,2323.32,763.333.34,833.34,843.34,853.34,85		low	21,121.20	20,104.13	20,260.35	19,966.99	19,600.65	19,684.28	20,123		
Use Per Capita Per Day lowIndivide449447448447447448448448Ratio of Summer to NonSummer Use Per Capital Per Dayhigh low115%1122%119%111%113%110%116%Per Capital Per Day Per meisDCountlow184%265%222%204%204%215%216%PremisD Counthigh low22,14425,07225,19525,80724,65425,09524,661PremisD Countlow16,67716,83616,82517,38117,72417,17417,031Average Annual Use Per PremisDhigh nedium62,35860,89360,55859,25359,79960,01060,494Average Annual Use Per PremisD Per Dayhigh nedium226,44238,74226,89216,82116,917121,459123,745Average Annual Use Per PremisD Per Dayhigh nedium226,44238,74226,89216,82216,6221,625220,98224,74Average Summer Use Per PremisD Per Dayhigh nedium22,78023,08722,62921,92621,62521,43523,276339Average Summer Use Per PremisD Per Dayhigh nedium275,9533,020297,71281,3427,837289Newerage NonSummer Use Per PremisD Per Dayhigh nedium39,57837,80737,92937,32738,17438,66538,247Average NonSummer Use Per PremisD Per Dayhigh nedium <th>Avreage NonSummer</th> <th>nign</th> <th>38</th> <th>39</th> <th>39</th> <th>40</th> <th>39</th> <th>40</th> <th>39</th>	Avreage NonSummer	nign	38	39	39	40	39	40	39		
Ratio of Summery high medium 115% 122% 119% 117% 113% 110% 116% NonSummery ingh 115% 122% 119% 117% 113% 110% 116% Per Capital Per Day low 184% 265% 222% 204% 204% 215% 216% PremisD Count medium 48,563 49,266 49,268 54,828 53,964 53,826 51,619 Average Annual Use Per PremisD medium 48,563 49,266 49,268 54,828 53,964 53,826 51,619 Average Annual Use Per PremisD medium 82,652 87,142 82,815 79,141 78,494 80,659 81,817 Average Annual Use Per PremisD Per Day high 170.84 166.83 165.91 162.34 163.83 164.66 166 Medium 226.44 238.74 226.69 21,925 21,625 21,435 22,247 Medium 33,666 40,284 36,321 34,3	Use Per Capita Per Day	medium	49	4/	48	47	4/	48	48		
Name Ingr 115% 112% 119% 117% 113% 110% 118% to NonSummer Use medium 137% 171% 1156% 153% 146% 145% 115% Per Capital Per Day low 184% 225,072 225,195 25,807 24,654 25,095 24,661 PremisD Count medium 48,563 49,266 49,268 54,828 53,964 53,826 51,619 low 16,677 16,836 16,825 17,381 17,294 17,174 17,031 Average Annual Use high 62,358 60,893 60,558 59,253 59,799 60,101 60,494 Medium 82,652 87,142 82,815 79,141 78,494 80,659 81,817 low 120,727 139,177 126,605 118,582 116,917 121,459 123,745 Average Annual Use high 170.84 166.83 165,91 162,34 163.83 164.66 166 <th>Potio of Summor</th> <th>IOW high</th> <th>8/</th> <th>83</th> <th>83</th> <th>1170/</th> <th>81</th> <th>81</th> <th>83</th>	Potio of Summor	IOW high	8/	83	83	1170/	81	81	83		
Nonsummer Os Interturn 13% 11% 13% 14% 14% 13% Per Capital Per Day low 184% 265% 222% 204% 204% 215% 216% PremisD Count imedium 48,563 49,266 49,268 53,864 53,826 51,619 low 16,677 16,836 16,825 17,381 17,294 17,174 17,031 Average Annual Use Per PremisD high 62,358 60,893 60,558 59,253 59,799 60,101 60,494 Medium 82,652 87,142 82,815 79,141 78,494 80,659 81,817 low 120,272 139,177 126,065 118,582 116,917 121,459 123,745 medium 226,44 238,74 226.69 216.82 215.05 220.98 224 waverage Summer Use Per PremisD high 22,644 36,321 34,323 33,168 33,961 35,287 low 57,749	to NonSummor Uso	nign	115%	1710/	119%	11/%	113%	110%	116%		
PremisiD Count 10W 184% 265% 222% 204% 204% 213% 215% 216% PremisiD Count high 22,144 25,072 25,195 25,807 24,654 25,095 24,661 medium 48,563 49,266 49,268 54,828 53,964 53,826 51,619 low 16,677 16,836 16,825 17,381 17,294 17,174 17,031 Average Annual Use Per PremisiD high 62,358 60,893 60,558 59,253 59,799 60,101 60,494 Medium 82,652 87,142 82,815 79,141 78,494 80,659 81,817 low 120,272 139,177 126,065 118,582 116,917 121,459 123,745 Average Annual Use Per PremisID Per Day high 170.84 166.83 165.91 162.34 163.83 164.66 166 Medium 226.44 23,807 22,629 21,926 21,625 21,435	Par Capital Par Day	meaium	137%	265%	150%	153%	146%	145%	151%		
Ingin 22,144 25,072 25,155 25,007 24,634 25,005 24,634 25,005 24,634 25,005 24,634 25,005 24,634 25,005 24,634 25,005 24,634 25,005 24,634 25,005 </th <th>Per Capital Per Day</th> <th>10W bigh</th> <th>184%</th> <th>205%</th> <th>222%</th> <th>204%</th> <th>204%</th> <th>215%</th> <th>216%</th>	Per Capital Per Day	10W bigh	184%	205%	222%	204%	204%	215%	216%		
Average Annual Use Per Premisibility high (a) 62,353 649,266 449,266 34,826 33,827 33,817 Average Annual Use Per PremisiD Per Day high 170.84 166.83 165.91 116.234 163.83 164.66 166 Medium 226.44 238.74 226.89 216.82 215.05 220.98 22,247 Medium 33,666 40,284 36,321<	BromidD Count	nign	22,144	25,072	25,195	25,807	24,054 52,064	25,095	24,001		
Now 10,607 10,836 10,836 17,831 17,234 17,174 17,031 Average Annual Use Per PremisiD high medium 62,358 60,893 60,558 59,253 59,799 60,101 60,494 Average Annual Use Per PremisiD Per Day iow 120,272 139,177 126,065 118,582 116,917 121,459 123,745 Average Annual Use Per PremisiD Per Day high 170.84 166.83 165.91 162.34 163.83 164.66 166 Medium 226.44 238.74 226.89 216.82 215.05 220.98 224.4 Iow 329.51 381.31 345.38 324.88 320.32 332.76 339.91 Average Summer Use Per PremisiD high 22,700 23,087 22,629 21,926 21,435 23,437 Average NonSummer Use high 186.72 189.23 185.48 179.72 177.25 175.70 182 Medium 275.95 330.20 297.71 281.34 <t< th=""><th>Fremisid Count</th><th>low</th><th>46,505</th><th>49,200</th><th>49,200</th><th>54,020 17 201</th><th>17 204</th><th>35,820</th><th>17 021</th></t<>	Fremisid Count	low	46,505	49,200	49,200	54,020 17 201	17 204	35,820	17 021		
Average Annual Use Per Premisible Inigine medium medium 60,335 82,652 60,335 83,235 33,735 33,735 60,101 80,101 60,434 80,659 Average Annual Use Per Premisib Per Daa Per Premisib Per Daa Per Premisib Per Daa Per Premisib high medium 170.84 166.83 165.91 118,582 116,917 121,459 123,745 Average Annual Use Per Premisib Per Daa Per Premisib high 170.84 166.83 165.91 162.34 163.83 164.66 166 Medium 226.44 238.74 226.89 216.82 215.05 220.98 224 Medium 33,666 40,284 36,321 34,323 33,168 33,961 35,287 Average Summer Use Per Premisib Per Daa Dev high 186.72 189.23 185.48 179.72 177.25 175.70 182 Average NonSummer Use Per Premisib high medium 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Average NonSummer Use Per Premisib Per high medium 39,578 37,807 37,929 37,327 38,174		high	62 259	60,830	10,823 60 EE9	50 252	E0 700	60 101	60,404		
Per Premision Interfution 62,052 63,142 62,815 73,441 76,454 80,055 81,817 Iow 120,272 139,177 126,065 118,582 116,917 121,459 123,745 Average Annual Use Per Premision Per Day high 170.84 166.83 165.91 162.34 163.83 164.66 166 Medium 226.44 238.74 226.89 216.82 215.05 220.98 224 Iow 329.51 381.31 345.38 324.88 320.32 332.76 339 Average Summer Use Per Premision high 22,780 23,087 22,629 21,926 21,625 21,435 22,247 Average Summer Use Per Premision Per Day high 186.72 189.23 185.48 179.72 177.55 175.70 182 Medium 275.95 330.20 297.71 281.34 271.87 278.37 289 Iow 473.35 651.66 544.27 492.24 485.30 516.92	Average Annual Use	modium	92,536	97 142	00,338	70 1/1	78 /0/	80,650	00,494		
Average Annual Use Per PremisID Per Day high 170.84 166.83 165.91 110,302 110,317 112,433 122,44 123,43 122,443 122,443 122,743 122,743 123,743 123,743 122,743 123,743 133,133 134,533 134,333 <th< th=""><th>Per PremisID</th><th>low</th><th>120 272</th><th>130 177</th><th>126.065</th><th>118 582</th><th>116 017</th><th>121 //59</th><th>122 7/15</th></th<>	Per PremisID	low	120 272	130 177	126.065	118 582	116 017	121 //59	122 7/15		
Average Annual Use Per PremisID Per Day Ingin 170.54 160.83 <th< th=""><th></th><th>high</th><th>170.84</th><th>166.83</th><th>165 91</th><th>162.34</th><th>163.83</th><th>164 66</th><th>166</th></th<>		high	170.84	166.83	165 91	162.34	163.83	164 66	166		
Per PremisiD Per Day low Incurture 329.51 210.14 210.15 210.05 210	Average Annual Use	medium	226.44	238 74	226.89	216.82	215.05	220.98	224		
Average Summer Use Per PremisID high medium low 22,780 23,087 22,629 21,926 21,625 21,435 22,247 Average Summer Use Per PremisID high medium 33,666 40,284 36,321 34,323 33,168 33,961 35,287 Average Summer Use Per PremisID Per Day high 186.72 189.23 185.48 179.72 177.25 175.70 182 Average NonSummer Use Per PremisID Per Day high 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Average NonSummer Use Per PremisID Per Day high 163 156 156 154 157 159 157 Medium 275.95 39,020 297.71 281.34 271.87 278.37 289 Iow 473.35 651.66 544.27 492.24 485.30 516.92 527 Average NonSummer high 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Use Per PremisID Per Day high	Per PremisID Per Day	low	329 51	381 31	345 38	324.88	320 32	332.76	339		
Average Summer Use Per PremisID Inight medium 33,666 40,284 36,321 34,323 33,168 33,961 35,287 Average Summer Use Per PremisID Per Daa inight 186.72 189.23 185.48 179.72 177.25 175.70 182 Average Summer Use Per PremisID Per Daa inight 186.72 189.23 185.48 179.72 177.25 175.70 182 Average NonSummer Use Per PremisID high medium 275.95 330.20 297.71 281.34 271.87 278.37 289 Average NonSummer Use Per PremisID high medium 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Average NonSummer Use Per PremisID inight 48,986 46,858 46,494 44,818 45,326 46,698 46,530 Average NonSummer Use Per PremisID Per Day high 163 156 156 157 159 157 Medium 202 193 191 184 187 192 191 Iow		high	22 780	23 087	22 629	21 926	21 625	21 435	22 247		
Per Premision Interfamiliant Objection Objecion Objection Objection	Average Summer Use	medium	33,666	40 284	36 321	34 323	33 168	33,961	35 287		
Average Summer Use Per PremisID Per Day high medium 186.72 189.23 185.48 179.72 177.25 175.70 182 Average Summer Use Per PremisID Per Day medium 275.95 330.20 297.71 281.34 271.87 278.37 289 Average NonSummer Use Per PremisID high medium 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Average NonSummer Use Per PremisID high medium 48,986 46,858 46,494 44,818 45,326 46,698 46,530 Iow 62,523 59,674 59,664 58,528 57,711 58,395 59,416 Medium 202 193 191 184 187 192 191 Iow 202 193 246 241 237 240 245	Per PremisID	low	57,749	79.502	66,402	60.054	59,206	63.064	64,329		
Average Summer Use Per PremisID Per Day Indigit Indigit Indication Indication </th <th></th> <th>high</th> <th>186.72</th> <th>189.23</th> <th>185.48</th> <th>179.72</th> <th>177.25</th> <th>175.70</th> <th>182</th>		high	186.72	189.23	185.48	179.72	177.25	175.70	182		
Per Premisio Per Day International Control Contro Control Contro <t< th=""><th>Average Summer Use</th><th>medium</th><th>275.95</th><th>330.20</th><th>297.71</th><th>281.34</th><th>271.87</th><th>278.37</th><th>289</th></t<>	Average Summer Use	medium	275.95	330.20	297.71	281.34	271.87	278.37	289		
Average NonSummer Use Per PremisiD Per Day high medium 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Average NonSummer Use Per PremisiD Per Day high medium 39,578 37,807 37,929 37,327 38,174 38,665 38,247 Medium 48,986 46,858 46,494 44,818 45,326 46,698 46,530 Iow 62,523 59,674 59,664 58,528 57,711 58,395 59,416 Iow 163 156 156 154 157 159 157 Iow 202 193 191 184 187 192 191 Iow 257 246 246 241 237 240 245	Per PremisiD Per Day	low	473.35	651.66	544.27	492.24	485.30	516.92	527		
Average NonSummer Use Per PremisID Medium low 48,986 46,858 46,494 44,818 45,326 46,698 46,530 Average NonSummer Use Per PremisID Per Day high 163 156 156 157 59,614 58,528 57,711 58,395 59,416 Medium 202 193 156 154 157 159 157 Image NonSummer Medium 202 193 191 184 187 192 191 Image NonSummer Image NonSummer Medium 202 193 191 184 187 192 191		high	39.578	37.807	37.929	37.327	38.174	38.665	38.247		
Average NonSummer Use Per PremisiD Per Day high nedium 163 156 156 157 159,528 57,711 58,395 59,416 Jow 62,523 59,674 59,664 58,528 57,711 58,395 59,416 Migh 163 156 156 154 157 159 157 Jow 202 193 191 184 187 192 191 Jow 257 246 246 241 237 240 245	Average NonSummer	medium	48.986	46.858	46.494	44.818	45.326	46.698	46.530		
Average NonSummer Use Per PremisiD Per Day high 163 156 156 154 157 159 157 Jow 202 193 191 184 187 192 191	Use Per PremisID	low	62.523	59.674	59.664	58.528	57.711	58.395	59.416		
Use Per PremisiD Per Day medium 202 193 191 184 187 192 191 Iow 257 246 246 241 237 240 245	Average NonSummer	high	163	156	156	154	157	159	157		
Day low 257 246 246 241 237 240 245	Use Per PremisID Per	medium	202	193	191	184	187	192	191		
	Day	low	257	246	246	241	237	240	245		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Delaware Division (PWSID 327001)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high	75,539	75,932	76,823	75,959	75,959	75,637	75,975			
Population 13-14	medium	196,226	196,226	196,226	196,226	196,226	196,226	196,226			
	low	8,521	8,542	8,547	8,548	8,540	8,545	8,541			
Average Annual Lise	high	9,739,090	9,892,050	8,214,240	9,542,590	9,295,420	9,072,881	9,292,712			
(100 gallon)	medium	45,187,510	49,715,760	45,797,870	46,485,080	41,958,308	42,469,091	45,268,936			
(*** 5=****)	low	3,331,270	3,824,770	3,523,160	3,537,846	2,989,750	3,068,750	3,379,258			
Average Appual Per	high	12,892.88	13,027.44	10,692.41	12,562.77	12,237.38	11,995.23	12,235			
Capita	medium	23,028.27	25,335.94	23,339.32	23,689.54	21,382.62	21,642.92	23,070			
	low	39,094.46	44,774.05	41,220.74	41,387.37	35,009.54	35,913.70	39,567			
Average Appuel Per	high	35	36	29	34	34	33	34			
Canita Per Dav	medium	63	69	64	65	59	59	63			
oupitur er buy	low	107	123	113	113	96	98	108			
	high	3,548,060	3,767,390	2,986,190	3,595,660	3,189,970	3,150,495	3,372,961			
Average Summer Use	medium	17,800,870	22,798,580	19,526,270	20,416,310	16,058,660	16,738,051	18,889,790			
	low	1,455,130	2,068,840	1,733,920	1,830,550	1,298,620	1,424,150	1,635,202			
Average Comments	high	4,697.02	4,961.51	3,887.10	4,733.67	4,199.58	4,165.26	4,441			
Average Summer Use	medium	9,071.61	11,618.52	9,950.90	10,404.48	8,183.75	8,529.98	9,627			
Fer Capita	low	17,076.83	24,218.54	20,286.75	21,414.62	15,206.65	16,666.88	19,145			
	high	39	41	32	39	34	34	36			
Average Summer Use	medium	74	95	82	85	67	70	79			
Per Capita Per Day	low	140	199	166	176	125	137	157			
	high	6,191,030	6,124,660	5,228,050	5,946,930	6,105,450	5,922,386	5,919,751			
Average NonSummer	medium	27,386,640	26,917,180	26,271,600	26,068,770	25,899,648	25,731,040	26,379,146			
Use	low	1,876,140	1,755,930	1,789,240	1,707,296	1,691,130	1,644,600	1,744,056			
	high	8.195.86	8.065.94	6.805.31	7.829.10	8.037.80	7.829.97	7,794			
Average NonSummer	medium	13.956.67	13.717.42	13.388.43	13.285.06	13.198.87	13.112.95	13.443			
Use Per Capita	low	22.017.63	20.555.51	20.933.99	19.972.74	19.802.89	19.246.82	20.422			
	high	34	33	28	32	33	32	32			
Avreage NonSummer	medium	57	56	55	55	54	54	55			
Use Per Capita Per Day	low	91	85	86	82	81	79	84			
Ratio of Summer	high	114%	123%	114%	120%	104%	106%	113%			
to NonSummer Use	medium	129%	169%	148%	156%	123%	130%	143%			
Per Capital Per Dav	low	154%	235%	193%	214%	153%	172%	187%			
	high	15.181	15.357	13.157	15.376	15.430	15.198	14.950			
PremisID Count	medium	61.712	63.234	61.343	62,576	62,380	61.807	62.175			
	low	3.514	3.554	3.477	3,510	3.498	3.478	3,505			
	high	64.153	64.414	62.432	62.062	60,243	59.698	62,167			
Average Annual Use	medium	73.223	78.622	74.659	74.286	67.262	68.712	72.794			
Per PremisID	low	94.800	107.619	101.328	100.793	85.470	88.233	96.374			
	high	175.76	176.48	171.05	170.03	165.05	163.56	170			
Average Annual Use	medium	200.61	215 40	204 54	203 52	184 28	188 25	199			
Per PremisiD Per Day	low	259.73	294.85	277.61	276.15	234.17	241.73	264			
	high	23.372	24.532	22.697	23.385	20.674	20.730	22,565			
Average Summer Use	medium	28 845	36 054	31 831	32 626	25 743	27 081	30 364			
Per PremisID	low	41 410	58 212	49 868	52,020	37 125	40 947	46 619			
	high	191 57	201 08	186 04	191 68	169.46	169 92	185			
Average Summer Use	medium	236.44	295 53	260.91	267.43	211 01	221.98	249			
Per PremisiD Per Day	low	339.42	477 14	408 76	427 48	304 30	335.63	382			
	high	40 781	20 882	29 726	38 677	39 560	38 968	39 602			
Average NonSummer	medium	44,701	42 568	42 827	41 650	41 510	41 631	42 /130			
Use Per PremisID		52 200	19 107	51 /50	/12 6/1	18 316	/7 286	/10 755			
Avere the New York	high	160	45,407	16/	40,041	162	47,200	162			
Average NonSummer	medium	102	104	104 176	171	171	171	103			
Dav	low	201	2/1	210	200	1/1	1/1	20E			
Juj	1000	220	205	212	200	199	192	203			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Frenchtown (PWSID 1011001)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	308	308	308	308	308	308	308		
Population 13-14	medium	534	534	534	534	534	534	534		
	low	316	316	316	316	316	316	316		
Average Annual Use	high	23,440	23,180	22,160	20,410	19,600	20,470	21,543		
(100 gallon)	medium	99,660	103,550	105,820	104,780	97,440	99,200	101,742		
	low	34,670	41,050	38,340	37,900	38,370	38,030	38,060		
Average Annual Per	high	7,607.25	7,522.87	7,191.84	6,623.89	6,361.01	6,643.37	6,992		
Capita	medium	18,668.88	19,397.58	19,822.81	19,627.99	18,253.02	18,582.71	19,059		
	low	10,972.84	12,992.07	12,134.37	11,995.12	12,143.87	12,036.26	12,046		
Average Annual Per	high	21	21	20	18	17	18	19		
Capita Per Dav	medium	51	53	54	54	50	51	52		
	low	30	36	33	33	33	33	33		
	high	8,380	8,830	7,740	7,100	6,910	7,080	7,673		
Average Summer Use	medium	36,530	39,220	39,800	37,910	35,290	35,490	37,373		
	low	12,890	17,410	14,650	14,770	13,650	14,410	14,630		
Average Summer Use	high	2,719.66	2,865.70	2,511.95	2,304.25	2,242.58	2,297.75	2,490		
Per Capita	medium	6,843.01	7,346.91	7,455.56	7,101.52	6,610.72	6,648.19	7,001		
	low	4,079.61	5,510.16	4,636.63	4,674.61	4,320.14	4,560.68	4,630		
Average Summer Use	high	22	23	21	19	18	19	20		
Per Capita Per Dav	medium	56	60	61	58	54	54	57		
	low	33	45	38	38	35	37	38		
Average NonSummer	high	15,060	14,350	14,420	13,310	12,690	13,390	13,870		
Use	medium	63,130	64,330	66,020	66,870	62,150	63,710	64,368		
	low	21,780	23,640	23,690	23,130	24,720	23,620	23,430		
Average NonSummer	high	4,887.60	4,657.17	4,679.89	4,319.65	4,118.43	4,345.61	4,501		
Use Per Capita	medium	11,825.87	12,050.66	12,367.24	12,526.47	11,642.29	11,934.52	12,058		
	low	6,893.24	7,481.91	7,497.74	7,320.50	7,823.73	7,475.58	7,415		
Avreage NonSummer	high	20	19	19	18	17	18	19		
Use Per Capita Per Dav	medium	49	50	51	52	48	49	50		
	low	28	31	31	30	32	31	31		
Ratio of Summer	high	111%	123%	107%	106%	108%	105%	110%		
to NonSummer Use	medium	115%	121%	120%	113%	113%	111%	116%		
Per Capital Per Day	low	118%	147%	123%	127%	110%	122%	124%		
	high	44	44	42	42	42	45	43		
PremisID Count	medium	186	185	185	188	191	190	188		
	low	68	72	72	71	73	69	71		
Average Annual Use	high	53,273	52,682	52,762	48,595	46,667	45,489	49,911		
Per PremisID	medium	53,581	55,973	57,200	55,734	51,016	52,211	54,286		
	low	50,985	57,014	53,250	53,380	52,562	55,116	53,718		
Average Annual Use	high	145.95	144.33	144.55	133.14	127.85	124.63	137		
Per PremisID Per Day	medium	146.80	153.35	156.71	152.70	139.77	143.04	149		
	low	139.69	156.20	145.89	146.25	144.00	151.00	147		
Average Summer Use	high	19,045	20,068	18,429	16,905	16,452	15,733	17,772		
Per PremisID	medium	19,640	21,200	21,514	20,165	18,476	18,679	19,946		
	low	18,956	24,181	20,347	20,803	18,699	20,884	20,645		
Average Summer Use	high	156.11	164.49	151.05	138.56	134.86	128.96	146		
Per PremisID Per Day	medium	160.98	173.77	176.34	165.29	151.45	153.11	163		
	low	155.38	198.20	166.78	170.51	153.27	171.18	169		
Average NonSummer	high	34,227	32,614	34,333	31,690	30,214	29,756	32,139		
Use Per PremisID	medium	33,941	34,773	35,686	35,569	32,539	33,532	34,340		
	low	32,029	32,833	32,903	32,577	33,863	34,232	33,073		
Average NonSummer	high	141	134	141	130	124	122	132		
Use Per PremisID Per	medium	140	143	147	146	134	138	141		
Day	low	132	135	135	134	139	141	136		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Harrison (Gloucester County) (PWSID 0808001)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high	350	350	350	350	350	350	350			
Population 13-14	medium	3,138	3,138	3,138	3,138	3,138	3,138	3,138			
	low	5,625	5,757	5,770	5,770	5,770	5,770	5,744			
Average Annual Use	high		69,350	65,010	64,020	64,770	66,310	65,892			
(100 gallon)	medium		706,040	701,920	701,240	621,270	677,420	681,578			
	low		2,161,120	2,101,100	2,070,150	1,714,270	1,919,620	1,993,252			
Average Annual Per	high	-	19,799.43	18,560.36	18,277.72	18,491.84	18,931.51	15,677			
Capita	medium	-	22,501.20	22,369.89	22,348.22	19,799.61	21,589.09	18,101			
	low	-	37,542.11	36,411.45	35,875.09	29,707.80	33,266.45	28,800			
Average Annual Per	high	-	54	51	50	51	52	43			
Capita Per Day	medium	-	62	61	61	54	59	50			
	low	-	103	100	98	81	91	79			
	high		24,010	21,840	22,640	21,560	21,070	22,224			
Average Summer Use	medium		361,180	329,720	349,370	261,640	279,530	316,288			
	low		1,288,440	1,103,110	1,197,160	803,330	890,980	1,056,604			
Average Summer Use	high	-	6,854.86	6,235.32	6,463.72	6,155.38	6,015.49	5,287			
Per Capita	medium	-	11,510.65	10,508.04	11,134.27	8,338.36	8,908.50	8,400			
	low	-	22,382.26	19,116.57	20,746.43	13,921.47	15,440.42	15,268			
Average Summer Use	high 	-	56	51	53	50	49	43			
Per Capita Per Day	medium	-	94	86	91	68	73	69			
	low	-	183	157	170	114	127	125			
Average NonSummer	high		45,340	43,170	41,380	43,210	45,240	43,668			
Use	medium		344,860	372,200	351,870	359,630	397,890	365,290			
	IOW		872,680	997,990	872,990	910,940	1,028,640	936,648			
Average NonSummer Use Per Capita	nign	-	12,944.57	12,325.04	11,813.99	12,336.46	12,916.02	10,389			
	low	-	10,990.54	17 204 97	11,213.95	11,401.20	17,080.59	9,701			
	low	-	15,159.85	17,294.87 E1	15,128.00	15,780.32 E1	17,820.03	13,533			
Avreage NonSummer	medium			70	45	J1 //7	52	43			
Use Per Capita Per Day	low		45	43 71	40	47	73	40			
Ratio of Summer	high		105%	101%	109%	99%	93%	101%			
to NonSummer Use	medium		209%	176%	198%	1/15%	140%	101%			
Per Capital Per Day	low		205%	220%	273%	176%	173%	227%			
	high		127	125	122	123	120	123			
PremisiD Count	medium		809	816	838	848	850	832			
	low		1 548	1 580	1 589	1 607	1 614	1 588			
	high		54,606	52,008	52,475	52,659	55,258	53,401			
Average Annual Use	medium		87,273	86,020	83,680	73,263	79,696	81,986			
Per PremisiD	low		139,607	132,981	130,280	106,675	118,936	125,696			
	high		149.61	142.49	143.77	144.27	151.39	146			
Average Annual Use	medium		239.10	235.67	229.26	200.72	218.35	225			
rei rieillisid rei day	low		382.49	364.33	356.93	292.26	325.85	344			
A	high		18,906	17,472	18,557	17,528	17,558	18,004			
Average Summer Use	medium		44,645	40,407	41,691	30,854	32,886	38,097			
reirieillisid	low		83,233	69,817	75,340	49,989	55,203	66,717			
	high		154.96	143.21	152.11	143.68	143.92	148			
Per Premisin Per Day	medium		365.94	331.20	341.73	252.90	269.56	312			
	low		682.23	572.27	617.54	409.75	452.49	547			
Avorago NonSummer	high		35,701	34,536	33,918	35,130	37,700	35,397			
Use Per Premisin	medium		42,628	45,613	41,989	42,409	46,811	43,890			
	low		56,375	63,164	54,940	56,686	63,732	58,979			
Average NonSummer	high		147	142	140	145	155	146			
Use Per PremisID Per	medium		175	188	173	175	193	181			
Day	low		232	260	226	233	262	243			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Homestead (Burlington County) (PWSID 0318002)

Density <t< th=""><th colspan="12">Year-Long Users</th></t<>	Year-Long Users											
bigh iow 1,645 1,645 1,645 1,645 1,645 1,645 1,645 1,645 1,645 1,645 3,18 33		Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
Population 13-14 medium (100 gallon) (100 g		high	1,645	1,645	1,645	1,645	1,645	1,645	1,645			
low 8 3	Population 13-14	medium	318	318	318	318	318	318	318			
Average Annual Use (100 galio) high medium low 335,800 314,870 307,770 297,880 132,220 133,890 132,220 133,890 151,142 Average Annual Per Capits high high 2,358,81 19,140,27 18,708,77 18,083,17 17,2300 18,711 Average Annual Per Capits high medium 55,500,4 48,971,07 50,135,56 41,343,61 41,439,70 47,479 Average Annual Per Capits high 55 52 51 50 47,71 51,44 110 2,140 9,480,80 6,530 6,511 6,562,9 5,832,959 5,521 4,170 6,421 16,60 80,800 6,514,80 6,514,80 6,514,8 6,534,82 2,947,66 5,507,7 7,513,832 2,947,66 5,507,7 7,513,812 5,550,94 4,230,917,93		low	8	8	8	8	8	8	8			
Nerage fund galon (100 galon) medium bw 176,680 155,320 159,600 132,220 133,890 151,120 Average Annual Per Capita high medium 20,385,81 19,140,27 18,708,67 18,083,17 17,237,00 16,991 Average Annual Per Capita high medium 155,500,94 48,791,07 50,355,56 41,534,61 41,440,95 47,479 Average Annual Per Capita Per Day medium high medium 152 134 137 114 111 113 Average Summer Use Per Capita high high 120,560 109,200 102,480 99,630 95,950 105,636 Average Summer Use Per Capita high high 7,322,88 6,638,03 6,513,83 19,250,21 4,110 2,190 2,430 4,178 Average Summer Use Per Capita high high 2,324,253 6,638,03 6,513,83 9,520,210 19,30,57 53,344 Ow 69,29 518 409 218 242 445 Ow 69,29 50,500 26,500 20,439 <td>Average Appual Use</td> <td>high</td> <td></td> <td>335,360</td> <td>314,870</td> <td>307,770</td> <td>297,480</td> <td>283,560</td> <td>307,808</td>	Average Appual Use	high		335,360	314,870	307,770	297,480	283,560	307,808			
low 9.270 8.270 6.960 4.900 5.570 6.994 Average Annual Per Capita high medium 20.385.81 19.140.27 18.708.67 18.083.17 17.237.00 18.711 Average Annual Per Capita Per Day medium high 55.500.94 48.971.07 50.135.56 41.346.61 41.430.95 47.479 Average Annual Per Capita Per Day medium medium 112.523 134 114 114 130 Average Summer Use Per Capita Per Capita Per Day 18.2 23.258 6.6360 52.124 6.056.29 5.832.59 6.421 Average Summer Use medium high 0.00 84.365.75 6.3243.96 49.38111 2.584.32 2.930.57 2.534 Average NonSummer Use high 0.60 54 53 50 48 50.717 Average NonSummer Use high 2.24,820 2.004 2.005.670 2.04,930 1.97,850 1.87,610 2.02,177 Ave	(100 gallon)	medium		176,680	155,320	159,600	132,220	131,890	151,142			
Average Annual Per Capits high medium 20.388.81 19.40.27 18.708.77 18.088.17 17.237.00 18.71 Average Annual Per Capits Per Day iow 112.528.13 10.038.17 84.487.14 59.408.06 67.613.99 48,4900 Average Annual Per Capits Per Day high iow 30.388.17 84.487.14 59.408.06 67.613.99 48,4900 Average Summer Use high ingh 120.560 109.200 102.840 99,630 95,950 105.636 Average Summer Use nigh 7.325.85 6.638.03 6.635.03 6.635.03 6.635.29 5.832.59 6.421 Average Summer Use nigh 7.325.85 6.638.03 6.217.24 1600 125.934 Per Capits Per Day nedium 224,800 226.170 13.00 221.8 203.01 20.172 13.00 221.90 2.021.72 Average NonSummer Use high 224.90 205.670 220.99 177.80 177.00 172.290 173.00 22.845 Average NonSummer Use <	(low		9,270	8,270	6,960	4,900	5,570	6,994			
Noting Amount of the section	Average Appual Per	high		20,385.81	19,140.27	18,708.67	18,083.17	17,237.00	18,711			
Iow 112,528,13 100,380,17 64,487,14 59,480,39 76,161,39 84,900 Average Annual Per Day Capita Per Day high medium 56 52 51 50 47 51 Average Summer Use Per Capita high 120,520 102,280 99,630 95,950 105,636 Average Summer Use Per Capita high 120,550 5,210 4,110 2,130 4,437.34 Merage Summer Use Per Capita medium 35,148,29 26,608.07 26,135.83 19,529.62 19,350.57 25,334 Mverage Nonsummer Use Per Capita high 600 54 51 26,066.07 26,135.83 19,529.62 19,350.57 25,394 Average Nonsummer Use Per Capita high 600 54 51 20 44 51 Mereage Nonsummer Use Per Capita medium 224,800 20,607 20,4930 19,7850 18,761.02 20,170 20,200 70,302 Mereage Nonsummer Use Per Capita medium 20,352.65 21,983.00 22,997.33	Capita	medium		55,500.94	48,791.07	50,135.56	41,534.61	41,430.95	47,479			
Average Annual Per Capita Per Day low high medium low 56 52 51 50 47 51 Average Summer Use Per Capita high high 120,250 109,200 102,840 99,530 95,950 105,636 Average Summer Use Per Capita high 111,890 83,200 62,7170 61,600 80,840 Average Summer Use Per Capita high 7,328,58 66,360,87 513,83 195,950 193,507,72 52,344 Average Summer Use Per Capita Per Day high 600 54 51 50 48 53 Medium 23,548,29 63,803,07 56,303,07 70,350 70,500 70,290 70,302 Medium 248,365,75 63,243,96 49,891,11 26,584,32 29,497,66 50,717 Average NonSummer Use high 214,800 205,670 204,930 170,80 70,200 70,302 70,020 70,302 70,020 70,302 70,020 70,302 140,414 12,290 94,44 151 140,414		low		112,528.13	100,389.17	84,487.14	59,480.89	67,613.99	84,900			
Nerge Name medium 152 134 137 114 114 130 Capita Per Day Nee dium ibig 120,560 109,200 102,840 99,530 95,950 105,636 Average Summer Use medium ibig 7,328,58 6,638.03 6,251.42 6,056.29 5,832.99 6,421 Average Summer Use medium ibig 7,328,58 6,638.03 6,251.42 6,056.29 5,832.99 6,421 Average Summer Use medium ibig 6,0 54 15 50 48 53 Average NonSummer Use ibig 6,0 54 15 50 48 53 ibig 214,800 205,670 204,930 197,880 187,610 202,127 medium 20,320 3,060 2,850 2,710 3,140 2,280 Average NonSummer Use high 13,057,73 12,902.31 24,947,52 12,026.87 14,144 12,290 ibw 12,862.38 37,145.21 34,956.0 32,896	Average Annual Per	high		56	52	51	50	47	51			
Iow 308 275 231 163 185 233 Average Summer Use Per Capita high 120,560 109,200 102,840 99,630 95,950 105,636 Average Summer Use Per Capita high 7,328,58 6,638.03 6,251.42 6,050.9 5,832.0 4,110 Average Summer Use Per Capita medium 35,148.29 26,808.07 26,158.38 19,529.62 19,350.57 25,394 Iow 84,365.75 63,243.96 49,891.11 26,584.32 29,497.66 50,717 Average NonSummer Use high 0.00 692 518 409 218 242 416 Average NonSummer Use high 214,800 205,670 20,493 197,000 70,200 70,302 Iow 2,320 3,060 2,2850 2,710 3,140 2,816 Average NonSummer Use Per Capita high 130,57.23 12,502.23 12,427.25 12,006.87 14,444.41 12,200 Iow 28,162.38 37	Capita Per Dav	medium		152	134	137	114	114	130			
Average Summer Use medium high medium 112,950 109,200 102,840 99,301 95,950 105,630 Average Summer Use Per Capita high 7,328,58 6,638.03 6,217.0 61,600 80,840 Average Summer Use Per Capita high 7,328,58 6,638.03 6,251.42 6,056.29 5,832.59 6,431.78 Average Summer Use Per Capita Per Day high 600 54 51 50 44.8 53 Average NonSummer Use high 602 518 409 128 220 124 160 159 208 Average NonSummer Use high 21,4800 205,670 204,930 197,850 187,610 202,172 Average NonSummer Use Per Capita high 13,057,23 12,502,23 12,457,25 12,006.87 11,404.41 12,290 10w 28,162.38 37,1452.13 34,590.599,797 22,004.99 22,080.38 22,044 10w 1016 153 142 135 141 12,459 14,		low		308	275	231	163	185	233			
Average Summer Use Per Capita Per PermisiD Count Per PremisiD Count Per PremisiD Per Pre		high		120,560	109,200	102,840	99,630	95,950	105,636			
Iow 6,950 5,210 4,110 2,190 2,430 4,178 Average Summer Use Per Capita high 7,328,58 6,638.03 6,521.42 6,056.29 5,832.59 6,421 Average Summer Use Per Capita Per Day high 6.0 54 51 5.0 48 53 Average NonSummer Use medium 228 220 214 160 159 208 Average NonSummer Use high 214,800 205,670 204,930 197,850 187,610 202,173 Average NonSummer Use Per Capita high 214,800 205,670 204,930 197,850 187,610 202,173 Average NonSummer Use Per Capita high 13,057.23 12,502.23 12,457.25 12,026.87 11,404.41 12,290 Iow 28,162.38 37,145.11 34,596.03 32,986.75 38,116.32 23,483 Average NonSummer high 54 51 51 49 47 51 Iow 116 153 <td< td=""><td>Average Summer Use</td><td>medium</td><td></td><td>111,890</td><td>85,340</td><td>83,200</td><td>62,170</td><td>61,600</td><td>80,840</td></td<>	Average Summer Use	medium		111,890	85,340	83,200	62,170	61,600	80,840			
Average Summer Use Per Capita Iow high medium 7,328.58 6,638.03 6,251.42 6,056.29 5,832.59 6,421 Average Summer Use Per Capita Per Day Iow 64,365.75 63,243.92 26,808.07 26,135.83 19,529.62 19,350.57 25,394 Average Summer Use Per Capita Per Day Iow high 60 54 51 50 48 53 Average NonSummer Use high 64,790 69,980 76,400 70,050 70,290 70,030 Average NonSummer Use Per Capita high 13,057.23 12,457.25 12,026.87 31,440 22,980.38 22,084.38 Average NonSummer Use Per Capita Per Day Iow 0,352.65 21,983.00 23,999.73 22,004.99 20,080.38 22,084.33 Average NonSummer Use Per Capita Per Day Iow 116 153 142 135 157 141 Os Nommer Use Per Capital Per Day Iow 165 168 170 165 100 1028 1044 0 956 941 943 952 929 944 <td></td> <td>low</td> <td></td> <td>6,950</td> <td>5,210</td> <td>4,110</td> <td>2,190</td> <td>2,430</td> <td>4,178</td>		low		6,950	5,210	4,110	2,190	2,430	4,178			
Netrage Summer Use Per Capita Netrage Summer Use Per Capita Per Day medium high medium 35,148.29 26,808.07 26,135.83 19,529.62 19,350.57 25,394 Average Summer Use Per Capita Per Day high medium 288 220 214 160 159 208 Average NonSummer Use high medium 248,400 205,670 204,930 197,850 187,610 202,172 Merage NonSummer Use Per Capita high medium 64,720 69,980 76,400 70,050 70,290 70,302 Average NonSummer Use Per Capita high medium 20,352.65 21,980,00 32,997,37 22,004.99 22,003.98 22,004.91 22,003.98 22,004.91 22,003.98 22,004.91 90 91	Average Summer Use	high		7,328.58	6,638.03	6,251.42	6,056.29	5,832.59	6,421			
Iow 84,365.75 63,243.96 49,891.11 26,584.32 29,497.66 50,717 Average Summer Use Per Capita Per Day Use high medium 60 54 51 50 448 53 Average NonSummer Use high medium 6292 518 409 218 242 4160 Average NonSummer Use Per Capita high medium 64,790 69,980 76,400 70,050 70,290 70,302 Average NonSummer Use Per Capita high medium 13,057.23 12,502.23 12,457.25 12,026.87 11,404.41 12,290 Average NonSummer Use Per Capita high medium 28,162.38 37,145.21 34,590.03 32,999.73 32,004.99 22,080.38 22,084.31 Average NonSummer Use Per Capital Per Day high medium 84 90 99 91 91 91 10w 116 153 142 1035 157 1414 Ratio of Summer to NoSummer Use medium 165 168 100% 100% 102% 104%	Per Capita	medium		35,148.29	26,808.07	26,135.83	19,529.62	19,350.57	25,394			
Average Summer Use Per Capita Per Day high medium 288 220 214 160 159 208 Average NonSummer Use high medium 214,800 205,670 204,930 197,850 187,610 202,172 Average NonSummer Use Per Capita high medium 2,320 3,060 2,850 2,710 3,140 228,123 Average NonSummer Use Per Capita high medium 20,352.65 21,983.00 23,299.73 22,004.99 22,080.38 22,084.41 Average NonSummer Use Per Capita Per Day high medium 44 90 99 91 91 91 Migh Use Per Capita Per Day high medium 112% 10% 100% 100% 100% 102% Per Capita Per Day high medium 112% 10% 100% 100% 100% 102% 1044 Per Capital Per Day high medium 344% 390 292 924 Medium 146% 996 941 943 952 929 944 Per PermisI		low		84,365.75	63,243.96	49,891.11	26,584.32	29,497.66	50,717			
Per Capita Per Day medium 288 220 214 160 159 208 Average NonSummer Use high medium 214,800 205,670 204,930 197,850 187,610 202,172 Average NonSummer Use Per Capita high medium 214,800 205,670 204,930 17,850 187,610 202,172 Average NonSummer Use Per Capita high medium 20,352.65 21,980,30 23,999,73 22,004.99 22,080,38 22,084 Avreage NonSummer Use Per Capita high medium 20,352.65 21,980,03 32,896,57 38,116.32 34,183 Avreage NonSummer Use Per Capita Per Day high medium 54 51 49 47 51 Migh 51 49 477 51 49 47 51 Migh 54 51 51 49 47 51 Migh 51 57 3411 53 57 141 Ratio of Summer medium 112% 100% 1000% 100%	Average Summer Use	high		60	54	51	50	48	53			
Iow 692 518 409 218 242 416 Average NonSummer Use high medium 214,800 205,670 204,930 197,850 187,610 202,172 Average NonSummer Use Per Capita high medium 13,057.23 12,502.23 12,457.25 12,026.87 11,404.41 12,290 Average NonSummer Use Per Capita high medium 23,52.65 21,983.00 23,999.73 22,004.99 22,080.38 22,084 Avreage NonSummer Use Per Capita Per Day high medium 54 51 54 99 91 91 91 Nonsummer Use Per Capital Per Day high medium 112% 100% 100% 100% 100% 100% 102% 1044 Vonsummer Use Per Capital Per Day high medium 112% 100% 100% 100% 100% 100% 102% 104% Vertage Annual Use Per PremisD Count high 956 941 943 952 929 944 Migh 9556 941 943 952<	Per Capita Per Dav	medium		288	220	214	160	159	208			
Average NonSummer Use high medium low 214,800 205,670 204,930 197,850 187,610 202,172 Average NonSummer Use Per Capita high medium 2,320 3,060 2,850 2,710 3,140 2,816 Average NonSummer Use Per Capita high medium 20,352.65 21,983.00 23,999.73 22,008.79 38,116.32 34,183 Average NonSummer Use Per Capita Per Day high medium 54 51 51 49 47 51 Ber Capita Per Day high medium 54 51 51 49 47 51 Ber Capita Per Day high medium 544 50 99 99 191 91 Iow 116 153 142 135 157 141 NonSummer Use Per Capital Per Day medium 344% 243% 217% 177% 175% 231% Per MemisD Count high 350,77 37,77 7 7 7 7 7 7 7 7 7	r or ouphur or buy	low		692	518	409	218	242	416			
Average NonSummer Use medium low 64,790 69,980 76,400 70,050 70,290 70,302 Average NonSummer Use Per Capita inigh medium 13,057.23 12,502.23 12,457.25 12,004.99 22,004.99 22,008.38 22,004 Avreage NonSummer Use Per Capita high medium 20,352.65 21,983.00 32,999.73 22,004.99 22,008.38 22,004 Avreage NonSummer Use Per Capita Per Day high medium 54 51 49 47 51 Medium 844 90 99 91 91 91 91 Medium 0.w 1112% 106% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 102% 100% 1	Averege NenSummer	high		214,800	205,670	204,930	197,850	187,610	202,172			
Iow 2,320 3,060 2,850 2,710 3,140 2,816 Average NonSummer Use Per Capita high nedium 13,057.23 12,502.23 12,457.25 12,026.87 11,404.41 12,290 Avreage NonSummer Use Per Capita Per Day high nedium 28,16.38 37,145.21 34,596.03 38,116.32 34,183 Avreage NonSummer Use Per Capita Per Day high nedium 84 90 99 91 91 91 91 Ratio of Summer to NonSummer Use Per Capital Per Day high 1112% 106% 100% 102% 104% Medium 344% 243% 217% 177% 175% 231% Per Capital Per Day low 597% 339% 287% 161% 154% 308% Per PremisID Count medium 344% 243% 217% 177% 175% 231% Negla Annual Use Per PremisID high 950 941 943 952 929 944 10vv 132,429 118,143 99	Average NonSummer	medium		64,790	69,980	76,400	70,050	70,290	70,302			
Average NonSummer Use Per Capitahigh13,057.2312,502.2312,457.2512,026.8711,404.4112,290Medium20,352.6521,983.0023,999.7322,004.9922,080.3822,084Avreage NonSummer Use Per Capita Per Dayhigh medium5451515494751Avreage NonSummer Use Per Capita Per Dayhigh medium8490999191911Ratio of Summer to NonSummer Use mediumhigh medium112%100%100%100%102%104%Per Capita Per Dayhigh medium112%106%100%100%102%104%PremisID Count mediumhigh medium955941943952929944Migh medium1055168170168170168Nerge Annual Use Per PremisIDhigh medium95193,82233,23332,590Average Annual Use Per PremisID Per Dayhigh medium35,07933,46132,63731,24830,52332,590Average Annual Use Per PremisID Per Dayhigh medium961.1191.6789.4285.6183.6389Medium Medium0093.73253.29257.21219.54212.55247Average Summer Use Per PremisIDhigh medium67.82323.68272.41191.78218.00274Average Summer Use Per PremisIDhigh medium67.82323.68272.41<		low		2,320	3,060	2,850	2,710	3,140	2,816			
Average Nonsummer Use Per Capita medium 20,352.65 21,983.00 23,999.73 22,004.99 22,080.38 22,084 Avreage Nonsummer Use Per Capita Per Day high medium 54 51 51 49 47 51 Marcia Consummer Use Per Capita Per Day high medium 84 90 99 91 91 91 Non Summer Use NonSummer Use Per Capital Per Day high medium 112% 106% 100% 100% 102% 104% Per Capital Per Day low 597% 339% 287% 1611% 154% 308% Per Capital Per Day low 597% 339% 287% 1611% 154% 308% Per PremisD Count high 956 941 943 952 929 944 Medium 1067/079 33,461 32,637 31,248 30,523 32,590 Medium 107,079 92,452 93,882 80,133 77,582 90,226 Per PremisD high 96.11 9	Average NenSummer	high		13,057.23	12,502.23	12,457.25	12,026.87	11,404.41	12,290			
Iow 28,162.38 37,145.21 34,596.03 32,896.57 38,116.32 34,183 Avreage NonSummer Use Per Capita Per Day high medium 54 51 51 49 477 51 More all for Summer high medium 844 90 99 91 91 91 Ratio of Summer high medium 116 153 142 135 157 141 No NoSummer Use Per Capital Per Day medium 344% 243% 217% 177% 175% 231% PremisD Count medium 3444% 243% 217% 161% 154% 308% PremisD Count medium 165 168 170 165 170 168 Iow 7 7 7 7 7 90,226 Per PremisD high medium 107,079 92,425 93,822 80,133 77,582 90,226 Per PremisD Per Day high medium 293,37 253,29 257,21 219,54 212,55	Use Per Capita	medium		20,352.65	21,983.00	23,999.73	22,004.99	22,080.38	22,084			
Avreage NonSummer Use Per Capita Per Day high medium low 54 51 51 49 47 51 Ratio of Summer to NonSummer Use Per Capital Per Day low 116 153 142 135 157 141 Ratio of Summer to NonSummer Use Per Capital Per Day medium 344% 243% 217% 177% 175% 231% Per Capital Per Day low 597% 339% 287% 161% 154% 308% PremisID Count medium 1655 041 943 952 929 944 Medium 1655 168 170 165 170 168 low 7 7 7 7 7 7 7 Average Annual Use Per PremisID Per Day high medium 35,079 33,461 32,637 31,248 30,523 32,590 Meedium Per PremisID Per Day low 132,429 118,143 99,429 70,000 79,571 99,914 Average Summer Use Per PremisID Per Day high medium		low		28,162.38	37,145.21	34,596.03	32,896.57	38,116.32	34,183			
Mericage Nonsummer Use Per Capita Per Day medium low 84 90 99 91 91 91 Ratio of Summer to NonSummer Use medium high medium 112% 106% 100% 100% 102% 104% Per Capital Per Day low 597% 339% 217% 177% 175% 231% Per Capital Per Day low 597% 339% 287% 161% 154% 308% PremisiD Count medium 1655 168 170 165 170 168 low 7	Auroogo NonSummor	high		54	51	51	49	47	51			
Iow 116 153 142 135 157 141 Ratio of Summer to NonSummer Use Per Capital Per Day high medium 112% 106% 100% 100% 102% 104% Per Capital Per Day low 597% 333% 287% 161% 154% 308% PremisID Count high medium 956 941 943 952 929 944 Average Annual Use Per PremisID high medium 35,079 33,461 32,637 31,248 30,523 32,529 92,944 Average Annual Use Per PremisID high medium 35,079 33,461 32,637 31,248 30,523 32,529 92,71 99,914 Average Annual Use Per PremisID high medium 96,11 91,67 89,42 85,61 83,63 89 Average Summer Use Per PremisID high medium 02,61 91,67 89,42 85,71 91,78 218.00 274 Average Summer Use Per PremisID high medium 67,812 50,798 48,941	Use Per Capita Per Dav	medium		84	90	99	91	91	91			
Ratio of Summer to NonSummer Use Per Capital Per Day high medium 112% 106% 100% 100% 102% 104% Per Capital Per Day low 597% 339% 287% 161% 154% 308% Per Capital Per Day low 597% 339% 287% 161% 154% 308% PremisD Count medium 165 168 170 165 170 168 low 7 9 9.126 bigh 35,079 33,461 32,637 31,248 30,523 32,599 9 9.265 94,128 80,133 77,582 90,226 biow 132,429 111,675		low		116	153	142	135	157	141			
to NonSummer Use Per Capital Per Day medium 344% 243% 217% 177% 175% 231% Per Capital Per Day low 597% 339% 287% 161% 154% 308% Premisid Count medium 165 941 943 952 929 944 Medium 165 168 170 165 170 168 low 7 7 7 7 7 7 7 Average Annual Use Per Premisid Per Day high medium 35,079 33,461 32,637 31,248 30,523 32,590 Meedium 107,079 92,452 93,882 80,133 77,582 90,226 low 132,429 118,143 99,429 70,000 79,571 99,914 Average Annual Use Per Premisid Per Day high 96.11 91.67 89.42 85.61 83.63 89 Medium 293.37 253.29 257.21 219.54 212.55 247 o	Ratio of Summer	high		112%	106%	100%	100%	102%	104%			
Per Capital Per Daylow597%339%287%161%154%308%PremislD Countmedium956941943952929944PremislD Countmedium165168170165170168low07777777777Average Annual Use Per PremislDhigh medium35,07933,46132,63731,24830,52332,590Average Annual Use Per PremislD Per Dayhigh medium000132,429118,14399,42970,00079,57199,914Average Annual Use Per PremislD Per Dayhigh medium96.1191.6789.4285.6183.63889Average Summer Use Per PremislDhigh medium00362.82323.68272.41191.78218.00274Iow362.82323.68272.41191.78218.00274118.33Average Summer Use Per PremislDhigh medium67,81250,79848,94137,67936,23548,293Iow99,28674,42958,71431,28634,71459,686Per PremislD Per Dayhigh medium103.3795.1289.3985.7884.6692Medium555.84416.37401.16308.84297.01396Iow813.82610.07481.26256.44284.54489Iow813.82610.07481.26256.44284.54489	to NonSummer Use	medium		344%	243%	217%	177%	175%	231%			
highinighi	Per Capital Per Day	low		597%	339%	287%	161%	154%	308%			
PremisiD Count medium 165 168 170 165 170 168 low 7 77 77 77 77 77 77 Average Annual Use Per PremisiD high medium 107,079 92,452 93,862 80,133 77,582 90,226 Iow 132,429 118,143 99,429 70,000 79,571 99,914 Average Annual Use Per PremisiD Per Day high 96.11 91.67 89.42 85.61 83.63 89 Average Summer Use Per PremisiD high medium 293.37 253.29 257.21 219.54 212.55 247 Iow 362.82 323.68 272.41 191.78 218.00 274 Average Summer Use Per PremisiD high medium 67,812 50,798 48,941 37,679 36,235 48,293 Iow 99,286 74,429 58,714 31,286 34,714 59,686 Per PremisiD high medium 555.84 416.37 401.16 308.84<		high		956	941	943	952	929	944			
Iow Image I	PremisID Count	medium		165	168	170	165	170	168			
Average Annual Use Per PremisiD high medium how 35,079 33,461 32,637 31,248 30,523 32,590 Average Annual Use Per PremisiD Per Day high 107,079 92,452 93,882 80,133 77,582 90,226 Average Annual Use Per PremisiD Per Day high 96.11 91.67 89.42 85.61 83.63 889 Average Summer Use Per PremisiD high 293.37 253.29 257.21 219.54 212.55 247 Average Summer Use Per PremisiD high 12,611 11,605 10,906 10,465 10,328 11,183 Average Summer Use Per PremisiD Per Day high 103.37 95.12 89.39 85.78 84.66 92 Average Summer Use Per PremisiD Per Day high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Now 813.82 610.07 481.26 256.44 284.54 489 Iow		low		7	7	7	7	7	7			
Average Annual Use Per Premision medium low 107,079 92,452 93,882 80,133 77,582 90,226 Average Annual Use Per Premision Per Day high 96.11 91.67 89.42 85.61 83.63 89 Average Annual Use Per Premision Per Day high 96.11 91.67 89.42 85.61 83.63 89 Average Summer Use Per Premision high 12,611 11,605 10,906 10,465 10,328 11,183 Average Summer Use Per Premision high 12,611 11,605 10,906 10,465 10,328 11,183 Average Summer Use Per Premision high 103.37 95.12 89.39 85.78 84.66 92 Average NonSummer Use Per Premision Per Day high 103.37 95.12 89.39 85.78 84.66 92 Average NonSummer Use Per Premision Per Day high 22,469 21,857 21,732 20,783 20,195 21,407 Use Per Premision high medium 39,267 41,655 44,941		high		35,079	33,461	32,637	31,248	30,523	32,590			
Iow 132,429 118,143 99,429 70,000 79,571 99,914 Average Annual Use Per PremisID Per Day high 96.11 91.67 89.42 85.61 83.63 89 Medium 293.37 253.29 257.21 219.54 212.55 247 Iow 362.82 323.68 272.41 191.78 218.00 274 Average Summer Use Per PremisID high medium 67,812 50,798 48,941 37,679 36,235 48,293 Iow 99,286 74,429 58,714 31,286 34,714 59,686 Per PremisID Per Day high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43	Average Annual Use Per PremisiD	medium		107,079	92,452	93,882	80,133	77,582	90,226			
Average Annual Use Per PremisID Per Day high 96.11 91.67 89.42 85.61 83.63 89 Per PremisID Per Day medium 293.37 253.29 257.21 219.54 212.55 247 Iow 362.82 323.68 272.41 191.78 218.00 274 Average Summer Use Per PremisID high 12.611 11.605 10.906 10.465 10.328 11.183 Average Summer Use Per PremisID Per Day medium 67.812 50.798 48.941 37.679 36.235 48.293 Iow 99.286 74.429 58.714 31.286 34,714 59.686 Average Summer Use high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Iow 83.9267 21,857 21,732 20,783 20,195 21,40	r er r termab	low		132,429	118,143	99,429	70,000	79,571	99,914			
Average Annual ose Per PremisID Per Day medium 293.37 253.29 257.21 219.54 212.55 247 low 362.82 323.68 272.41 191.78 218.00 274 Average Summer Use Per PremisID high medium 12,611 11,605 10,906 10,465 10,328 11,183 Average Summer Use Per PremisID high medium 67,812 50,798 48,941 37,679 36,235 48,293 Iow 99,286 74,429 58,714 31,286 34,714 59,686 Average Summer Use Per PremisID Per Day high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Use Per PremisID high medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43.714 40.714 38,714		high		96.11	91.67	89.42	85.61	83.63	89			
Iow 362.82 323.68 272.41 191.78 218.00 274 Average Summer Use Per PremisID high medium low 12,611 11,605 10,906 10,465 10,328 11,183 Average Summer Use Per PremisID high nedium 0 99,286 74,429 58,714 31,286 34,714 59,686 Average Summer Use Per PremisID Per Day high nedium 103.37 95.12 89.39 85.78 84.66 92 Average NonSummer Use Per PremisID high nedium 22,469 21,857 21,732 20,783 20,195 21,407 Medium Use 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43,714 40.714 38,714 44.857 40.229	Per Premisin Per Dav	medium		293.37	253.29	257.21	219.54	212.55	247			
Average Summer Use Per PremisiD high medium 12,611 11,605 10,906 10,465 10,328 11,183 Medium 67,812 50,798 48,941 37,679 36,235 48,293 Iow 99,286 74,429 58,714 31,286 34,714 59,686 Average Summer Use Per PremisID Per Day high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Medium 22,469 21,857 21,732 20,783 20,195 21,407 Medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43,714 40.714 38,714 44.857 40.229		low		362.82	323.68	272.41	191.78	218.00	274			
Average Summer Use Per PremisiD medium low 67,812 50,798 48,941 37,679 36,235 48,293 Average Summer Use Per PremisiD Per Day high 103.37 95.12 89.39 85.78 84.66 92 Average NonSummer Use Per PremisiD high 22,469 21,857 21,732 20,783 20,195 21,407 Medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43,714 40.714 38,714 44.857 40.229	Average Summer Llee	high		12,611	11,605	10,906	10,465	10,328	11,183			
Iow 99,286 74,429 58,714 31,286 34,714 59,686 Average Summer Use Per PremisID Per Day high 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Average NonSummer Use Per PremisID high medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43.714 40.714 38,714 44.857 40.229	Average Summer Use Per PremisiD	medium		67,812	50,798	48,941	37,679	36,235	48,293			
Average Summer Use Per PremisID Per Day high medium 103.37 95.12 89.39 85.78 84.66 92 Medium 555.84 416.37 401.16 308.84 297.01 396 Iow 813.82 610.07 481.26 256.44 284.54 489 Average NonSummer Use Per PremisID high medium 22,469 21,857 21,732 20,783 20,195 21,407 Iow 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43,714 40.714 38,714 44.857 40.229	r er r termab	low		99,286	74,429	58,714	31,286	34,714	59,686			
Average Summer Ose Per PremisID Per Day medium 555.84 416.37 401.16 308.84 297.01 396 low 813.82 610.07 481.26 256.44 284.54 489 Average NonSummer Use Per PremisID high medium 39,267 41,655 44,941 42,455 41,347 41,933 low 33,143 43.714 40.714 38,714 44.857 40.229	Assessed Commence likes	high		103.37	95.12	89.39	85.78	84.66	92			
Iow 813.82 610.07 481.26 256.44 284.54 489 Average NonSummer Use Per PremisID high medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43.714 40.714 38,714 44.857 40.229	Average Summer Use	medium		555.84	416.37	401.16	308.84	297.01	396			
Average NonSummer Use Per PremisID high medium 22,469 21,857 21,732 20,783 20,195 21,407 Image: NonSummer Use Per PremisID 39,267 41,655 44,941 42,455 41,347 41,933 Image: NonSummer Use Per PremisID 0w 33,143 43,714 40,714 38,714 44,857 40,229	rei riemisio rei Day	low		813.82	610.07	481.26	256.44	284.54	489			
Average NonSummer Use Per PremisID medium 39,267 41,655 44,941 42,455 41,347 41,933 Iow 33,143 43.714 40.714 38.714 44.857 40.229		high		22,469	21,857	21,732	20,783	20,195	21,407			
low 33,143 43,714 40,714 38,714 44,857 40,229	Average NonSummer	medium		39,267	41,655	44,941	42,455	41,347	41,933			
	Use Per Premisid	low		33,143	43,714	40,714	38,714	44,857	40,229			
Average NonSummer high 92 90 89 86 83 88	Average NonSummer	high		92	90	89	86	83	88			
Use Per PremisiD Per medium 162 171 185 175 170 173	Use Per PremisID Per	medium		162	171	185	175	170	173			
Day low 136 180 168 159 185 166	Day	low		136	180	168	159	185	166			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Jamesburg (now part of PWSID 2004002)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	2,988	2,988	2,988	2,988	2,988	2,988	2,988		
Population 13-14	medium	3,754	3,754	3,754	3,754	3,754	3,754	3,754		
	low	517	517	520	520	520	520	519		
	high	325,260	336,040	338,740	326,230	318,200	311,005	325,913		
(100 gallon)	medium	617,340	664,860	645,200	617,380	590,140	589,150	620,678		
(ree ganeri)	low	82,350	87,420	80,240	78,780	76,110	73,910	79,802		
Average Appual Per	high	10,885.42	11,246.19	11,336.55	10,917.88	10,649.14	10,408.35	10,907		
Capita	medium	16,446.10	17,712.05	17,188.30	16,447.17	15,721.49	15,695.11	16,535		
	low	15,938.58	16,919.87	15,442.04	15,161.07	14,647.23	14,223.84	15,389		
Average Appual Per	high	30	31	31	30	29	29	30		
Capita Per Dav	medium	45	49	47	45	43	43	45		
	low	44	46	42	42	40	39	42		
	high	111,140	116,220	117,630	115,200	111,220	103,305	112,453		
Average Summer Use	medium	232,720	272,030	255,240	251,250	226,380	221,090	243,118		
	low	33,630	38,320	33,850	35,060	30,940	28,710	33,418		
Average Summer Use	high	3,719.50	3,889.51	3,936.70	3,855.38	3,722.18	3,457.29	3,763		
Per Capita	medium	6,199.72	7,246.95	6,799.66	6,693.37	6,030.82	5,889.90	6,477		
	low	6,508.98	7,416.72	6,514.37	6,747.23	5,954.35	5,525.19	6,444		
Average Summer Use	high	30	32	32	32	31	28	31		
Per Capita Per Dav	medium	51	59	56	55	49	48	53		
	low	53	61	53	55	49	45	53		
Average NonSummer	high	214,120	219,820	221,110	211,030	206,980	207,700	213,460		
Use	medium	384,620	392,830	389,960	366,130	363,760	368,060	377,560		
	low	48,720	49,100	46,390	43,720	45,170	45,200	46,383		
Average NonSummer	high	7,165.91	7,356.68	7,399.85	7,062.50	6,926.96	6,951.06	7,144		
Use Per Capita	medium	10,246.38	10,465.09	10,388.64	9,753.80	9,690.66	9,805.22	10,058		
•	low	9,429.60	9,503.15	8,927.67	8,413.83	8,692.88	8,698.66	8,944		
Avreage NonSummer	high	29	30	30	29	29	29	29		
Use Per Capita Per Day	medium	42	43	43	40	40	40	41		
	low	39	39	37	35	36	36	37		
Ratio of Summer	high	103%	105%	106%	109%	107%	99%	105%		
to NonSummer Use	medium	121%	138%	130%	137%	124%	120%	128%		
Per Capital Per Day	low	137%	155%	145%	160%	136%	127%	143%		
	high	600	604	602	589	584	574	592		
PremisID Count	medium	889	900	895	882	869	861	883		
	low	110	110	110	109	110	110	110		
Average Annual Use	high	54,210	55,636	56,269	55,387	54,486	54,182	55,028		
Per PremisID	medium	69,442	73,873	72,089	69,998	67,910	68,426	70,290		
	low	74,864	79,473	72,945	72,275	69,191	67,191	72,656		
Average Annual Use	high	148.52	152.43	154.16	151.75	149.28	148.44	151		
Per PremisID Per Day	medium	190.25	202.39	197.51	191.77	186.06	187.47	193		
	IOW	205.11	217.73	199.85	198.01	189.56	184.08	199		
Average Summer Use	high	18,523	19,242	19,540	19,559	19,045	17,997	18,984		
Per PremisID	medium	26,178	30,226	28,518	28,486	26,051	25,678	27,523		
	IOW	30,573	34,836	30,773	32,165	28,127	26,100	30,429		
Average Summer Use	high	151.83	157.72	160.16	160.32	156.10	147.52	156		
Per PremisID Per Day	medium	214.57	247.75	233.76	233.50	213.53	210.48	226		
	10W	250.60	285.54	252.24	263.65	230.55	213.93	249		
Average NonSummer	nign	35,68/	36,394	36,729	35,829	35,442	36,185	36,044		
Use Per PremisID	low	43,264	43,648	43,5/1	41,511	41,860	42,748	42,767		
	10W	44,291	44,636	42,173	40,110	41,064	41,091	42,227		
Average NonSummer	nign	14/	150	151	14/	146	149	148		
Use Per Premisid Per	meaium	1/8	180	1/9	1/1	1/2	1/6	1/6		
Day	IOW	182	184	1/4	165	169	169	1/4		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Little Falls (PWSID 1605001)

Year-Long Users								
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg
	high	8,795	8,795	8,795	8,795	8,795	8,795	8,795
Population 13-14	medium	7,676	7,676	7,676	7,676	7,676	7,676	7,676
	low	314	314	314	314	314	314	314
Average Annual Lise	high	707,540	739,660	718,590	702,214	685,560	682,020	705,931
(100 gallon)	medium	1,446,050	1,569,350	1,499,110	1,555,360	1,458,020	1,467,510	1,499,233
	low	86,110	98,960	94,550	98,820	83,710	83,330	90,913
Average Annual Per	high	8,044.78	8,409.99	8,170.42	7,984.23	7,794.87	7,754.62	8,026
Capita	medium	18,838.62	20,444.93	19,529.87	20,262.67	18,994.56	19,118.19	19,531
•	low	27,386.95	31,473.84	30,071.26	31,429.31	26,623.64	26,502.78	28,915
Average Annual Per	high	22	23	22	22	21	21	22
Capita Per Day	medium	52	56	54	56	52	52	54
	low	75	86	82	86	73	73	79
	high	249,600	277,880	263,030	257,910	245,300	237,970	255,282
Average Summer Use	medium	545,820	661,410	607,590	623,320	570,700	564,710	595,592
	low	34,910	49,480	43,390	42,980	33,200	38,980	40,490
Average Summer Use	high	2,837.97	3,159.52	2,990.67	2,932.46	2,789.08	2,705.74	2,903
Per Capita	medium	7,110.75	8,616.61	7,915.46	8,120.39	7,434.88	7,356.84	7,759
•	low	11,102.99	15,736.92	13,800.02	13,669.62	10,559.13	12,397.44	12,878
Average Summer Use	high	23	26	25	24	23	22	24
Per Capita Per Day	medium	58	71	65	67	61	60	64
	low	91	129	113	112	87	102	106
Average NonSummer	high	457,940	461,780	455,560	444,304	440,260	444,050	450,649
Use	medium	900,230	907,940	891,520	932,040	887,320	902,800	903,642
	low	51,200	49,480	51,160	55,840	50,510	44,350	50,423
Average NonSummer	high	5,206.81	5,250.47	5,179.75	5,051.77	5,005.79	5,048.88	5,124
Use Per Capita	medium	11,727.87	11,828.32	11,614.40	12,142.28	11,559.69	11,761.35	11,772
	low	16,283.96	15,736.92	16,271.24	17,759.69	16,064.51	14,105.34	16,037
Avreage NonSummer	high	21	22	21	21	21	21	21
Use Per Capita Per Day	medium	48	49	48	50	48	48	48
	low	67	65	67	73	66	58	66
Ratio of Summer	high	109%	120%	115%	116%	111%	107%	113%
to NonSummer Use	medium	121%	145%	136%	133%	128%	125%	131%
Per Capital Per Day	low	136%	199%	169%	153%	131%	175%	161%
	high	1,041	1,044	1,027	1,026	1,039	1,015	1,032
PremisiD Count	medium	2,120	2,123	2,119	2,183	2,169	2,164	2,146
	low	99	101	100	104	103	102	102
Average Annual Use	high	67,967	70,849	69,970	68,442	65,983	67,194	68,401
Per PremisID	meaium	68,210	73,921	70,746	71,249	67,221	67,815	69,860
	IOW	86,980	97,980	94,550	95,019	81,272	81,696	89,583
Average Annual Use	nign	186.21	194.11	191.70	187.51	180.77	184.09	187
Per PremisID Per Day	medium	186.88	202.52	193.82	195.20	184.17	185.79	191
	IOW	238.30	268.44	259.04	260.33	222.66	223.82	245
Average Summer Use	nign	23,977	26,617	25,611	25,137	23,609	23,445	24,733
Per PremisID	meaium	25,746	31,154	28,673	28,553	26,312	26,096	27,756
	IOW	35,263	48,990	43,390	41,327	32,233	38,216	39,903
Average Summer Use	modium	190.53	210.17	209.93	200.04	193.52	192.17	203
Per PremisID Per Day	meaium	211.03	255.30	235.03	234.04	215.67	213.90	228
	iOW	289.04	401.56	355.66	338.75	204.20	313.24	32/
Average NonSummer	medium	43,990	44,232	44,358	43,304	42,373	43,749	43,008
Use Per PremisID	low	42,404	42,707	42,073	42,095	40,909	41,719	42,104
• • •	high	51,/1/ 101	48,990	51,100	23,092	49,039	43,480	49,080
Average NonSummer	modium	101	182	173	1/8	1/4	100	100
Dav	low	1/5	1/0	1/3	1/0	202	172	1/3
Day	IOW	213	202	211	221	202	1/9	204

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Logan (PWSID 0809002)

Year-Long Users									
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg	
	high	1,021	1,021	1,021	1,021	1,021	1,021	1,021	
Population 13-14	medium	4,201	4,325	4,325	4,325	4,325	4,325	4,304	
	low	209	244	244	251	251	251	242	
Average Annual Lise	high	226,390	236,230	230,310	228,080	213,820	222,980	226,302	
(100 gallon)	medium	872,210	1,064,900	995,600	1,010,780	906,530	912,130	960,358	
	low	15,900	74,630	74,400	78,130	64,460	65,800	62,220	
Average Annual Per	high	22,176.01	23,139.89	22,560.00	22,341.56	20,944.72	21,841.99	22,167	
Capita	medium	20,762.80	24,624.63	23,022.14	23,373.16	20,962.50	21,091.99	22,306	
•	low	7,604.36	30,560.01	30,465.83	31,172.05	25,718.04	26,252.67	25,295	
Average Annual Per	high	61	63	62	61	57	60	61	
Capita Per Day	medium	57	67	63	64	57	58	61	
	low	21	84	83	85	70	72	69	
	high	80,130	90,530	86,210	85,300	72,060	79,290	82,253	
Average Summer Use	medium	345,390	490,180	444,110	455,950	358,400	366,330	410,060	
	low	6,000	33,620	33,790	33,850	24,680	26,800	26,457	
Average Summer Use	high	7,849.13	8,867.86	8,444.69	8,355.55	7,058.63	7,766.84	8,057	
Per Capita	medium	8,221.95	11,334.87	10,269.55	10,543.34	8,287.60	8,470.97	9,521	
•	low	2,869.57	13,766.95	13,836.56	13,505.36	9,846.74	10,692.58	10,753	
Average Summer Use	high	64	73	69	68	58	64	66	
Per Capita Per Day	medium	67	93	84	86	68	69	78	
	low	24	113	113	111	81	88	88	
Average NonSummer	high	146,260	145,700	144,100	142,780	141,760	143,690	144,048	
Use	medium	526,820	574,720	551,490	554,830	548,130	545,800	550,298	
	low	9,900	41,010	40,610	44,280	39,780	39,000	35,763	
Average NonSummer	high	14,326.89	14,272.03	14,115.30	13,986.00	13,886.09	14,075.14	14,110	
Use Per Capita	medium	12,540.85	13,289.76	12,752.59	12,829.83	12,674.90	12,621.02	12,785	
-	low	4,734.79	16,793.06	16,629.26	17,666.69	15,871.29	15,560.09	14,543	
Avreage NonSummer	high	59	59	58	58	57	58	58	
Use Per Capita Per Day	medium	52	55	52	53	52	52	53	
	low	19	69	68	73	65	64	60	
Ratio of Summer	high	109%	124%	119%	119%	101%	110%	114%	
to NonSummer Use	medium	131%	170%	160%	164%	130%	134%	148%	
Per Capital Per Day	low	121%	163%	166%	152%	124%	137%	144%	
	high	404	408	411	406	400	392	404	
Premisid Count	medium	1,1//	1,357	1,355	1,364	1,370	1,366	1,332	
	IOW	21	91	92	94	91	90	80	
Average Annual Use	nign	56,037	57,900	56,036	56,177	53,455	56,883	56,081	
Per PremisID	mealum	74,105	78,475	/3,4/6	74,104	56,170	72 111	72,184	
	IOW	75,714	82,011	80,870	83,117	70,835	73,111	//,610	
Average Annual Use	nign	153.53	158.63	153.52	153.91	146.45	155.84	154	
Per PremisID Per Day	hearan	203.03	215.00	201.30	203.02	181.29	182.94	198	
	low	207.44	224.09	221.50	227.72	194.07	200.30	213	
Average Summer Use	modium	19,654	22,109	20,970	21,010	26,015	20,227	20,375	
Per PremisID	low	29,545	36,122	32,770	35,427	20,101	20,818	30,775	
	10W	28,571	30,945	30,728	30,011	27,121	29,778	32,520	
Average Summer Use	modium	102.58	181.87	268.65	274.00	147.00	210.80	107	
Per PremisID Per Day	low	240.53	290.08	200.05	2/4.00	214.43	219.82	252	
	low	234.19	302.83	301.05	295.17	222.30	244.08	207	
Average NonSummer	nign	36,203	35,711	35,061	35,167	35,440	30,050	35,706	
Use Per PremisID	low	44,760	42,352	40,700	40,677	40,009	39,950	41,409	
	10W	47,143	45,066	44,141	47,106	43,714	43,333	45,084	
Average NonSummer	modium	149	14/	144	145	140	151	14/	
Dav	Inearum	184	1/4	107	167	105	164	1/0	
Day	IOW	194	185	182	194	180	1/8	186	

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Mansfield (Warren County) (PWSID 2116003)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high									
Population 13-14	medium	158	158	158	158	158	158	158		
	low	76	76	76	76	76	76	76		
Average Annual Use	high									
(100 gallon)	medium	9,160	9,630	8,690	8,910	9,040	11,430	9,477		
(*** 5*****	low	8,720	8,760	7,650	8,150	7,760	6,540	7,930		
Average Annual Per	high									
Capita	medium	5,797.98	6,095.47	5,500.48	5,639.74	5,722.02	7,234.81	5,998		
	low	11,502.31	11,555.07	10,090.90	10,750.43	10,236.00	8,626.73	10,460		
Average Annual Per	high	-	-	-	-	-	-	-		
Capita Per Day	medium	16	17	15	15	16	20	16		
	low	32	32	28	29	28	24	29		
	high									
Average Summer Use	medium	3,460	3,320	2,890	3,270	3,460	3,450	3,308		
	low	3,290	3,040	2,880	3,690	2,890	2,320	3,018		
Average Summer Use	high									
Per Capita	medium	2,190.07	2,101.45	1,829.27	2,069.80	2,190.07	2,183.74	2,094		
	low	4,339.75	4,009.98	3,798.93	4,867.37	3,812.12	3,060.25	3,981		
Average Summer Use	high	-	-	-	-	-	-	-		
Per Capita Per Day	medium	18	17	15	17	18	18	17		
	low	36	33	31	40	31	25	33		
Average NonSummer	high									
Average NonSummer Use	medium	5,700	6,310	5,800	5,640	5,580	7,980	6,168		
	low	5,430	5,720	4,770	4,460	4,870	4,220	4,912		
Average NonSummer	high									
Use Per Capita	medium	3,607.91	3,994.02	3,671.21	3,569.93	3,531.96	5,051.08	3,904		
	low	7,162.56	7,545.09	6,291.97	5,883.06	6,423.88	5,566.48	6,479		
Avreage NonSummer	high	-	-	-	-	-	-	-		
Use Per Capita Per Day	medium	15	16	15	15	15	21	16		
Define (Original	low	29	31	26	24	26	23	27		
Ratio of Summer	high	1240/	4050/	000/	4450/	42.40/	0.00/	1000/		
to NonSummer Use	medium	121%	105%	99%	115%	124%	86%	108%		
Per Capital Per Day	IOW	121%	106%	120%	165%	118%	110%	123%		
Description Count	nign		22	22	22	22	26			
Premisid Count	meaium	21	23	22	22	22	26	23		
	IOW	16	18	15	14	15	13	15		
Average Annual Use	nign	42 (10	41.070	20 500	40 500	41.001	42.002	44 757		
Per PremisID	meaium	43,619	41,870	39,500	40,500	41,091	43,962	41,757		
	lOW	54,500	48,007	51,000	58,214	51,733	50,308	52,404		
Average Annual Use	nign	-	-	-	-	-	-	- 114		
Per PremisID Per Day	meaium	119.50	114.71	108.22	110.96	112.58	120.44	114		
	10W	149.32	133.33	139.73	159.49	141.74	137.83	144		
Average Summer Use	nign	16 476	14 425	12 126	14.964	15 777	12 260	14 651		
Per PremisID	low	10,470	14,435	10,130	14,804	15,727	13,209	14,051		
	low	20,503	10,009	19,200	20,357	19,207	17,840	20,020		
Average Summer Use	medium	- 12E OE	- 110 22	- 107 60	- 101 00	-	-	- 120		
Per PremisID Per Day	low	169 55	110.52	107.00	216.04	120.91	106.70	120		
	high	200.00	156.43	157.38	210.04	157.92	140.28	104		
Average NonSummer	medium	27 1/2	27 A2E	26.261	25 626	25 261	30 602	27 106		
Use Per PremisID	low	27,143	21,455	20,504	23,030	23,304	30,092	27,100		
A	high	53,938	51,778	51,800	51,857	52,407	52,402	32,383		
Average NonSummer	modium	-	-	-	-	-	-	- 110		
Dav	Ineaium	112	113	108	105	104	120	112		
Day	IOW	140	131	131	131	134	134	133		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Mount Holly (PWSID 0323001)

Year-Long Users								
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg
	high	7,638	7,638	7,638	7,638	7,638	7,638	7,638
Population 13-14	medium	27,663	27,663	27,663	27,663	27,663	27,663	27,663
	low	3,562	3,562	3,565	3,556	3,546	3,546	3,556
Average Annual Use (100 gallon)	high		689,000	1,060,340	1,343,738	1,344,954	920,870	1,071,780
	medium		2,717,890	4,268,350	5,981,276	5,430,891	3,755,649	4,430,811
	low		530,470	939,460	1,169,321	962,151	947,783	909,837
Average Annual Per	high		9,021.17	13,883.17	17,593.75	17,609.66	12,057.07	14,033
Capita	medium		9,824.96	15,429.75	21,621.85	19,632.25	13,576.38	16,017
	low		14,894.31	26,352.95	32,880.90	27,129.76	26,724.63	25,597
Average Annual Per	high		25	38	48	48	33	38
Capita Per Day	medium		27	42	59	54	37	44
	low		41	/2	90	/4	/3	/0
A	high		291,990	406,530	517,524	474,143	340,489	406,135
Average Summer Use	medium		1,370,680	2,055,840	2,831,531	2,231,559	1,703,553	2,038,633
	low		336,750	541,290	647,396	464,796	510,590	500,164
Average Summer Use	high		3,823.06	5,322.75	6,776.01	6,208.01	4,458.07	5,318
Per Capita	medium		4,954.90	7,431.70	10,235.77	8,066.91	6,158.21	7,369
	IOW		9,455.12	15,183.82	18,204.55	13,105.85	14,397.10	14,069
Average Summer Use	nign		31	44	56	51	37	44
Per Capita Per Day	medium		41	124	84	107	50	60
	IOW		78	652 810	149 826 214	270 911	118 F90 291	115 665 645
Average NonSummer	modium		1 247 210	2 212 510	2 140 745	2 100 222	2 052 006	2 202 170
Use	low		1,547,210	2,212,510	5,149,745	3,199,332	2,032,090	2,392,179
	high		5 109 10	2 560 42	10 917 72	497,555	7 500 00	409,075
Average NonSummer Use Per Capita	medium		4 870 06	7 998 05	11 386 08	11 565 34	7,333.00	8,713
	low		5 / 39 19	11 169 14	14 676 35	14 023 91	12 327 53	11 527
	high		3, 4 33.13 21	25	45	14,023.31 47	31	36
Avreage NonSummer	medium		20	33	47	48	31	36
Use Per Capita Per Day	low		22	46	60		51	47
Ratio of Summer	high		146%	124%	125%	108%	117%	124%
to NonSummer Use	medium		203%	185%	179%	139%	165%	174%
Per Capital Per Day	low		346%	271%	247%	186%	233%	257%
	high		1,235	1,923	2,415	2,451	1,712	1,947
PremisID Count	medium		3,410	5,604	8,146	8,249	5,182	6,118
	low		464	906	1,141	1,164	1,015	938
A	high		55,789	55,140	55,641	54,874	53,789	55,047
Average Annual Use	medium		79,704	76,166	73,426	65,837	72,475	73,521
rennemad	low		114,325	103,693	102,482	82,659	93,378	99,307
Average Appuel Lice	high		152.85	151.07	152.44	150.34	147.37	151
Per PremisiD Per Dav	medium		218.37	208.67	201.17	180.38	198.56	201
	low		313.22	284.09	280.77	226.46	255.83	272
Average Summer Use	high		23,643	21,140	21,430	19,345	19,888	21,089
Per PremisID	medium		40,196	36,685	34,760	27,052	32,874	34,314
	low		72,575	59,745	56,739	39,931	50,304	55,859
Average Summer Use	high		193.79	173.28	175.65	158.56	163.02	173
Per PremisiD Per Day	medium		329.47	300.70	284.92	221.74	269.46	281
	low		594.88	489.71	465.08	327.30	412.33	458
Average NonSummer	high		32,147	33,999	34,212	35,529	33,901	33,957
Use Per PremisID	medium		39,508	39,481	38,666	38,784	39,600	39,208
	low		41,750	43,948	45,743	42,728	43,073	43,448
Average NonSummer	high		132	140	141	146	140	140
Use Per PremisID Per	medium		163	162	159	160	163	161
Day	low		172	181	188	176	177	179

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – New Egypt (PWSID 1523003)

Year-Long Users									
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg	
	high								
Population 13-14	medium		1,243	1,243	1,243	1,243	1,243	1,243	
	low		263	263	263	263	263	263	
Average Annual Use (100 gallon)	high								
	medium		67,580	74,860	117,800	120,420	115,864	99,305	
(5 ,	low		23,280	26,150	47,253	46,659	41,273	36,923	
Average Annual Per	high								
Capita	medium		5,435.44	6,020.97	9,474.62	9,685.31	9,318.88	7,987	
	low		8,837.90	9,927.46	17,938.82	17,713.32	15,668.59	14,017	
Average Annual Per	high		-	-	-	-	-	-	
Capita Per Day	medium		15	16	26	27	26	22	
	low		24	27	49	49	43	38	
	high								
Average Summer Use	medium		27,340	28,660	47,278	42,253	41,439	37,394	
	low		9,580	9,960	19,067	15,585	14,797	13,798	
Average Summer Use	high								
Per Capita	medium		2,198.95	2,305.12	3,802.57	3,398.40	3,332.89	3,008	
	low		3,636.90	3,781.17	7,238.31	5,916.65	5,617.64	5,238	
Average Summer Use	high		-	-	-	-	-	-	
Per Capita Per Day	medium		18	19	31	28	27	25	
	low		30	31	59	48	46	43	
Average NonSummer	high								
Use	medium		40,240	46,200	70,522	78,167	74,425	61,911	
	low		13,700	16,190	28,186	31,074	26,475	23,125	
Average NonSummer Use Per Capita	high								
	medium		3,236.49	3,715.85	5,672.04	6,286.91	5,985.98	4,979	
	low		5,201.00	6,146.29	10,700.51	11,796.67	10,050.94	8,779	
Avreage NonSummer	high		-	-	-	-	-	-	
Use Per Capita Per Day	medium		13	15	23	26	25	20	
	low		21	25	44	49	41	36	
Ratio of Summer	high		4050/	42.40/	12.40/	1000/		4000/	
to NonSummer Use	medium		135%	124%	134%	108%	111%	122%	
Per Capital Per Day	IOW		139%	123%	135%	100%	111%	122%	
Description Count	nign		427	140	220	220	224	102	
Premisid Count	medium		127	149	229	229	231	193	
	IOW bick		30	48	76	/4	/1	10	
Average Annual Use	nign		F2 212	F0 242	F1 441		FO 1F7	F1 F20	
Per PremisID	low		53,213	50,242	51,441	52,585	50,157	51,528	
	10W bigh		04,007	54,479	02,175	03,052	58,131	00,501	
Average Annual Use	nign		-	127.65	-	-	127.42	-	
Per PremisID Per Day	low		145.79	137.05	140.93	144.07	137.42	141	
	IOW		1/7.17	149.20	170.34	1/2.75	159.20	100	
Average Summer Use	nign		21 520	10.225	20.646	10 451	17.020	10 5 60	
Per PremisID	low		21,528	19,235	20,040	18,451	17,939	19,500	
	low		26,611	20,750	25,088	21,061	20,842	22,870	
Average Summer Use	modium		176.46	-	-	-	-	-	
Per PremisID Per Day	low		219.40	157.00	205.64	151.24	147.04	100	
	high		210.12	1/0.08	205.04	1/2.03	1/0.83	191	
Average NonSummer	medium		21 GOE	21 007	20 706	2/ 12/	22 210	21 069	
Use Per PremisID	low		20 OEC	22,007	27 097	54,134 41.001	27,219	27 621	
A	high		38,050	33,729	37,087	41,991	37,289	37,031	
Average NonSummer	nign		-	-	-	-	-	-	
Ose Fer Freinisid Per	Ineaium		130	128	127	140	133	132	
Day	IOW		157	139	153	1/3	153	155	

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Ocean City (PWSID 0508001)

Year-Long Users								
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg
	high	11,546	11,546	11,546	11,546	11,546	11,546	11,546
Population 13-14	medium	1,776	1,776	1,776	1,776	2,268	2,268	1,940
	low	223	223	223	223	223	223	223
Average Appuel Lice	high	2,270,510	2,323,750	2,171,350	2,201,580	2,084,030	2,065,010	2,186,038
(100 gallon)	medium	364,780	386,820	374,820	355,640	349,260	354,410	364,288
(low	75,590	95,410	84,370	72,660	88,000	72,610	81,440
Average Appual Per	high	19,665.08	20,126.20	18,806.25	19,068.07	18,049.96	17,885.23	18,933
Canita	medium	20,542.02	21,783.17	21,107.41	20,027.32	15,402.10	15,629.21	19,082
	low	33,955.55	42,858.83	37,899.59	32,639.38	39,530.21	32,616.92	36,583
Average Annual Per	high	54	55	52	52	49	49	52
Capita Per Dav	medium	56	60	58	55	42	43	52
	low	93	117	104	89	108	89	100
	high	1,135,610	1,212,280	1,107,120	1,140,470	1,047,060	963,130	1,100,945
Average Summer Use	medium	158,820	184,440	178,520	156,380	148,360	152,000	163,087
	low	37,180	59,110	49,340	35,070	43,420	34,340	43,077
Average Summer Use	high	9,835.61	10,499.66	9,588.86	9,877.71	9,068.68	8,341.75	9,535
Per Capita	medium	8,943.70	10,386.45	10,053.08	8,806.30	6,542.56	6,703.08	8,573
	low	16,701.51	26,552.62	22,163.87	15,753.69	19,504.57	15,425.77	19,350
Average Summer Lise	high	81	86	79	81	74	68	78
Per Capita Per Dav	medium	73	85	82	72	54	55	70
	low	137	218	182	129	160	126	159
Average NonSummer	high	1,134,900	1,111,470	1,064,230	1,061,110	1,036,970	1,101,880	1,085,093
Use	medium	205,960	202,380	196,300	199,260	200,900	202,410	201,202
	low	38,410	36,300	35,030	37,590	44,580	38,270	38,363
Average NonSummer	high	9,829.47	9,626.54	9,217.39	9,190.36	8,981.29	9,543.48	9,398
Use Per Capita	medium	11,598.32	11,396.72	11,054.33	11,221.02	8,859.54	8,926.13	10,509
	low	17,254.04	16,306.21	15,735.72	16,885.69	20,025.65	17,191.15	17,233
Avreage NonSummer	high	40	40	38	38	37	39	39
Use Per Capita Per Dav	medium	48	47	45	46	36	37	43
	low	71	67	65	69	82	71	71
Ratio of Summer	high	199%	217%	207%	214%	201%	174%	202%
to NonSummer Use	medium	154%	182%	181%	156%	147%	150%	162%
Per Capital Per Day	low	193%	324%	281%	186%	194%	179%	226%
	high	4,296	4,245	4,149	4,318	4,266	4,116	4,232
PremisID Count	medium	648	633	644	649	637	657	645
	low	87	88	90	91	91	88	89
Average Annual Use	high	52,852	54,741	52,334	50,986	48,852	50,170	51,656
Per PremisID	medium	56,293	61,109	58,202	54,798	54,829	53,944	56,529
	low	86,885	108,420	93,744	79,846	96,703	82,511	91,352
Average Annual Use	high	144.80	149.97	143.38	139.69	133.84	137.45	142
Per PremisID Per Day	medium	154.23	167.42	159.46	150.13	150.22	147.79	155
	low	238.04	297.04	256.83	218.76	264.94	226.06	250
Average Summer Use	high	26,434	28,558	26,684	26,412	24,544	23,400	26,005
Per PremisID	medium	24,509	29,137	27,720	24,096	23,290	23,135	25,315
	low	42,736	67,170	54,822	38,538	47,714	39,023	48,334
Average Summer Use	high	216.67	234.08	218.72	216.49	201.18	191.80	213
Per PremisID Per Day	medium	200.90	238.83	227.22	197.50	190.91	189.63	207
	low	350.29	550.58	449.36	315.89	391.10	319.86	396
Average NonSummer	high	26,418	26,183	25,650	24,574	24,308	26,771	25,651
Use Per PremisID	medium	31,784	31,972	30,481	30,703	31,538	30,808	31,214
	low	44,149	41,250	38,922	41,308	48,989	43,489	43,018
Average NonSummer	high	109	108	106	101	100	110	106
Use Per PremisID Per	medium	131	132	125	126	130	127	128
Day	low	182	170	160	170	202	179	177

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Ortley Beach (PWSID 1507007)

Year-Long Users								
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg
	high	1,082	1,082	1,082	1,082	1,082	1,082	1,082
Population 13-14	medium	73	73	73	73	73	73	73
	low							
	high	280,980	298,410	288,400	281,380	18,240	135,520	217,155
Average Annual Use	medium	37,530	37,930	32,790	27,760	7,300	19,290	27,100
(100 galion)	low							
	high	25,965.62	27,576.35	26,651.31	26,002.59	1,685.58	12,523.53	20,067
Average Annual Per	medium	51,302.02	51,848.80	44,822.62	37,946.82	9,978.81	26,368.66	37,045
Capita	low				-			
	high	71	76	73	71	5	34	55
Average Annual Per	medium	141	142	123	104	27	72	101
Capita Per Day	low	-	-	-	-	-	-	-
	high	127.550	139.450	136.070	136.560	9.700	56.640	100.995
Average Summer Use	medium	18.400	18.620	16.260	14.800	3.780	7.470	13.222
	low	_,	-,	-,	,	-,	,	-,
	high	11,787.01	12,886.70	12,574.35	12,619.64	896.39	5,234.15	9.333
Average Summer Use	medium	25,152.07	25,452.80	22,226.77	20,231.01	5,167.11	10,211,19	18.073
Per Capita	low	.,	.,	,,	.,	.,	.,	,0.0
	high	97	106	103	103	7	43	77
Average Summer Use	medium	206	209	182	166	42	84	148
Per Capita Per Day	low	-	-	-	-	-	-	-
	high	153 430	158 960	152 330	144 820	8 540	78 880	116 160
Average NonSummer	medium	19 130	19 310	16 530	12 960	3 520	11 820	13 878
Use	low	15,150	10,010	10,000	12,500	3,320	11,020	#DIV/0I
	high	14 178 61	14 689 64	14 076 96	13 382 95	789 19	7 289 37	10 734
Average NonSummer	medium	26 149 95	26 396 00	22 595 85	17 715 80	4 811 70	16 157 47	18 971
Use Per Capita	low	20,110.00	20,000.00	22,333.03	17,7 15:00	1,011.70	10,107.17	10,571
	high	58	60	58	55	3	30	44
Avreage NonSummer	medium	108	109	93	73	20	66	78
Use Per Capita Per Day	low	-	-	-	-	-	-	
Ratio of Summer	high	166%	175%	178%	188%	226%	143%	179%
to NonSummer Use	medium	192%	192%	196%	227%	214%	126%	191%
Per Capital Per Dav	low	152/0	152/0	130/0	22770	211/0	120/0	191/0
	high	616	627	608	623	46	319	473
PremisID Count	medium	62	63	61	54	 9	325	47
Contract Count	low				54	5	52	זד
	high	45,614	47,593	47,434	45,165	39,652	42,483	44 657
Average Annual Use	medium	60 532	60,206	53 754	51 407	81 111	60 281	61 215
Per PremisID	low	00,552	00,200	55,754	51,407	01,111	00,201	01,210
	high	124.97	130.39	129.96	123.74	108.64	116.39	122
Average Annual Use	medium	165.84	164 95	147 27	140 84	222.01	165 15	168
Per PremisiD Per Day	low	-	-	-	-	-	-	-
	high	20.706	22.241	22.380	21.920	21.087	17.755	21.015
Average Summer Use	medium	29.677	29.556	26,656	27,407	42,000	23.344	29.773
Per PremisID	low	23,077	23,330	20,000	27,107	12,000	20,011	23,773
	high	169.72	182.30	183.44	179.67	172.84	145.54	172
Average Summer Use	medium	243.26	242.26	218 49	224 65	344.26	191 34	244
Per PremisID Per Day	low	-		-	-	-	-	-
	high	24 907	25 252	25 05/	23 246	18 565	24 727	23 642
Average NonSummer	medium	30 855	30 651	27,034	23,240	39 111	36 938	23,042
Use Per PremisID	low	50,000	30,031	27,000	2-1,000	55,111	50,550	51,772
Avorago NonSummer	high	102	10/	102	96	76	102	97
Use Per Premisin Per	medium	102	126	112	00 00	161	152	120
Dav						-		-
249	IUW	-	-	-	-	-	-	-

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Passaic (PWSID 0712001)

Year-Long Users									
	Density	09	10	11	12	13	14	6-Yr Avg	
	high	93,263	93,263	93,263	93,263	93,263	93,263	93,263	
Population 13-14	medium	115,711	115,711	115,711	115,711	115,711	115,711	115,711	
	low	42,583	42,583	42,583	42,583	42,583	42,583	42,583	
Average Annual Use	high	13,576,440	13,418,500	13,061,850	12,797,337	12,779,594	12,275,807	12,984,921	
(100 gallon)	medium	27,451,120	30,452,040	27,805,860	28,927,057	27,344,033	27,322,489	28,217,100	
	low	10,637,850	12,899,430	11,177,530	12,248,800	11,113,760	11,476,540	11,592,318	
Average Annual Per	high	14,557.13	14,387.78	14,005.37	13,721.75	13,702.72	13,162.55	13,923	
Capita	medium	23,723.92	26,317.39	24,030.50	24,999.46	23,631.37	23,612.76	24,386	
	low	24,981.61	30,292.64	26,248.98	28,764.72	26,099.23	26,951.17	27,223	
Average Annual Per	high	40	39	38	38	38	36	38	
Capita Per Day	medium	65	72	66	68	65	65	67	
	low	68	83	72	79	72	74	75	
	high	4,507,100	4,776,510	4,604,250	4,452,720	4,374,174	4,173,212	4,481,328	
Average Summer Use	medium	10,390,790	13,339,410	11,743,560	12,258,968	11,129,141	11,165,284	11,671,192	
	low	4,582,680	6,700,300	5,615,300	6,158,710	5,297,470	5,625,990	5,663,408	
Average Summer Use	high	4,832.67	5,121.54	4,936.84	4,774.36	4,690.14	4,474.66	4,805	
Per Capita	medium	8,979.97	11,528.24	10,149.07	10,594.50	9,618.07	9,649.31	10,087	
	low	10,761.83	15,734.79	13,186.81	14,462.93	12,440.42	13,211.91	13,300	
Average Summer Use	high	40	42	40	39	38	37	39	
Per Capita Per Day	medium	74	94	83	87	79	79	83	
	low	88	129	108	119	102	108	109	
Average NonSummer	high	9,069,340	8,641,990	8,457,600	8,344,617	8,405,421	8,102,595	8,503,594	
Use	medium	17,060,330	17,112,630	16,062,300	16,668,089	16,214,893	16,157,205	16,545,908	
	low	6,055,170	6,199,130	5,562,230	6,090,090	5,816,290	5,850,550	5,928,910	
Average NonSummer	high	9,724.46	9,266.24	9,068.53	8,947.39	9,012.58	8,687.88	9,118	
Use Per Capita	medium	14,743.95	14,789.15	13,881.43	14,404.97	14,013.30	13,963.45	14,299	
	low	14,219.78	14,557.85	13,062.18	14,301.79	13,658.80	13,739.26	13,923	
Avreage NonSummer	high	40	38	37	37	37	36	38	
Use Per Capita Per Day	medium	61	61	57	59	58	57	59	
	low	59	60	54	59	56	57	57	
Ratio of Summer	high	99%	110%	108%	106%	104%	103%	105%	
to NonSummer Use	medium	121%	155%	146%	146%	137%	138%	141%	
Per Capital Per Day	low	151%	215%	201%	201%	181%	192%	190%	
	high	17,395	17,440	17,512	17,437	17,464	17,134	17,397	
PremisiD Count	medium	35,226	35,376	35,482	35,358	35,376	35,121	35,323	
	low	10,226	10,487	10,535	10,599	10,586	10,551	10,497	
Average Annual Use	high	78,048	76,941	74,588	73,392	73,177	71,646	74,632	
Per PremisID	medium	77,929	86,081	78,366	81,812	77,295	77,795	79,880	
	low	104,027	123,004	106,099	115,566	104,985	108,772	110,409	
Average Annual Use	high	213.83	210.80	204.35	201.07	200.48	196.29	204	
Per PremisiD Per Day	medium	213.50	235.84	214.70	224.14	211.77	213.14	219	
	low	285.01	337.00	290.68	316.62	287.63	298.01	302	
Average Summer Use	high	25,910	27,388	26,292	25,536	25,047	24,356	25,755	
Per PremisID	medium	29,498	37,708	33,097	34,671	31,460	31,791	33,037	
	low	44,814	63,891	53,301	58,107	50,042	53,322	53,913	
Average Summer Use	high	212.38	224.49	215.51	209.31	205.30	199.64	211	
Per PremisiD Per Day	medium	241.78	309.08	271.29	284.19	257.87	260.58	271	
	low	367.33	523.70	436.90	476.28	410.18	437.06	442	
Average NonSummer	high	52,138	49,553	48,296	47,856	48,130	47,290	48,877	
Use Per PremisID	medium	48,431	48,374	45,269	47,141	45,836	46,004	46,842	
	low	59,213	59,113	52,798	57,459	54,943	55,450	56,496	
Average NonSummer	high	215	204	199	197	198	195	201	
Use Per PremisID Per	medium	199	199	186	194	189	189	193	
Day	low	244	243	217	236	226	228	232	
Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Pelican Island (PWSID 1507008)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high	41	41	41	41	41	41	41			
Population 13-14	medium	143	143	143	143	143	143	143			
	low	1	1	1	1	1	1	1			
Average Annual Use	high	15,870	17,190	14,670	15,520	2,620	11,990	12,977			
(100 gallon)	medium	55,310	60,350	56,080	55,780	7,460	36,240	45,203			
	low		660					660			
Average Annual Per	high	38,764.41	41,988.67	35,833.26	37,909.49	6,399.67	29,287.04	31,697			
Capita	medium	38,763.49	42,295.73	39,303.14	39,092.89	5,228.27	25,398.46	31,680			
	low	-	46,066.85	-	-	-	-	7,678			
Average Annual Per	high	106	115	98	104	18	80	8/			
Capita Per Day	medium	106	116	108	107	14	70	8/			
	IOW	-	126	-	-	-	-	21			
A	nign	6,550	8,440	7,010	6,900	1,230	4,870	5,833			
Average Summer Use	medium	23,590	28,640	28,400	27,790	3,750	18,140	21,/18			
	IOW	45 000 47	150	47 400 70	16.054.00	2 004 42	44 005 57	150			
Average Summer Use	nign	15,999.17	20,615.73	17,122.78	16,854.09	3,004.42	11,895.57	14,249			
Per Capita	meaium	16,532.83	20,072.07	19,903.87	19,476.36	2,628.15	12,/13.25	15,221			
	lOW	-	10,469.74	-	-	-	-	1,745			
Average Summer Use	nign	131	169	140	138	25	98	117			
Per Capita Per Day	meaium	130	105	103	100	22	104	125			
	low	-	00 0 7E0	-	- 8 620	- 1 200	- 7 120	7 142			
Average NonSummer	modium	9,520	0,750 21 710	7,000	27 000	2 710	18 100	7,145			
Use	low	51,720	51,710	27,000	27,550	5,710	10,100	23,483			
	high	22 765 24	21 372 94	18 710 //8	21.055.40	3 395 24	17 391 //7	17 //8			
Average NonSummer Use Per Capita	medium	22,705.24	21,372.54	19 399 27	19 616 53	2 600 12	12 685 21	16 459			
	low	-	35 597 11	-	-	-	-	5 933			
	high	94	88	77	87	14	72	72			
Avreage NonSummer	medium	91	91	80	81	11	52	68			
Use Per Capita Per Day	low	-	146	-	-	-	-	24			
Ratio of Summer	high	140%	192%	182%	159%	176%	136%	164%			
to NonSummer Use	medium	148%	180%	204%	198%	201%	200%	189%			
Per Capital Per Day	low		59%					59%			
	high	28	28	26	28	8	18	23			
PremisID Count	medium	86	85	80	83	17	57	68			
	low		1					1			
	high	56,679	61,393	56,423	55,429	32,750	66,611	54,881			
Average Annual Use Per PremisiD	medium	64,314	71,000	70,100	67,205	43,882	63,579	63,347			
r er r termab	low		66,000					66,000			
	high	155.28	168.20	154.58	151.86	89.73	182.50	150			
Per PremisiD Per Dav	medium	176.20	194.52	192.05	184.12	120.23	174.19	174			
	low		180.82					181			
Average Summer Use	high	23,393	30,143	26,962	24,643	15,375	27,056	24,595			
Per PremisID	medium	27,430	33,694	35,500	33,482	22,059	31,825	30,665			
	low		15,000					15,000			
Average Summer Use	high	191.74	247.07	221.00	201.99	126.02	221.77	202			
Per PremisID Per Day	medium	224.84	276.18	290.98	274.44	180.81	260.86	251			
	low	-	122.95	-	-	-	-	20			
Average NonSummer	high	33,286	31,250	29,462	30,786	17,375	39,556	30,286			
Use Per PremisID	medium	36,884	37,306	34,600	33,723	21,824	31,754	32,682			
	low		51,000					51,000			
Average NonSummer	high	137	129	121	127	72	163	125			
Use Per PremisiD Per	medium	152	154	142	139	90	131	134			
Day	low		210					210			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Penns Grove (aka Carney's Point) (PWSID 1707001)

Year-Long Users											
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg			
	high	1,885	1,885	1,885	1,885	1,885	1,885	1,885			
Population 13-14	medium	8,289	8,289	8,289	8,325	8,325	8,325	8,307			
	low	596	596	596	596	600	600	597			
Average Annual Use	high		218,950	202,590	183,650	192,070	178,960	195,244			
(100 gallon)	medium		1,586,930	1,524,690	1,457,190	1,378,510	1,335,000	1,456,464			
	low		180,650	173,730	179,790	164,280	158,800	171,450			
Average Annual Per	high		11,614.75	10,746.89	9,742.17	10,188.83	9,493.38	10,357			
Capita	medium		19,143.90	18,393.07	17,504.09	16,558.97	16,036.31	17,527			
	low		30,304.56	29,143.71	30,160.30	27,374.68	26,461.52	28,689			
Average Annual Per	high		32	29	27	28	26	28			
Capita Per Day	medium		52	50	48	45	44	48			
	low		83	80	83	75	72	79			
	high		74,770	70,760	64,110	65,890	60,500	67,206			
Average Summer Use	medium		598,510	553,100	542,740	481,550	471,810	529,542			
	low		72,360	68,390	70,120	60,560	57,510	65,788			
Average Summer Use	high		3,966.36	3,753.64	3,400.88	3,495.30	3,209.37	3,565			
Per Capita	medium		7,220.11	6,672.31	6,519.51	5,784.48	5,667.49	6,373			
	low		12,138.60	11,472.62	11,762.83	10,091.37	9,583.14	11,010			
Average Summer Use	high 		33	31	28	29	26	29			
Per Capita Per Day	medium		59	55	53	4/	46	52			
	low		99	94	96	83	/9	90			
Average NonSummer	high		144,180	131,830	119,540	126,180	118,460	128,038			
Use	medium		988,420	971,590	914,450	896,960	863,190	926,922			
	IOW		108,290	105,340	109,670	103,720	101,290	105,662			
Average NonSummer Use Per Capita	nign		7,648.39	6,993.25	6,341.30	6,693.53	6,284.01	6,792			
	meaium		19,923.79	11,720.76	10,984.57	10,774.48	10,308.83	11,154			
	low		18,105.90	17,071.09	18,397.40	17,285.51	10,878.38	17,079			
Avreage NonSummer	nign		31	29	20	28	20	28			
Use Per Capita Per Day	low		49	40	45	71	45	40			
Ratio of Summer	high		102%	107%	107%	101%	103%	105%			
to NonSummer Use	medium		103%	117%	118%	104%	102%	105%			
Per Canital Per Day	low		121/0	113/0	118%	107%	109%	114%			
	high		256	2/6	239	236	229	2/1			
PremisID Count	medium		2 5 4 5	2 502	235	230	225	241			
	low		2,345	2,302	2,774	2,707	2,354	2,-51			
	high		85 527	82 354	76 841	81 386	78 148	80 851			
Average Annual Use	medium		62.355	60.939	59.526	57.342	56.712	59.375			
Per PremisiD	low		65.931	64,107	65.617	60.397	58.598	62.930			
	high		234.32	225.63	210.52	222.97	214.11	222			
Average Annual Use	medium		170.84	166.96	163.08	157.10	155.38	163			
Per Premisid Per Day	low		180.63	175.64	179.77	165.47	160.54	172			
	high		29,207	28,764	26,824	27,919	26,419	27,827			
Average Summer Use	medium		23,517	22,106	22,171	20,031	20,043	21,574			
rerriennisid	low		26,409	25,236	25,591	22,265	21,221	24,144			
A	high		239.40	235.77	219.87	228.85	216.55	228			
Average Summer Use	medium		192.76	181.20	181.73	164.19	164.29	177			
	low		216.47	206.85	209.76	182.50	173.95	198			
Average New Owner	high		56 <u>,</u> 320	53 <u>,</u> 589	50 <u>,</u> 017	53 <u>,</u> 466	51 <u>,</u> 729	53 <u>,</u> 024			
Average NonSummer	medium		<u>38,</u> 838	<u>38,</u> 833	37 <u>,</u> 355	37 <u>,</u> 311	<u>36,</u> 669	37,801			
	low		<u>39,</u> 522	38,871	40,026	<u>38,</u> 132	37 <u>,</u> 376	38,785			
Average NonSummer	high		232	221	206	220	213	218			
Use Per PremisID Per	medium		160	160	154	154	151	156			
Day	low		163	160	165	157	154	160			

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Raritan (PWSID 2004002)

Year Long Users												
	Density	11-12	12-13	13-14	3-Yr Avg							
	high	307,369	306,936	306,131	306,793							
Population	medium	291,626	291,630	291,583	291,612							
	low	113,544	119,308	119,345	117,351							
	high	3,803,291,040	4,209,427,570	4,194,728,255	4,069,148,955							
Average Annual Use	medium	5,691,255,240	6,084,496,050	6,138,685,452	5,971,478,914							
	low	2,926,478,430	2,889,082,730	3,037,040,382	2,950,867,181							
	high	12,374	13,714	13,702	13,263							
Average Annual Per	medium	19,516	20,864	21,053	20,477							
oapita	low	25,774	24,215	25,448	25,146							
	high	34	38	38	36							
Average Annual Per	medium	53	57	58	56							
Capita Fer Day	low	71	66	70	69							
	high	1,542,875,740	1,474,148,510	1,408,116,677	1,475,046,976							
Average Summer Use	medium	2,597,940,590	2,357,181,570	2,348,503,576	2,434,541,912							
	low	1,627,013,400	1,332,649,170	1,420,415,996	1,460,026,189							
A	high	5,020	4,803	4,600	4,807							
Average Summer Use	medium	8,908	8,083	8,054	8,349							
Fer Capita	low	14,329	11,170	11,902	12,467							
	high	41	39	38	40							
Average Summer Use	medium	73	66	66	69							
Per Capita Per Day	low	118	92	98	102							
	high	2,260,415,300	2,735,279,060	2,786,611,578	2,594,101,979							
Average NonSummer	medium	3,093,314,650	3,727,314,480	3,790,181,876	3,536,937,002							
Use	low	1,299,465,030	1,556,433,560	1,616,624,386	1,490,840,992							
	high	7,354	8,912	9,103	8,456							
Average NonSummer	medium	10,607	12,781	12,999	12,129							
Use Per Capita	low	11,445	13,046	13,546	12,679							
	high	30	37	37	35							
Avreage NonSummer	medium	44	53	53	50							
Use Per Capita Per Day	low	47	54	56	52							
	high	137%	108%	101%	115%							
Ratio of Summer	medium	168%	126%	124%	139%							
	low	250%	171%	176%	199%							
	high	62,600	67,433	68,445	66,159							
Average Annual Use Per	medium	67,998	71,341	72,909	70,749							
PremisiD	low	95,111	91,974	96,909	94,665							
	high	172	185	188	181							
Average Annual Use Per	medium	186	195	200	194							
Premisid Per Day	low	261	252	266	259							
	high	25,395	23.615	22.976	23.995							
Average Summer Use	medium	31.039	27.638	27.893	28.857							
Per PremisiD	low	52,878	42,425	45.324	46.876							
	high	209	194	189	197							
Average Summer Use	medium	255	227	229	237							
Per PremisiD Per Day	low	435	349	373	385							
	high	37 205	43 818	45 469	42 164							
Average NonSummer	medium	36 958	43 703	45 016	41 892							
Use Per PremisID	low	42 233	49 549	51 525	47 789							
	high	152	120	127	172							
Use Per PremisiD Per	medium	153	120	185	173							
Dav		17/	204	210	106							
	10.00	1/4	204	212	120							

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Strathmere (PWSID 0511001)

Density08-0909-1010-1111-1212-1313-146high1115111511151115111511151115111511151115Population 13-14medium4334444	-Yr Avg 115 43 27,407 34,372 23,924 79,120 40 21,392 15,172 21,392 13,244 49,241 109 404
Population 13-14high111511151115111511151115Medium434343434343434343IowIowIowIowIowIowIowIowIowAverage Annual Ke (100 galion)high27,57028,19025,93028,03024,24030,480IowIowIowIowIowIow33,87039,90032,80031,84034,50033,320IowAverage Annual Pe Capitahigh24,066.5724,607.7822,634.9724,468.1121,159.7226,606.78IowIowIowIowIowIowIowIowIowIowIowIowAverage Annual Pe Capita Per Dayhigh66IofIoIowIowIowIowIowIowIowIoIoIoIowIowIowIowIowIowIowAverage Summer Ushigh15,28016,70012,490In,31012,79016,400Iow	115 43 27,407 34,372 23,924 79,120 66 217 - 15,172 21,392 13,244 49,241 109 404
Population 13-14medium443443443443443443443lowIowIowIowIowIowIowIowIowAverage Annual Use (100 gallon)high nedium27,57028,19025,93028,03024,24030,480IowAverage Annual Per Capitahigh24,066.5724,607.7822,634.9724,468.1121,159.7226,606.78IowAverage Annual Per Capitahigh24,066.5724,607.7822,634.9773,292.1179,415.1476,698.91Needium77,964.9591,845.3375,501.9373,292.1179,415.1476,698.91IowAverage Annual Per Capita Per Dayhigh6666762675873IowAverage Summer Use Per Capitahigh11,528016,76013,49016,31012,79016,400IowAverage Summer Use Per Capita Per Dayhigh13,38.3114,630.2411,775.7714,237.4211,164.7214,315.98Average Summer Use Per Capita Per Dayhigh13,38.3114,630.2411,775.7714,237.4211,164.7214,315.98Average Summer Use Per Capita Per Dayhigh13,38.3114,630.2411,775.7714,237.4211,164.7214,315.98Average Summer Use Per Capita Per Dayhigh13,38.3114,630.2411,775.7714,237.4211,164.7214,315.98IowIowIowIowIowIowIow <th>43 27,407 34,372 23,924 79,120 66 217 - 15,172 21,392 13,244 49,241 109 404</th>	43 27,407 34,372 23,924 79,120 66 217 - 15,172 21,392 13,244 49,241 109 404
IowIowIowIowIowIowIowAverage Annual Use (100 gallon (100 gallon (100 gallon (100 gallon (100 gallon low27,57028,19025,93028,03024,24030,480Iow33,87033,90032,80031,84034,50033,320IowIowIowIowAverage Annual Per Capita Iowhigh medium Iow24,066.5724,607.7822,634.9724,468.1121,159.7226,606.78IowAverage Annual Per Capita Iowhigh medium Iow24,066.5724,607.7822,634.9724,468.1121,159.7226,606.78IowAverage Annual Per Capita Per Dayhigh medium Iow24,066.5724,607.7822,634.9773,292.1179,415.1476,698.91IowAverage Summer Use Per Capita Per Capita Per Capitahigh I13,338.3114,620207201218210IowAverage Summer Use Per Capita Per Capitahigh I13,338.3114,630.2411,775.7714,237.4211,164.7214,315.98IowAverage Summer Use Per Capita Iowhigh I13,338.3114,630.2411,775.7714,237.4211,164.7214,315.98IowAverage Summer Use Per Capita Iowhigh I00100100100100100100100100100Average Summer Use Iowhigh Iow100100100100100100100100100100100 </th <td>27,407 34,372 23,924 79,120 - - 15,172 21,392 13,244 49,241 109 404</td>	27,407 34,372 23,924 79,120 - - 15,172 21,392 13,244 49,241 109 404
Average Annual Use (100 gallon) high medium low 27,570 28,190 25,930 28,030 24,240 30,480 4 Average Annual Per Capita high 24,066.57 24,607.78 22,634.97 24,468.11 21,159.72 26,606.78 Average Annual Per Capita high 24,066.57 24,607.78 22,634.97 24,468.11 21,159.72 26,606.78 Medium 77,964.95 91,845.33 75,501.93 73,292.11 79,415.14 76,698.91 Average Annual Per Capita Per Day high 66 67 62 67 58 73 Medium 214 252 207 201 218 210 Medium 214 252 207 201 218 210 Medium 15,280 16,760 13,490 16,310 12,790 16,400 Average Summer Use high 13,338.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315	27,407 34,372 23,924 79,120 666 217 - 15,172 21,392 13,244 49,241 109 404
Minings medium low 33,870 39,900 32,800 31,840 34,500 33,320 Average Annual Per Capita high 24,066.57 24,607.78 22,634.97 24,468.11 21,159.72 26,606.78 Average Annual Per Capita medium 77,964.95 91,845.33 75,501.93 73,292.11 79,415.14 76,698.91 Average Annual Per Capita Per Day high medium 214 252 207 201 218 210 Average Summer Use Per Capita high ibigh 15,280 16,760 13,490 16,310 12,790 16,400 Average Summer Use Per Capita high ibigh 13,338.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315.98 Average Summer Use Per Capita high ibigh 13,338.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315.98 Average Summer Use Per Capita high ibigh 109 52,575.12 44,035.12 50,917.76 44,541.53 Iow - - - - - <td< th=""><th>34,372 23,924 79,120 66 217 - 15,172 21,392 13,244 49,241 109 404</th></td<>	34,372 23,924 79,120 66 217 - 15,172 21,392 13,244 49,241 109 404
Iow Iow <thiow< th=""> <thiow< th=""> <thiow< th=""></thiow<></thiow<></thiow<>	23,924 79,120 66 217 15,172 21,392 13,244 49,241 109 404
Average Annual Per Capita high 24,066.57 24,607.78 22,634.97 24,468.11 21,159.72 26,606.78 Medium 77,964.95 91,845.33 75,501.93 73,292.11 79,415.14 76,698.91 Average Annual Per Capita Per Day high 66 67 62 67 58 73 Average Annual Per Capita Per Day high 666 67 62 67 58 73 Medium 214 252 207 201 218 210 21 Medium 214 252 207 201 218 210 21 Medium 214 252 207 201 218 210 21 Medium 15,280 16,760 13,490 16,310 12,790 16,400 21 22,840 19,130 22,120 19,350 21 24,5153 24,5153 24,5153 24,5153 24,5153 24,5153 25,575,12 44,035,12 50,917.76 44,541,53 21 <t< th=""><td>23,924 79,120 66 217 15,172 21,392 13,244 49,241 109 404</td></t<>	23,924 79,120 66 217 15,172 21,392 13,244 49,241 109 404
Capita medium 77,964.95 91,845.33 75,501.93 73,292.11 79,415.14 76,698.91 Average Annual Per Capita Per Day high medium 214 252 207 201 218 210 Average Summer Use Per Capita high 15,280 16,760 13,490 16,310 12,790 16,400 Average Summer Use Per Capita high 15,280 16,760 13,490 16,310 12,790 16,400 Medium 19,440 25,470 22,840 19,130 22,120 19,350 Medium 14,4748.70 58,629.09 52,575.12 44,035.12 50,917.76 44,541.53 Medium 10w 100 120 97 117 92 117	79,120 66 217 15,172 21,392 13,244 49,241 109 404
Iow Iow <thin< th=""> <thiow< th=""> <thiow< th=""></thiow<></thiow<></thin<>	66 217 - 15,172 21,392 13,244 49,241 49,241 109 404
Average Annual Per Capita Per Day high medium 666 67 622 67 588 73 Average Annual Per Day medium 214 252 207 201 218 210 Iow -	66 217 - 15,172 21,392 13,244 49,241 - 109 404
Capita Per Day medium 214 252 207 201 218 210 low -	217 - 15,172 21,392 13,244 49,241 - 109 404
Iow Ioow Ioow Ioow Ioow Ioow Iow Iow Ioow Ioo Ioow Ioow Ioow Ioo Ioo <thi< th=""><td>- 15,172 21,392 13,244 49,241 - 109 404</td></thi<>	- 15,172 21,392 13,244 49,241 - 109 404
Average Summer Use high 15,280 16,760 13,490 16,310 12,790 16,400 Medium 19,440 25,470 22,840 19,130 22,120 19,350 19,350 Iow IIII Iow IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	13,244 49,241 109 404
Average summer Use Per Capita medium 19,440 25,470 22,840 19,130 22,120 19,330 Average Summer Use Per Capita high 13,338.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315.98 Average Summer Use Per Capita medium 44,748.70 58,629.09 52,575.12 44,035.12 50,917.76 44,541.53 Average Summer Use Per Capita Per Day high 109 120 97 117 92 117 Medium 367 481 431 361 417 365 Iow - - - - - -	13,244 49,241 109 404
Average Summer Use Per Capita high medium low 13,338.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315.98 Average Summer Use Per Capita Per Dapita medium high 44,748.70 58,629.09 52,575.12 44,035.12 50,917.76 44,541.53 Average Summer Use Per Capita Per Dapi high 109 120 97 1117 92 117 Medium 367 481 431 361 417 365 Iow - - - - - - -	13,244 49,241 109 404
Average Summer Use Per Capita Imgin 13,538.31 14,630.24 11,775.77 14,237.42 11,164.72 14,315.98 Medium 44,748.70 58,629.09 52,575.12 44,035.12 50,917.76 44,541.53 Image Summer Use Per Capita Per Day high 109 120 97 117 92 117 Medium 367 481 431 361 417 365 Iow - - - - - -	49,241 109 404
Per Capita Interdum 444,748.70 35,625.09 32,575.12 444,055.12 50,917.76 444,941.55 Iow Iow <tdi< th=""><td>109 404</td></tdi<>	109 404
Average Summer Use Per Capita Per Day high medium 109 120 97 117 92 117 low -	109 404
Average Summer Use Per Capita Per Day Ingitian 105 120 57 117 52 117 Impliance medium 367 481 431 361 417 365 Iow - - - - - - -	404
Per Capita Per Day Incurant Sof Hor Sof Sof Hor Sof Sof Hor	+0+
	-
high 12,290 11,430 12,440 11,720 11,450 14,080	12,235
Average NonSummer medium 14.430 14.430 9.960 12.710 12.380 13.970	12,980
	12,000
high 10.728.26 9.977.54 10.859.20 10.230.69 9.995.00 12.290.80	10.680
Average NonSummer medium 33,216.24 33,216.24 22,926.80 29,257.00 28,497.37 32,157.38	29,879
low low low	
high 44 41 45 42 41 51	44
Avreage NonSummer medium 137 137 94 120 117 132	123
low	-
Ratio of Summer high 248% 292% 216% 277% 222% 232%	248%
to NonSummer Use medium 268% 352% 457% 300% 356% 276%	335%
Per Capital Per Day low	
high 55 49 48 51 50 46	50
PremisiD Count medium 52 50 43 52 54 46	50
low	
Average Annual Use high 50,127 57,531 54,021 54,961 48,480 66,261	55,230
Per PremisID medium 65,135 79,800 76,279 61,231 63,889 72,435	69,795
	151
Average Annual Use nign 13/.33 15/.62 148.00 150.58 132.82 181.54	151
Per PremisiD Per Day	191
high 27 792 24 204 29 104 21 090 25 590 25 652	20 550
Average Summer Use medium 37 385 50 940 53 116 36 788 40 963 42 065	13 5/13
Per PremisiD	+3,3+3
high 227.72 280.36 230.36 262.13 209.67 292.23	250
Average Summer Use mg/m 220.02 200.00 202.13 200.07 292.23 medium 306.43 417.54 435.38 301.54 335.76 344.80	357
Per Premisid Per Day	-
high 22,345 23.327 25.917 22.980 22.900 30.609	24.680
Average NonSummer medium 27,750 28,860 23,163 24.442 22.926 30.370	26,252
	,
Average NonSummer high 92 96 107 95 94 126	102
Use Per PremisiD Per medium 114 119 95 101 94 125	108
Day low	-

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Sunbury (PWSID 0329006)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high									
Population 13-14	medium	1,040	1,040	1,040	1,040	1,040	1,040	1,040		
	low									
Average Annual Lise	high									
(100 gallon)	medium	159,540	181,170	185,240	195,030	179,070	181,180	180,205		
	low									
Average Annual Per	high									
Capita	medium	15,343.60	17,423.84	17,815.27	18,756.81	17,221.88	17,424.80	17,331		
	low									
Average Annual Per	high	-	-	-	-	-	-	-		
Capita Per Day	medium	42	48	49	51	47	48	47		
	low	-	-	-	-	-	-	-		
	high									
Average Summer Use	medium	60,130	82,350	86,050	85,790	72,520	80,350	77,865		
	low									
Average Summer Use	high	5 702 04	7 040 00	0 075 77	0.050.77	6 074 54	7 707 50	7 400		
Per Capita	medium	5,782.94	7,919.93	8,275.77	8,250.77	6,974.54	7,727.58	7,489		
	IOW									
Average Summer Use	nign	-	-	-	-	-	-	-		
Per Capita Per Day	medium	47	65	68	68	57	63	61		
	IOW	-	-	-	-	-	-	-		
Average NonSummer Use	nign	00.410	00 020	00 100	100 240	106 550	100 820	102 240		
	hearan	99,410	98,820	99,190	109,240	100,000	100,830	102,340		
	low									
Average NonSummer Use Per Capita	modium	9 560 66	0 502 01	0 520 50	10 506 05	10 247 24	0 607 22	0.842		
	low	9,00.00	9,303.91	9,339.30	10,300.03	10,247.34	9,097.22	9,042		
	high	-	-	_	_	_	-	_		
Avreage NonSummer	medium	39	39	39	43	42	40	41		
Use Per Capita Per Day	low	-	-	-	-	-	-	-		
Ratio of Summer	high									
to NonSummer Use	medium	120%	166%	173%	156%	136%	159%	152%		
Per Capital Per Day	low									
	high									
PremisID Count	medium	218	223	242	267	276	261	248		
	low									
A	high									
Average Annual Use Per PremisiD	medium	73,183	81,242	76,545	73,045	64,880	69,418	73,052		
r er r termab	low									
Average Appual Lice	high	-	-	-	-	-	-	-		
Per PremisiD Per Dav	medium	200.50	222.58	209.71	200.12	177.75	190.19	200		
,	low	-	-	-	-	-	-	-		
Average Summer Use	high									
Per PremisID	medium	27,583	36,928	35,558	32,131	26,275	30,785	31,543		
	low									
Average Summer Use	high	-	-	-	-	-	-	-		
Per PremisiD Per Day	medium	226.09	302.69	291.46	263.37	215.37	252.34	259		
	low	-	-	-	-	-	-	-		
Average NonSummer	high									
Use Per PremisID	medium	45,601	44,314	40,988	40,914	38,605	38,632	41,509		
	low									
Average NonSummer	high	-	-	-	-	-	-	-		
Use Per Premisid Per	medium	188	182	169	168	159	159	1/1		
Day	IOW	-	-	-	-	-	-	-		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Twin Lakes (PWSID 1803002)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high									
Population 13-14	medium									
	low	187	187	187	187	187	187	187		
Average Appual Lise	high									
(100 gallon)	medium									
(low	28,810	31,640	29,810	28,440	28,900	30,700	29,717		
Average Appual Per	high									
Capita	medium									
	low	15,403.55	16,916.64	15,938.21	15,205.73	15,451.67	16,414.06	15,888		
Average Annual Per	high	-	-	-	-	-	-	-		
Capita Per Dav	medium	-	-	-	-	-	-	-		
	low	42	46	44	42	42	45	44		
	high									
Average Summer Use	medium									
	low	10,690	12,540	11,070	11,050	9,990	11,760	11,183		
Average Summer Use	high									
Per Capita	medium									
	low	5,715.52	6,704.64	5,918.69	5,907.99	5,341.25	6,287.60	5,979		
Average Summer Use	high	-	-	-	-	-	-	-		
Per Capita Per Day	medium	-	-	-	-	-	-	-		
	low	47	55	49	48	44	52	49		
Average NonSummer	high	-	-	-	-	-	-	-		
Average NonSummer	medium	-	-	-	-	-	-	-		
	low	18,120	19,100	18,740	17,390	18,910	18,940	18,533		
Average NonSummer	high									
Use Per Capita Avreage NonSummer Use Per Capita Per Day	medium									
	low	9,688.04	10,212.01	10,019.53	9,297.74	10,110.42	10,126.46	9,909		
	high	-	-	-	-	-	-	-		
	medium	-	-	-	-	-	-	-		
	low	40	42	41	38	42	42	41		
Ratio of Summer	high									
to NonSummer Use	medium									
Per Capital Per Day	low	118%	131%	118%	127%	105%	124%	120%		
	high									
PremisiD Count	medium									
	low	45	47	47	46	45	46	46		
Average Annual Use	high									
Per PremisID	medium									
	low	64,022	67,319	63,426	61,826	64,222	66,739	64,592		
Average Annual Use	high	-	-	-	-	-	-	-		
Per PremisID Per Day	medium	-	-	-	-	-	-	-		
	IOW	175.40	184.44	1/3.//	169.39	175.95	182.85	1//		
Average Summer Use	nign									
Per PremisID	medium	22.750	26,604	22 552	24.022	22.200	25.565	24.200		
	IOW	23,756	26,681	23,553	24,022	22,200	25,565	24,296		
Average Summer Use	nign	-	-	-	-	-	-	-		
Per PremisID Per Day	medium	-	-	-	-	-	-	-		
	IOW	194.72	218.70	193.06	196.90	181.97	209.55	199		
Average NonSummer	modium									
Use Per PremisID	low	40.267	40.620	20.072	27 004	42.022	11 174	40.200		
	10W	40,267	40,638	39,872	37,804	42,022	41,174	40,296		
Average NonSummer	nign	-	-	-	-	-	-	-		
Dav	medium	-	-	-	-	-	-	-		
Day	IOW	166	167	164	156	1/3	169	166		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Union Beach (PWSID 1350001)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	185	185	185	185	185	185	185		
Population 13-14	medium	6,030	6,030	6,030	6,030	6,030	6,030	6,030		
	low	5	5	5	5	5	5	5		
Average Annual Lise	high	17,410	18,850	20,020	18,450	14,230	18,140	17,850		
(100 gallon)	medium	1,280,290	1,313,740	1,251,860	1,238,260	864,580	970,840	1,153,262		
	low	1,900	2,000	2,130	1,900	1,120	1,020	1,678		
Average Annual Per	high	9,386.50	10,162.87	10,793.67	9,947.21	7,672.02	9,780.08	9,624		
Capita	medium	21,233.62	21,788.39	20,762.11	20,536.55	14,339.06	16,101.39	19,127		
·	low	36,343.10	38,255.89	40,742.53	36,343.10	21,423.30	19,510.51	32,103		
Average Annual Per	high	26	28	30	27	21	27	26		
Capita Per Day	medium	58	60	57	56	39	44	52		
	low	100	105	112	100	59	53	88		
	high	6,810	8,220	9,120	7,640	6,180	7,520	7,582		
Average Summer Use	medium	469,540	527,000	493,230	470,450	337,970	363,830	443,670		
	low	660	650	800	570	350	370	567		
Average Summer Use	high	3,671.57	4,431.77	4,917.00	4,119.06	3,331.91	4,054.37	4,088		
Per Capita	medium	7,787.32	8,740.30	8,180.22	7,802.42	5,605.23	6,034.12	7,358		
•	low	12,624.44	12,433.17	15,302.36	10,902.93	6,694.78	7,077.34	10,839		
Average Summer Use	high	30	36	40	34	27	33	34		
Per Capita Per Day	medium	64	72	67	64	46	49	60		
	low	103	102	125	89	55	58	89		
Average NonSummer	high	10,600	10,630	10,900	10,810	8,050	10,620	10,268		
Use	medium	810,750	786,740	758,630	767,810	526,610	607,010	709,592		
_	low	1,240	1,350	1,330	1,330	770	650	1,112		
Average NonSummer	high	5,714.93	5,731.10	5,876.67	5,828.15	4,340.11	5,725.71	5,536		
Use Per Capita	medium	13,446.29	13,048.09	12,581.88	12,734.13	8,733.83	10,067.26	11,769		
	low	23,718.65	25,822.73	25,440.17	25,440.17	14,728.52	12,433.17	21,264		
Avreage NonSummer	high	24	24	24	24	18	24	23		
Avreage NonSummer Use Per Capita Per Day	medium	55	54	52	52	36	41	48		
	low	98	106	105	105	61	51	88		
Ratio of Summer	high	128%	154%	167%	141%	153%	141%	147%		
to NonSummer Use	medium	115%	133%	129%	122%	128%	119%	125%		
Per Capital Per Day	low	106%	96%	120%	85%	91%	113%	102%		
	high	42	43	43	43	34	45	42		
PremisiD Count	medium	1,892	1,885	1,917	1,920	1,432	1,552	1,766		
	low	3	3	3	3	3	3	3		
Average Annual Use	high	41,452	43,837	46,558	42,907	41,853	40,311	42,820		
Per PremisID	medium	67,669	69,694	65,303	64,493	60,376	62,554	65,015		
	IOW	63,333	66,667	/1,000	63,333	37,333	34,000	55,944		
Average Annual Use	nign	113.57	120.10	127.56	117.55	114.67	110.44	117		
Per PremisID Per Day	medium	185.39	190.94	1/8.91	176.69	165.41	1/1.38	1/8		
	IOW	1/3.52	182.65	194.52	1/3.52	102.28	93.15	153		
Average Summer Use	nign	16,214	19,116	21,209	17,767	18,176	16,711	18,199		
Per PremisID	meaium	24,817	27,958	25,729	24,503	23,601	23,443	25,008		
	IOW	22,000	21,667	26,667	19,000	11,667	12,333	18,889		
Average Summer Use	nign	132.90	156.69	1/3.85	145.63	102.45	102.45	149		
Per PremisID Per Day	medium	203.42	229.16	210.90	200.84	193.45	192.15	205		
	IOW	180.33	1/7.60	218.58	155.74	95.63	101.09	155		
Average NonSummer	nign	25,238	24,721	25,349	25,140	23,6/6	23,600	24,621		
Use Per PremisID	hedium	42,851	41,737	39,574	39,990	36,774	39,111	40,006		
	IOW	41,333	45,000	44,333	44,333	25,667	21,667	37,056		
Average NonSummer	nign	104	102	104	103	9/	9/	101		
Use Per Premisid Per	medium	1/6	1/2	163	165	151	161	165		
Day	low	170	185	182	182	106	89	152		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Vincentown (PWSID 0333004)

Year-Long Users									
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg	
	high								
Population 13-14	medium		322	322	322	322	322	322	
	low		99	99	99	99	99	99	
	high								
Average Annual Ose (100 gallon)	medium		58,640	57,210	57,447	53,130	54,440	56,173	
(roo ganon)	low		20,600	18,520	19,950	18,220	23,980	20,254	
Assessed Assessed Day	high								
Average Annual Per	medium		18,199.06	17,755.25	17,828.74	16,489.05	16,895.44	17,434	
Capita	low		20,870.41	18,763.10	20,211.87	18,459.17	24,294.78	20,520	
Augusta August Dan	high		-	-	-	-	-	-	
Average Annual Per	medium		50	49	49	45	46	48	
Capita Per Day	low		57	51	55	51	67	56	
	high								
Average Summer Use	medium		25,700	22,850	21,779	19,161	20,327	21,963	
	low		8,500	7,140	7,220	6,080	8,520	7,492	
	high								
Average Summer Use	medium		7,976.05	7,091.55	6,759.01	5,946.66	6,308.41	6,816	
Per Capita	low		8,611.58	7,233.72	7,314.77	6,159.81	8,631.84	7,590	
	high		-	-	-	-	-	-	
Average Summer Use	medium		65	58	55	49	52	56	
Per Capita Per Day	low		71	59	60	50	71	62	
	high		-	-	-	-	-	-	
Average NonSummer	medium		32,940	34,360	35,668	33,969	34,113	34,210	
Use	low		12,100	11,380	12,730	12,140	15,460	12,762	
	high		,	,	,	,	,	,	
Average NonSummer Use Per Capita Avreage NonSummer	medium		10,223.00	10,663.70	11,069.74	10,542.39	10,587.03	10,617	
	low		12,258.83	11,529.38	12,897.10	12,299.36	15,662.94	12,930	
	high		-	-	-	-	-	-	
	medium		42	44	46	43	44	44	
Use Per Capita Per Day	low		50	47	53	51	64	53	
Ratio of Summer	high								
to NonSummer Use	medium		155%	132%	122%	112%	119%	128%	
Per Capital Per Day	low		140%	125%	113%	100%	110%	117%	
	high								
PremisID Count	medium		98	99	104	105	100	101	
	low		32	32	31	31	31	31	
	high								
Average Annual Use	medium		59,837	57,788	55,237	50,600	54,440	55,580	
rerriennisid	low		64,375	57,875	64,355	58,774	77,355	64,547	
	high		-	-	-	-	-	-	
Average Annual Use	medium		163.94	158.32	151.34	138.63	149.15	152	
Per Premisid Per Day	low		176.37	158.56	176.31	161.03	211.93	177	
	high								
Average Summer Use	medium		26,224	23,081	20,941	18,249	20,327	21,764	
rerriennisid	low		26,563	22,313	23,290	19,613	27,484	23,852	
	high		-	-	-	-	-	-	
Average Summer Use	medium		214.95	189.19	171.65	149.58	166.61	178	
Per Premisid Per Day	low		217.73	182.89	190.90	160.76	225.28	196	
	high								
Average NonSummer	medium		33,612	34,707	34,296	32,352	34,113	33,816	
Use Per PremisiD	low		37,813	35,563	41,065	39,161	49,871	40,694	
Average NonSummer	high		-	-	-	-	-	-	
Use Per PremisiD Per	medium		138	143	141	133	140	139	
Day	low		156	146	169	161	205	167	
				-					

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – Washington (Warren County) (PWSID 2121001)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high	2,460	2,460	2,460	2,460	2,460	2,549	2,475		
Population 13-14	medium	6,822	6,822	6,822	6,822	6,864	6,864	6,836		
	low	2,271	2,271	2,274	2,271	2,271	2,274	2,272		
Average Annual Use	high	248,510	251,800	246,530	243,580	237,870	237,110	244,233		
(100 gallon)	medium	1,211,700	1,215,470	1,186,110	1,164,527	1,118,290	1,101,150	1,166,208		
,	low	640,690	672,870	641,530	640,210	609,550	617,280	637,022		
Average Annual Per	high	10,100.15	10,233.87	10,019.68	9,899.78	9,667.71	9,301.71	9,870		
Capita	medium	17,762.33	17,817.59	17,387.20	17,070.82	16,292.36	16,042.65	17,062		
•	low	28,211.65	29,628.64	28,211.80	28,188.75	26,838.77	27,145.39	28,038		
Average Annual Per	high	28	28	27	27	26	25	27		
Capita Per Day	medium	49	49	48	47	45	44	47		
	low	77	81	77	77	74	74	77		
	high	85,500	87,390	84,830	82,930	80,200	79,010	83,310		
Average Summer Use	medium	420,450	449,360	427,590	424,560	392,750	380,120	415,805		
	low	233,750	257,450	239,350	241,370	223,430	225,990	236,890		
Average Summer Use	high	3,474.96	3,551.78	3,447.73	3,370.51	3,259.56	3,099.53	3,367		
Per Capita	medium	6,163.38	6,587.17	6,268.05	6,223.63	5,721.97	5,537.97	6,084		
	low	10,292.77	11,336.36	10,525.61	10,627.63	9,837.73	9,938.09	10,426		
Average Summer Use	high	28	29	28	28	27	25	28		
Per Capita Per Day	medium	51	54	51	51	47	45	50		
	low	84	93	86	87	81	81	85		
Average NonSummer	high	163,010	164,410	161,700	160,650	157,670	158,100	160,923		
Use	medium	791,250	766,110	758,520	739,967	725,540	721,030	750,403		
	low	406,940	415,420	402,180	398,840	386,120	391,290	400,132		
Average NonSummer	high	6,625.19	6,682.09	6,571.95	6,529.27	6,408.16	6,202.19	6,503		
Use Per Capita	medium	11,598.94	11,230.42	11,119.16	10,847.19	10,570.39	10,504.68	10,978		
	low	17,918.89	18,292.29	17,686.19	17,561.11	17,001.04	17,207.30	17,611		
Avreage NonSummer	high	27	27	27	27	26	26	27		
Use Per Capita Per Day	medium	48	46	46	45	43	43	45		
	low	74	75	73	72	70	71	72		
Ratio of Summer	high	104%	106%	104%	103%	101%	100%	103%		
to NonSummer Use	medium	106%	117%	112%	114%	108%	105%	110%		
Per Capital Per Day	low	114%	123%	119%	121%	115%	115%	118%		
Des mislD Count	high	465	468	4/0	4/0	4/3	4/9	4/1		
Premisid Count	medium	2,072	2,067	2,058	2,054	2,039	2,018	2,051		
	IOW	991	1,000	52 452	1,001	997	992	996		
Average Annual Use	nign	53,443	53,803	52,453	51,826	50,290	49,501	51,886		
Per PremisID	mealum	58,480	58,804	57,034	50,696	54,845	54,500	50,837		
	high	146 42	147 41	04,340	141.00	127 70	125 62	142		
Average Annual Use	modium	140.42	147.41	143.71	141.99	157.78	135.02	142		
Per PremisID Per Day	low	100.22	101.11	137.90	175.33	150.20	149.50	130		
	high	177.13	18 673	18 0/10	175.22	16 956	16 /05	17 701		
Average Summer Use	medium	20,207	21 7/0	20 777	20,670	10,350	18 836	20.263		
Per PremisID	low	20,292	21,740	20,777	20,070	22 410	22 791	20,203		
	high	23,387	25,745	24,007	24,113	122,410	125 20	23,774		
Average Summer Use	modium	166 22	179 10	147.34	144.03	158.98	153.20	145		
Per PremisID Per Day	low	102.33	211.02	10.30	105.45	192.60	196 72	100		
	high	25 056	25 120	2/ /0/	2/ 101	22 224	33 000	2/ 10E		
Average NonSummer	medium	28 100	35,150	36 957	36,026	25 502	25 720	34,103		
Use Per PremisID	low	30,188 41.064	57,004 A1 542	10 220	20 944	20,203	20 115	30,373		
	high	41,004	41,042 1 <i>1</i> 15	40,339	59,844 1 <i>1</i> 1	30,728 127	59,445 126	40,100		
Use Per Premisin Per	medium	144	145	142	141	1/6	1/7	141		
Dav	low	157	171	152	148	140	147	151		
Day	IOW	169	1/1	166	164	159	162	165		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems NJ American Water – West Jersey (PWSID 1427009)

Year-Long Users										
	Density	08-09	09-10	10-11	11-12	12-13	13-14	6-Yr Avg		
	high									
Population 13-14	medium	743	743	743	743	743	743	743		
	low	747	747	747	747	747	747	747		
Average Annual Use	high									
(100 gallon)	medium	40,020	43,330	40,440	40,520	35,910	36,840	39,510		
	low	73,380	73,470	67,190	68,300	66,560	66,710	69,268		
Average Annual Per	high									
Capita	medium	5,384.44	5,829.78	5,440.95	5,451.71	4,831.46	4,956.59	5,316		
	low	9,816.82	9,828.86	8,988.72	9,137.22	8,904.44	8,924.50	9,267		
Average Annual Per	high	-	-	-	-	-	-	-		
Capita Per Dav	medium	15	16	15	15	13	14	15		
	low	27	27	25	25	24	24	25		
	high									
Average Summer Use	medium	14,520	15,710	13,390	14,130	12,150	12,460	13,727		
	low	25,970	28,420	24,540	25,570	24,260	22,280	25,173		
	high									
Average Summer Use Per Capita	medium	1,953.57	2,113.68	1,801.54	1,901.10	1,634.71	1,676.41	1,847		
i ei oapita	low	3,474.28	3,802.04	3,282.98	3,420.77	3,245.52	2,980.63	3,368		
	high	-	-	-	-	-	-	-		
Average Summer Use	medium	16	17	15	16	13	14	15		
	low	28	31	27	28	27	24	28		
A	high	-	-	-	-	-	-	-		
Average NonSummer Use	medium	25,500	27,620	27,050	26,390	23,760	24,380	25,783		
	low	47,410	45,050	42,650	42,730	42,300	44,430	44,095		
	high									
Average NonSummer Use Per Capita	medium	3,430.86	3,716.10	3,639.41	3,550.61	3,196.76	3,280.17	3,469		
	low	6,342.54	6,026.82	5,705.74	5,716.45	5,658.92	5,943.87	5,899		
Avreage NonSummer	high	-	-	-	-	-	-	-		
	medium	14	15	15	15	13	13	14		
Use Fer Capita Fer Day	low	26	25	23	24	23	24	24		
Ratio of Summer	high									
to NonSummer Use	medium	113%	113%	99%	107%	102%	102%	106%		
Per Capital Per Day	low	109%	126%	115%	119%	114%	100%	114%		
	high							#DIV/0!		
PremisID Count	medium	73	75	72	69	69	72	72		
	low	125	123	117	119	122	123	122		
	high									
Average Annual Use	medium	54,822	57,773	56,167	58,725	52,043	51,167	55,116		
Per Premisid	low	58,704	59,732	57,427	57,395	54,557	54,236	57,009		
	high	-	-	-	-	-	-	-		
Average Annual Use	medium	150.20	158.28	153.88	160.89	142.58	140.18	151		
Per Premisid Per Day	low	160.83	163.65	157.34	157.25	149.47	148.59	156		
	high									
Average Summer Use	medium	19.890	20.947	18.597	20.478	17.609	17.306	19.138		
Per PremisiD	low	20.776	23.106	20.974	21.487	19.885	18.114	20,724		
	high	-	-		-	-				
Average Summer Use	medium	163.04	171 69	152 44	167 85	144 33	141 85	157		
Per PremisiD Per Day	low	170.30	189.39	171.92	176.13	162.99	148.47	170		
	high	170.50	105.55	171.52	170.15	102.55	1-077	1/0		
Average NonSummer	medium	34 932	36 827	37 560	38 246	34 125	33 861	35 978		
Use Per PremisID	low	37 972	36.626	36 / 52	35 90240	34 672	36 122	36.285		
Average Ner Comme	high	57,920		- 50,455	55,508	J 4 ,072				
Average NonSummer	medium	-	-	-	-	- 1/2	-	- 140		
Dav	low	144	152	100	140	142	140	140		
Day	IOW	156	151	150	148	143	149	149		

Water Needs through 2040 for New Jersey Public Community Water Supply Systems Passaic Valley Water Commission – Complete System (PWSID 1605002)

	Year-Long Users										
	Density	2010	2011	2012	2013	2014	2015	6-Yr Avg			
	high	265,973	265,747	266,175	266,175	266,371	265,254	265,949			
Population	medium	40,561	40,577	40,577	40,577	40,577	40,051	40,486			
	low	758	758	758	758	758	758	758			
	high	5,812,477	5,695,465	5,941,946	5,822,821	5,969,125	5,970,130	5,868,661			
Average Annual Use	medium	1,133,051	1,058,785	1,089,423	1,060,831	1,071,971	1,087,354	1,083,569			
(1000)	low	22,401	21,843	23,589	20,856	21,036	20,426	21,692			
A	high	21,854	21,432	22,323	21,876	22,409	22,507	22,067			
Average Annual Per	medium	27,934	26,093	26,849	26,144	26,418	27,149	26,765			
Capita	low	29,566	28,829	31,134	27,527	27,764	26,959	28,630			
	high	59.87	58.72	61.16	59.93	61.39	61.66	60.46			
Average Annual Per	medium	76.53	71.49	73.56	71.63	72.38	74.38	73.33			
Capita Per Day	low	81.00	78.98	85.30	75.42	76.07	73.86	78.44			
	high	2,893,136	2,977,535	3,036,338	2,925,236	2,958,481	3,041,800	2,972,088			
Average Summer Use	medium	556,055	573,608	572,893	531,928	523,998	536,309	549,132			
	low	11,130	11,958	13,181	10,079	9,958	9,886	11,032			
	high	10,878	11,204	11,407	10,990	11,107	11,467	11,176			
Average Summer Use	medium	13,709	14,136	14,119	13,109	12,914	13,391	13,563			
Per Capita	low	14,690	15,783	17,397	13,303	13,143	13,048	14,561			
	high	59.60	61.39	62.51	60.22	60.86	62.84	61.24			
Average Summer Use	medium	75.12	77.46	77.36	71.83	70.76	73.37	74.32			
Per Capita Per Day	low	80.49	86.48	95.33	72.89	72.02	71.50	79.78			
	high	2.919.341	2.717.930	2.905.608	2.897.585	3.010.644	2.928.330	2.896.573			
Average NonSummer	medium	576.996	485.177	516.530	528.903	547.973	551.045	534.437			
Use	low	11.271	9,885	10,408	10.777	11.078	10.540	10.660			
	high	10,976	10,228	10,916	10,886	11.302	11,040	10,891			
Average NonSummer	medium	14.225	11.957	12,730	13.035	13.505	13.759	13.202			
Use Per Capita	low	14,876	13.047	13,737	14,224	14.621	13.911	14.069			
	high	60 14	56.04	59.81	59.65	61.93	60.49	59.68			
Avreage NonSummer	medium	77 95	65 52	69.75	71 42	74.00	75 39	72 34			
Use Per Capita Per Day	low	81.51	71.49	75.27	77.94	80.12	76.23	77.09			
Ratio of Summer	high	99.10%	109.55%	104.50%	100.95%	98.27%	103.87%	102,71%			
to NonSummer Use	medium	96 37%	118 23%	110 91%	100.53%	95.62%	97 33%	103 17%			
Per Canital Per Dav	low	98 75%	120.23%	126.64%	93 52%	89.89%	93.80%	103 93%			
	high	35 538	35 825	36 531	36 531	37 439	37 224	3651466 67%			
PremisID(Parcel)	medium	9 317	9 323	9 ///	9 ///	9 589	9 273	939833 33%			
Count		104	124	3, 444 177	3, 444 177	107	<i>J,273</i> 117	12/122 220/			
	high	162 557	150 000	162.655	150 204	150 420	160 294	161 140			
Average Annual Use	medium	121 611	112 56,980	115 250	112 220	111 702	117 260	115 710			
Per PremisID	low	121,011	176 152	115,350	164,329	111,792	174 504	115,/10			
	10W	180,053	1/0,153	185,740	104,220		1/4,581	1/0,092			
Average Annual Use	nign	448.10	435.50	445.03	430.70	430.81	439.41	441.50			
Dav	low	333.18	311.14	510.04	307.75	300.28	321.20	317.03			
249	10W	494.94	482.01	208.88	449.92	453.80	4/8.30	484.09			
Average Summer	nign	81,410	83,113	83,117	80,075	79,021	61,710	81,929			
Use Per PremisID	medium	59,08Z	01,520	102 797	70,324	54,646	57,830	02,249			
A	high	69,758	90,435 AEE 40	103,787	/9,302	/8,409	84,490 AA7 70	92,330			
Average Summer	nign	440.08	455.42	455.43	438.77	432.99	447.76	448.92			
Per Dav	neulum	327.02	537.13	332.40	308.03	299.43	310.91	326.29			
i ci Day	10W	491.83	528.41	568.70	434.86	429.64	462.99	505.95			
Average	nign	82,147	/5,86/	79,538	79,319	80,415	78,668	79,218			
Promision Per	meaium	61,929	52,041	54,694	56,004	57,146	59,425	56,167			
riemisid	low	90,895	/9,/18	81,953	84,858	87,228	90,085	84,356			
Average	high	450.12	415.71	435.83	434.62	440.63	431.06	434.07			
NonSummer Use Per	medium	339.34	285.16	299.69	306.87	313.13	325.61	307.76			
Fremisid Per Day	low	498.06	436.81	449.06	464.98	477.96	493.62	462.22			

		Year-	-Long Users	S		
	Density	2011	2012	2013	2014	4-Yr Avg
	high	871	1,009	1,012	1,001	974
Population	medium	27,010	30,279	30,462	31,881	29,908
	low	9,254	11,189	10,803	11,265	10,628
	high	8,252,500	7,952,000	7,737,400	7,725,100	7,916,750
Average Annual Use	medium	149,920,700	149,269,200	131,490,600	133,763,600	141,111,025
	low	66,625,700	66,658,000	59,913,700	62,197,800	63,848,800
Average Annual Per	high	9,472.05	7,877.50	7,642.94	7,716.12	8,177
Capita	medium	5,550.52	4,929.77	4,316.51	4,195.71	4,748
-	low	7,199.60	5,957.22	5,545.86	5,521.52	6,056
Average Annual Per	high	25.95	21.58	20.94	21.14	22.40
Capita Per Day	medium	15.21	13.51	11.83	11.50	13.01
	low	19.72	16.32	15.19	15.13	16.59
	high	4,615,600	4,117,500	5,481,300	3,989,800	4,551,050
Average Summer Use	medium	91,782,100	79,162,700	92,067,000	70,023,600	83,258,850
	low	41,774,900	39,213,700	43,281,500	36,547,300	40,204,350
Average Summer Use	high	5,297.69	4,078.93	5,414.38	3,985.16	4,694
Per Capita	medium	3,398.05	2,614.43	3,022.33	2,196.40	2,808
	low	4,514.21	3,504.52	4,006.32	3,244.43	3,817
Average Summer Use	high	29.03	22.35	29.67	21.84	25.72
Per Capita Per Day	medium	18.62	14.33	16.56	12.04	15.39
	low	24.74	19.20	21.95	17.78	20.92
Average NonSummer	high	3,636,900	3,834,500	2,256,100	3,735,300	3,365,700
Use	medium	58,138,600	/0,106,500	39,423,600	63,740,000	57,852,175
	low	24,850,800	27,444,300	16,632,200	25,650,500	23,644,450
Average NonSummer	high	4,174.36	3,798.58	2,228.56	3,730.96	3,483
Use Per Capita	meaium	2,152.47	2,315.34	1,294.18	1,999.31	1,940
	lOW	2,685.39	2,452.69	1,539.55	2,277.08	2,239
Avreage NonSummer	nign	22.87	20.81	7.00	20.44	19.09
Use Per Capita Per Day	low	11.79	12.09	7.09	10.90	10.05
Ratio of Summer	high	14.71	107.4%	0.44 242.0%	106.9%	146.0%
to NonSummer Use	medium	157 9%	117.4%	243.0%	100.8%	140.0%
Per Canital Per Day	low	168 1%	1/2.9%	255.5%	109.9%	178 /%
r or oupstarr or buy	high	549	659	635	675	630
PremisID(Parcel) Count	medium	11 557	13 010	13 041	13 649	12 814
	low	3 205	3 874	3 736	3 900	3 679
	high	15,032	12.067	12,185	11,445	12,682
Average Annual Use	medium	12.972	11.473	10.083	9.800	11.082
Per PremisiD	low	20.788	17.207	16.037	15.948	17.495
	high	41.18	33.06	33.38	31.36	34.75
Average Annual Use	medium	35.54	31.43	27.62	26.85	30.36
Per Premisid Per Day	low	56.95	47.14	43.94	43.69	47.93
	high	8.407	6.248	8.632	5.911	7.300
Average Summer Use	medium	7,942	6,085	7,060	5,130	6,554
Per Premisid	low	13,034	10,122	11,585	9,371	11,028
	high	46.07	34.24	47.30	32.39	40.00
Average Summer Use	medium	43.52	33.34	38.68	28.11	35.91
Per Premisid Per Day	low	71.42	55.46	63.48	51.35	60.43
	high	6,625	5,819	3,553	5,534	5,382
Average NonSummer	medium	5,031	5,389	3,023	4,670	4,528
Use Per PremisiD	low	7,754	7,084	4,452	6,577	6,467
Average NonSummer	high	36.30	31.88	19.47	30.32	29.49
Use Per PremisID Per	medium	27.56	29.53	16.56	25.59	24.81
Day	low	42.49	38.82	24.39	36.04	35.43

Year-Long Users									
	Density	2008	2009	2010	2011	2012	2013	2014	6-Yr Avg
	high	664	668	668	668	665	664	656	665
Population	medium	9,872	9,866	9,860	9,852	9,870	9,832	9,870	9,860
	low	1,481	1,480	1,482	1,480	1,492	1,490	1,488	1,485
	high	12,032,000	14,212,000	13,536,000	13,969,000	14,091,000	13,221,000	11,994,000	13,293,571
Average Annual Use	medium	140,997,000	133,727,000	133,079,000	126,853,000	127,869,000	124,549,000	121,124,000	129,742,571
	low	25,665,000	27,045,000	25,446,000	24,379,000	25,186,000	25,003,000	23,869,000	25,227,571
Average Appuel Per	high	18,120.48	21,275.45	20,263.47	20,911.68	21,189.47	19,911.14	18,283.54	19,994
Average Annual Fer	medium	14,282.52	13,554.33	13,496.86	12,875.86	12,955.32	12,667.72	12,271.94	13,158
	low	17,329.51	18,273.65	17,170.04	16,472.30	16,880.70	16,780.54	16,040.99	16,993
Average Appual Per	high	49.65	58.29	55.52	57.29	58.05	54.55	50.09	54.78
Capita Per Dav	medium	39.13	37.14	36.98	35.28	35.49	34.71	33.62	36.05
	low	47.48	50.06	47.04	45.13	46.25	45.97	43.95	46.55
	high	6,168,500	6,908,000	6,797,000	6,771,000	6,852,000	6,258,500	5,858,000	6,516,143
Average Summer Use	medium	70,768,000	66,397,000	69,717,000	65,170,000	66,095,000	65,667,000	61,031,000	66,406,429
	low	13,464,000	12,799,000	13,418,000	12,581,000	13,184,000	12,804,000	11,981,000	12,890,143
Average Summer Lice	high	9,289.91	10,341.32	10,175.15	10,136.23	10,303.76	9,425.45	8,929.88	9,800
Per Capita	medium	7,168.56	6,729.88	7,070.69	6,614.90	6,696.56	6,678.91	6,183.49	6,735
	low	9,091.15	8,647.97	9,053.98	8,500.68	8,836.46	8,593.29	8,051.75	8,682
Average Summer Use	high	50.90	56.66	55.75	55.54	56.46	51.65	48.93	53.70
Per Capita Per Dav	medium	39.28	36.88	38.74	36.25	36.69	36.60	33.88	36.90
,	low	49.81	47.39	49.61	46.58	48.42	47.09	44.12	47.57
Average NonSummer	high	5,863,500	7,304,000	6,739,000	7,198,000	7,239,000	6,962,500	6,136,000	6,777,429
Use	medium	70,229,000	67,330,000	63,362,000	61,683,000	61,774,000	58,882,000	60,093,000	63,336,143
	low	12,201,000	14,246,000	12,028,000	11,798,000	12,002,000	12,199,000	11,888,000	12,337,429
Average NonSummer	high	8,830.57	10,934.13	10,088.32	10,775.45	10,885.71	10,485.69	9,353.66	10,193
Use Per Capita	medium	7,113.96	6,824.45	6,426.17	6,260.96	6,258.76	5,988.81	6,088.45	6,423
	low	8,238.35	9,625.68	8,116.06	7,971.62	8,044.24	8,187.25	7,989.25	8,310
Avreage NonSummer	high	48.39	59.91	55.28	59.04	59.65	57.46	51.25	55.85
Use Per Capita Per Dav	medium	38.98	37.39	35.21	34.31	34.29	32.82	33.36	35.19
	low	45.14	52.74	44.47	43.68	44.08	44.86	43.78	45.54
Ratio of Summer	high	105.2%	94.6%	100.9%	94.1%	94.7%	89.9%	95.5%	96.4%
to NonSummer Use	medium	100.8%	98.6%	110.0%	105.7%	107.0%	111.5%	101.6%	105.0%
Per Capital Per Day	low	110.4%	89.8%	111.6%	106.6%	109.8%	105.0%	100.8%	104.9%
	high	298	304	304	304	299	297	294	300
PremisID(Parcel) Count	medium	2,106	2,098	2,092	2,076	2,102	2,089	2,101	2,095
	low	351	352	358	353	362	361	360	357
Average Annual Use	high	40,376	46,750	44,526	45,951	47,127	44,515	40,796	44,292
Per PremisID	medium	66,950	63,740	63,613	61,105	60,832	59,621	57,651	61,930
	low	73,120	76,832	71,078	69,062	69,575	69,260	66,303	70,747
Average Annual Use	high	110.62	128.08	121.99	125.89	129.12	121.96	111.77	121.35
Per PremisID Per Day	medium	183.43	174.63	174.28	167.41	166.66	163.35	157.95	169.67
-	low	200.33	210.50	194.73	189.21	190.62	189.75	181.65	193.83
Average Summer Use	high	20,700	22,724	22,359	22,273	22,916	21,072	19,925	21,710
Per PremisID	medium	33,603	31,648	33,326	31,392	31,444	31,435	29,049	31,699
	low	38,359	36,361	37,480	35,640	36,420	35,468	33,281	36,144
Average Summer Use	high	113.42	124.51	122.51	122.04	125.57	115.47	109.18	118.96
Per PremisID Per Day	medium	184.13	173.41	182.61	172.01	172.30	172.24	159.17	173.70
	low	210.19	199.24	205.37	195.29	199.56	194.35	182.36	198.05
Average NonSummer	high	19,676	24,026	22,168	23,678	24,211	23,443	20,871	22,582
Use Per PremisID	medium	33,347	32,092	30,288	29,712	29,388	28,187	28,602	30,231
	low	34,761	40,472	33,598	33,422	33,155	33,792	33,022	34,603
Average NonSummer	high	107.81	131.65	121.47	129.74	132.66	128.45	114.36	123.74
Use Per PremisID Per	medium	182.72	175.85	165.96	162.81	161.03	154.45	156.72	165.65
Day	low	190.47	221.76	184.10	183.13	181.67	185.16	180.94	189.61

Water Needs through 2040 for New Jersey Public Community Water Supply Systems Suez Water – Haworth (PWSID 0238001) and Franklin Lakes (PWSID 0220001)

Year-Long Users						
	Density	2014 (Apr-Dec)	2,015	2,016	3-Yr Avg	
	high	424,085	425,707	427,266	425,686	
Population	medium	285,571	285,485	285,296	285,450	
	low	39,721	39,757	39,947	39,808	
Average Annual Use	high	7,194,464,303	9,574,450,613	9,770,824,466	9,648,411,230	
	medium	5,789,566,212	7,596,029,260	7,515,078,218	7,598,352,487	
	low	1,355,890,424	1,763,075,642	1,754,251,244	1,771,637,767	
Average Annual	high	16,965	22,491	22,868	20,775	
Per Capita	medium	20,274	26,607	26,341	24,407	
•	low	34,135	44,346	43,914	40,799	
Average Annual	high	61.91	61.62	62.65	62.06	
Per Capita Per Day	medium	73.99	72.90	72.17	73.02	
	low	124.58	121.50	120.31	122.13	
Average Summer	high	3,359,145,822	3,497,972,811	3,562,195,016	3,473,104,550	
Use	medium	3,095,750,082	3,449,804,716	3,404,015,601	3,316,523,466	
	low	803,378,625	999,442,309	988,226,524	930,349,153	
Average Summer	high	7,921	8,217	8,337	8,158	
Use Per Capita	medium	10,841	12,084	11,932	11,619	
-	low	20,226	25,139	24,738	23,368	
Average Summer	high	65.46	67.91	68.90	67.42	
Use Per Capita Per	medium	89.59	99.87	98.61	96.02	
Day	low	167.15	207.76	204.45	193.12	
Average	high	3,835,318,481	6,076,477,802	6,208,629,450	6,136,324,304	
NonSummer Use	medium	2,693,816,130	4,146,224,544	4,111,062,618	4,168,594,701	
	low	552,511,800	763,633,333	766,024,720	792,588,836	
Average	high	9,044	14,274	14,531	12,616	
NonSummer Use	medium	9,433	14,523	14,410	12,789	
rei Gapita	low	13,910	19,208	19,1/6	17,431	
Avreage	nigh	59.11	58.50	59.55	59.05	
NonSummer Use	medium	61.65	59.52	59.06	60.08	
Ter Capita Ter Day	IOW	90.91	/8./2	/8.59	82.74	
Ratio of Summer	nign	111%	116%	116%	114%	
	meaium	145%	168%	167%	160%	
	IUW	184%	204%	200%	230%	
Total Motor	nign	96,044 86,012	86,397	00,833	86.005	
Total Weter	low	0.057	0.042	0,005	0,005	
	high	9,037	9,043	9,000	9,000	
Average Annual	medium	67 310	144,133 88 126	87 583	88 3/8	
Use Per PremisID	low	1/19 705	10/ 070	103 /0/	195 6/5	
	high	398	395	100,404	398	
Use Per PremisiD	medium	246	241	240	242	
Per Day	low	546	534	530	537	
	high	50 862	52 682	53 300	52 281	
Average Summer Use Per PremisID	medium	35,992	40 023	39 671	38 562	
	low	88 702	110 523	109 001	102 742	
Average Summer	high	420	435	440	432	
Use Per PremisiD	medium	297	331	328	319	
Per Day	low	733	913	901	849	
Averace	high	58 072	91 517	92 897	92 380	
NonSummer Use	medium	31.319	48,103	47,911	48.469	
Per PremisID	low	61.003	84,446	84,493	87.527	
Average	high	380	375	381	378	
NonSummer Use	medium	205	197	196	199	
Per PremisID Per	low	399	346	346	364	

Appendix E. Project Methodology

Note: The following methodology was approved by NJDEP in February 2015 and used as the basis for the project. Methodology changes did occur at various points in the project where data were not available or improvements were identified based on experience with the modeling process. All such changes are discussed in detail within the report.

New Jersey Water Needs through 2040: Evaluation of Population and Water Use Rate Scenarios Project Methodology

Overview

Water demand projections for urbanized areas are highly sensitive to forecasts of population,² industrial uses and per capital residential and commercial/business demands.

The first issue is with population forecasts. These are highly dependent on past population trends (including both natural growth and migration) and economic trends, and expectations as to how these trends will continue or change over time, but both are subject to significant variation over time. Trends involving larger populations tend to be more stable than projections involving individual municipalities or other small areas. Within such areas, available land, the economics of redevelopment to higher (or lower) densities, a shift from residential to non-residential land uses or vice versa, changes in household size due to demographic shifts (such as changes in ethnic makeup or the proportion of new immigrants), and changes in lifestyle preferences (such as the ongoing apparent interest in urban areas with high cultural amenities) all will play a role in short and long term population trends. Trends have shifted in the past (from urban growth to suburban and exurban growth) and are apparently shifting again toward urban growth; however, there is no guarantee that this shift will continue over the next twenty to thirty years. The only certainty in population forecasts is that they will be incorrect in detail, though they may be correct in general trend and scale.

Water use trends also change. Areas with large existing populations can see significant changes in total water demand based on relatively small changes in per capita water use. Residential trend shifts can be the result of new or updated building codes as applied over time, water rate schedules, changing household size, personal preferences for water-using or water-saving devices, etc. Commercial/office water use trends may likewise be affected by changes in building codes, but also by technology choices for lavatories and HVAC units to reduce water supply and sewer charges. Industrial uses are far harder to forecast, depending as they do on the presence/absence of specific industrial users, major process changes, technology upgrades, etc. Industries

² According to the U.S. Bureau of the Census, population projections are "estimates of the population for future dates. They illustrate plausible courses of future population change based on assumptions about future births, deaths, net international migration, and net domestic migration. Projected numbers are typically based on an estimated population consistent with the most recent decennial census as enumerated, projected forward using a variant of the cohortcomponent method." Forecasts include consideration of other factors such as policies, investment impacts, land availability, etc., to evaluate various possible assumptions and determine the most probable. They explicitly include the potential that trends may be changed through public policy.

tend to be concentrated in urban areas, while most of New Jersey's office development is in suburban areas such as the Interstate 287 corridor.

For all of these reasons, simple application of an aggregate per capita RIC (residential, industrial, commercial) water demand rate to a given population projection is not highly dependable. Past water supply plans have projected statewide and regional demands that were in some cases close to actual aggregate results and in some cases quite different, but in neither case was the accuracy of the projections a result of the methodology used.

How will New Jersey's water demand and use change in the future? No definitive prediction is possible, but reasonable scenarios can be developed that will aid in planning. Understanding viable scenarios is vital for useful water supply planning, especially for the urbanized areas of northeastern and central NJ supplied by reservoirs, but also for the lower Delaware Valley area.

Rutgers is developing a detailed evaluation of the variables involved in developing more solidly grounded scenarios for future water use. This two part study will address:

- Anticipated population growth statewide and within urbanized and urbanizing areas, with a set of reasonable scenarios based on reasonably viable assumptions. What are the anticipated or most likely demographic shifts? How might recent trends in regional economies, urban housing starts, energy costs and other likely drivers of development and redevelopment affect population projections?
- Anticipated water use rates and total water use within developed and developing areas (with the primary focus on areas with public community water supply, PCWS, systems), again with a set of reasonable scenarios based on reasonably viable assumptions. Also, peak demand is a key component of water availability analysis and an important factor is sizing water system capacities and infrastructure so detailed information is critical to NJDEP water supply planning, safe drinking water permitting, and asset management. Therefore, along with annual demands, trends in seasonal water use will be important. Industrial use forecasts will not be attempted due to the uncertainties involved. However, an assessment of the largest industrial consumptive water uses, where supplied by PCWS systems, will provide a sense of how water use within individual water systems might shift suddenly if the industry ceased or significantly increased operations. Individual industrial uses will be included where they constitute at least 5 percent of a PCWS system's demand.

The anticipated study will result in statewide water demand forecasts for PCWS systems, and will also include city-specific scenarios of increased water demand, both annually and seasonally, for at least the top five municipalities by population, as case examples useful for broader planning purposes. The results of this study will provide a set of input projections for use in water supply planning, which will occur through other projects.

Methodology

The proposed methodology builds on the ideas stated in the project scope of work. Additional research and discussions with experts in the field have aided in methodology development.

Population Projections

Step P-1: Existing Projections: Assemble existing population projections/forecasts from the three Metropolitan Planning Organizations (to 2040 from the North Jersey Transportation Planning Authority, Delaware Valley Regional Planning Commission, and the South Jersey Transportation Planning Organization) and the NJ Department of Labor and Workforce Development (population projections to 2035). Specific projections or forecasts from counties, the largest municipalities, and major water purveyors will also be

collected, along with related information from planning organizations such as New Jersey Future, PlanSmart NJ and Regional Plan Association.

Status: Current population projections from MPOs/NJDOL have been compiled and reviewed.

Step P-2: Critical Variables: Compare the various projections and forecasts, evaluate the assumptions, assess the reasons for differences among the existing projections, and assess alternative assumptions (including but not limited to shifts in the proportion of residential development that occurs through redevelopment versus "green field" development).

Status: Complete. The NJDOL and MPO projection models use the following primary variables to project population change to the county level. The county-level results are then allocated to the various municipalities through a separate method that does not incorporate the same variables.

- <u>Base population</u> The base population used in projection models is the 2010 Census counts by age and sex from U.S. Census of Population and Housing, which reflects the demographic characteristics of the latest decennial census. Age is defined by five-year groups (cohorts) from 0 to age 84, with an open category for age 85 and over. The 2005 populations by age and sex cohort are from the 2005 American Community Survey, which is considered less accurate than the Census data.
- <u>Fertility (Births)</u> Fertility rate is live births per 1,000 female population. It is used in population projection models to compute births to women in each five-year interval. The statewide population projection model provided by the New Jersey Department of Labor and Workforce Development (NJDOL) assumes that New Jersey's race-specific fertility rates are projected to remain at the current level of 1.7 births per white woman, 2.1 births per black woman, 1.9 births per Asian woman, and 2.6 births per Hispanic woman throughout the projection years. However, DVRPC's model uses the number of live births per 1,000 women by five-year age cohort in New Jersey in 2000. New Jersey Department of Health (NCHS) and National Vital Statistics System of the Centers for Disease Control and Prevention (CDC) are the preferred sources of recent annual birth and fertility data.
- <u>Mortality (Deaths)</u> Mortality rate is the number of deaths per 100,000 standard population. It is used to calculate survival rates, which represent the percentage of persons who are likely to survive to the next five year cycle. The recent mortality data are provided by the NCHS and CDC.
- <u>Migration</u> Migration is the most volatile component in the population projection models. The cohort-component model used by DVRPC assumes that migration in future years will be the same as the average five-year migration rate experienced by each five-year age/sex cohort between 2000 and 2010. However, the economic-demographic model applied by NJDOL assumes employment growth to be the major determinant of migration in and out of the state for persons under 65 years of age.

Step P-3: Historic Trends: Evaluate the ranges and trends for the key variables to provide a basis for scenario development and the "outer bounds" of likely future trends.

Status: Complete.

• <u>Fertility Rate</u> – The general fertility rate for New Jersey was 61.0 births per 1,000 women of childbearing age (15-44) in 2011, which decreased 0.3% from the rate in 2010 (61.2), and 2.9% from the rate in 2009 (62.8). As shown in Figure 1 below, the fertility rate in New Jersey is always lower than in United States, but the trend is similar. The fertility rate in NJ has steadily declined since 2007 (65.8), likely due in part to economic forces, as fertility often declines in times of economic stress. However, the fertility rate in 2011 declined to the lowest rate for New Jersey

from 1990 and 2011, indicating that a broader trend exists that will continue even after economic conditions significantly improve. Fertility among specific age cohorts also has shifted, with a reduction in teenage pregnancies and an increase in 30-44 age cohorts. Overall fertility rates are also affected by migration rates among the various age cohorts. New Jersey has a smaller share of female population within the primary child-bearing years than the nation as a whole (19.7% vs. 39.7% in 2010). The difference between US and NJ rates has increased from 1994 to 2011 but is similar to that of 1991-1992. The causes for these shifts will be examined.

Figure 1: Fertility Rate

• <u>Mortality Rate</u> – According to **Figure 2**, the mortality rate has been gradually declining since 1995. It was 685.4 per 100,000 population in 2011, down 0.1% from the rate in 2010 (686.1). The lower the mortality rate, the higher the survival rate. New Jersey has a lower mortality rate than United States.

Figure 2: Death Rate

• <u>Net Migration</u> – In general, Net Migration is composed of domestic migration (i.e., from state to state) and migration between nations. However, determining these two types of migration is difficult, and so Net Migration can be calculated simply as the difference between actual population change and natural increase (reflecting births and deaths). As shown in **Figure 3**, New Jersey has experienced net out-migration since 2003 to 2008, which was coincident with time of economic crisis. Moreover, after 2003, the net gains in international migration were no longer large enough to offset the net losses of domestic migration. The changes of net migration sharply affect population, since the natural increase is much steadier and predictable.

Figure 3: Components of Population Change (Source: NJ Public Health Data Resource)

• <u>Employment/Unemployment</u> – The employment pattern in New Jersey is similar to United States, as shown in **Figure 4**. The total employment sharply declined from 2007 to 2010 and has been recovering, though <u>slower</u> than for the nation as a whole. Since the economic-demographic model assumes employment growth to be the decisive factor of migration, Figure 5 explores the relationship between net migration and employment change in New Jersey from 2001 to 2011. No obvious relationship could be found between them, but it seems the trend of employment change is just opposite to the change of net migration. However, regional and county employment and migration relationships may be different, especially in areas that are relatively isolated from the remainder of the state, such as the Atlantic/Cape May county area.

Figure 4: Total Employment in NJ & U.S.

Figure 5 Change of Employment and Net Migration

Step P-4: Sensitivity Analyses: Using the available population projection models, determine the sensitivity of 2040 population projections to modifications in the primary variables, within the historic range of each variable and with attention to situations where the simultaneous modifications of multiple variables may result in invalid evaluations (e.g., where historic high migration rates into New Jersey are unlikely to occur at the same time as an historic low employment growth rate). Assess the potential for regions to have different results based on local circumstances, such as the evolution of the casino industry in Atlantic City.

Status: General approach developed. The base population, fertility rate, mortality rate, and employment are all the independent variables, which are recorded by different departments of New Jersey. The historical net migration is dependent on the base population, births, and deaths, as migration is not directly measured but rather is inferred from the values of the independent variables. For each fertility and mortality rates, NCHS also provides an upper and a lower limit (95% confidence interval) for them, which could be used to conduct the sensitivity test. Through control variable method, we may find how changes to the fertility rate and mortality rate will affect the final population projections.

	Fertility Rate	Mortality Rate
Sensitivity Test 1	Constant	Upper/Lower Limit
Sensitivity Test 2	Upper/Lower Limit	Constant

Step P-5: Selection of Scenarios and Projections: Recommend one projection, or a combination of subregion projections or a subset of the evaluated projections that would be best utilized for NJ Water Supply Planning needs, based on study findings and best professional judgment. Discuss critical uncertainties to demonstrate the potential impacts of such uncertainties on water demand forecasting.

Status: General approach developed. Historic data can be used to find the range and trend for each variable, which also can be used to develop different state and county level population projection scenarios. Scenario 1 provides a high alternative for the population projection through 2040 in New Jersey. It assumes the upper limit fertility rate, lower limit mortality rate, and upper limit net migration that total fertility stays 0.4 children above and the mortality stays 5.4 deaths below the level in the medium scenario. Scenario 2 represents the medium alternative and scenario 3 reflects the low alternative, which assumes the lower limit of fertility rate and net migration rate, and upper limit of mortality rate. Using the various scenarios and associated forecasts, a set of forecasts will be selected for use in water demand projections, with a qualitative and quantitative assessment of uncertainties.

	Base Population	Fertility Rate	Mortality Rate	Net Migration
Scenario 1	Constant	Increase	Decrease	Increase
Scenario 2	Constant	Constant	Constant	Constant
Scenario 3	Constant	Decrease	Increase	Decrease

The resulting population projections will be disaggregated to the municipal level by applying the same proportional populations as estimated by the MPO projections (i.e., if a municipality has 0.05% of 2040 regional population within the MPO model, it would also receive 0.05% of the scenario populations). The same approach will be used to disaggregate population projections to Transportation Assessment Zone (TAZ) for the NJTPA area, or census tract in other areas, where necessary (i.e., where PCWS service areas split a municipality).

Step P-6: Build-out Analyses: Assemble readily available build-out evaluations (e.g., Highlands Region, Rutgers Center for Neighborhood and Brownfields Redevelopment, counties preparing Wastewater Management Plans), land preservation trends, available inventories of approved but not built residential projects, etc., and evaluate potential effects of these alternative approaches to development on population forecasts. It is recognized that limitations on available land may redirect growth locally but not greatly alter regional forecasts.

Status: To be used where available as part of the evaluation of water demands for specific PCWS. Evaluation of available data has resulted in a conclusion that build-out analyses only exist in a few portions of the state. Land availability constraints may be a factor for population growth in some suburban municipalities, but are not relevant in urban municipalities where essentially all development occurs on previously developed parcels. Only the NJTPA methodology uses indicators of land availability, but the results are not replicable with new county level projections, as many

municipal and TAZ allocations were created through "off model" modifications based on local information regarding development approvals, land constraints and other factors.

Water Demand Rates

Step D-1: Statewide Data Acquisition: The NJDEP will provide available data on:

- Land Use Data in GIS (NJDEP LULC datasets)
- Listing of Public Community Water Supply (PCWS) Systems
- PCWS service areas in GIS (NJDEP, Highlands Council)
- PCWS water allocation permit withdrawal data (NJWaTr)
- PCWS Safe Drinking Water Program data on current and committed demands, contracted water supplies, firm capacity, etc.
- Water loss data (NJDEP, DRBC)

Status: NJDEP LULC data available online. NJWaTr database provided through 2010 data. PCWS service areas and PCWS Safe Drinking Water Program data provided.

Step D-2: Evaluation of PCWS Service Areas and Populations: Rutgers will determine the population served for each PCWS. The analysis will identify spatial clusters of populations that can be used to adjust the estimated PCWS system current demand for municipalities. It will also be used to identify the populations associated with water demands from each residential area within the case example PCWS systems, for the estimation of per capita demands in various development categories. Finally, it will be used to help assign future residential demands for all PCWS.

Status: General approach developed. The PCWS service area information from NJDEP will be combined with 2010 Census data to evaluate the population densities within each portion of the service areas. Dasymetric analysis of population clustering will be used to assign Census tract population to residential areas based on the relative density of residential development (e.g., low, moderate and high density single-family dwellings; moderate and high-density multi-family dwellings), using NJDEP LULC polygons. The dasymetric analysis is conducted using ArcGIS mapping software.

Step D-3: Identification of Case Example PCWS Systems: Identify and gain cooperation from a stratified sample of 10-15 PCWS systems, based on annual average daily demands (over 50 MGD, 20-50 MGD, 5-19 MGD, 2-5 MGD), that collect and compile demands from residential, industrial and commercial (RIC) water uses based on individual metering.

Status: General approach developed. This study will select a stratified sample of PCWS systems to act as representative systems for the rest of the state. The selections will be based on systems of varying capacity, geographic location, demographic makeup, and built environment characteristics. Ideally 10-15 PCWS systems will be chosen that represent a range of capacity based on annual average daily demands. Smaller systems are not included in this analysis because they have relatively few customers and therefore will not provide a robust data set of customer demands. The vast majority of NJ water customers are served by the larger systems, and therefore the priority is on gathering information valid for use in such systems. To the extent that such statistics over- or underestimate customer demands for the smallest systems, the net impact on NJ water withdrawals will be minimal. Other than capacity, the characteristics that will be considered when selecting sample PCWS systems are as follows:

Variables	Unit Of measure	Source
Housing Density	Residential Units per acre	2010 U.S. Census
	(units/acre)	
Precipitation	Annual / Monthly Precipitation	PRISM (Oregon State University)
-	(inches/ year or inches/month)	
Household age /	Household age (years)	Most recent American
year built		Community Survey (MOD IV
		data are very incomplete)
Household Size	Average number of people per	2010 U.S. Census
	household (persons/unit)	
Land use patterns	Concentrations of different Land	2007 LU/LC data (2012 if
-	Use types	available, expected in 2015)
Topography	Topographic Variability (e.g.,	USGS 10-meter Digital Elevation
	percent of service area greater	Module
	than 10% slope)	
Region	Metropolitan Planning	MPO Counties; State
	Organization regions,	Geophysical Province Map
	Physiographic Provinces	

Step D-4: Data Collection from Case Example PCWS Systems: Collect from these utilities water demands by user by municipality to the extent feasible. Assemble available information on water use rate trends and water loss rates and trends by PCWS system.

Status: General approach developed. This study is highly dependent on the data available from the case example PCWS systems. The intent is to acquire monthly data for the years 2000-2011 (to match data from NJWaTr that will be available) preferably for the period 2000-2011, but at least the last five years, to allow for examination of demand rates during wet and dry years:

- monthly water usage (incoming sources);
- monthly metered water released to the distribution system from the treatment system or well;
- monthly metered water delivered to customers by geographic area and user type (anonymous, without street address or personal information). **Notes**: (1) quarterly meter reading is not sufficient for this project; (2) it is recognized that systems with manual or drive-by meter reading will not have synoptic ("same day") data, and so the data will be organized in a manner that most closely approximates a monthly reading. Preference will be given to systems with radio meter reading allowing for synoptic readings;
- service area delineations from each PCWS system (for cross check to NJDEP GIS information);
- total number of customers; and
- water loss rates (e.g., non-revenue water).

To ensure a sufficient number of sample PCWS, at least five additional PCWS systems will be identified as backups. It will be critical to understand and develop demand relationships based on total demand per capita (i.e., combined Residential, Industrial and Commercial demand, including both revenue and non-revenue water), and also the per capita demand based on delivered water (i.e., excluding non-revenue water) for specific homogeneous development types. Preference will be given to geographically-coded data on a customer basis. However, it would be acceptable also for a purveyor to provide aggregated data based on this methodology, if there are confidentiality concerns. Water demands compiled by government-owned systems are public data.

Step D-5: Data Evaluation from Case Example PCWS Systems: Develop a database and analytical approach that will result in average water demand rates for various categories of land development, for peak and low annual and seasonal periods over the period of record.

Status: General approach developed. The analysis will include:

- Delivered water demands for each case example PCWS system disaggregated by development category, including but not limited to: low, moderate and high density single-family dwellings; moderate and high-density multi-family dwellings; office/commercial; industrial. Using the combined demand data and dasymetric evaluation, analyze how household size affects per capita water demand.
- Seasonal water demand trends will be evaluated for each of the case example PCWS systems, using both total flows and customer meter data, which should show seasonal differences in water losses and customer uses, respectively. Multiple years of data will be used to assess wet and dry years. Time series data will be evaluated for any unique trends among the PCWS systems. Water demand restrictions will be identified for all seasons evaluated, to assess the impact on status and trends. This analysis may identify trends associated with distinct demographic/economic characteristics or geographical locations, such as suburban vs. urban, or inland vs. shore communities. Additionally, this analysis will identify any differences that arise in seasonal peaking factors for specific usages due to different geographic locations. For example one might expect towns with commercial use that is strongly tied to seasonal tourism to have a significantly different seasonal peaking factor than a town with little to no tourism.
- Industrial water uses and trends to the extent feasible. Individual industrial uses will be evaluated where they make up at least 5% of a sample PCWS system's total demand, as such uses pose a significant risk to the PCWS system. If the data allow, the volatility of industrial demand will be evaluated for each PCWS system. Relative to commercial and residential water demand, industrial demand is more responsive to changing economic conditions. Charting time series data for industrial use may reveal varying degrees of volatility or stability among PCWS systems. Determine the variability in the user base (i.e., which demands were eliminated, change more than 25%, or were added during that period) to assess volatility within industrial uses.
- Comparison of disaggregated water use rates among case example PCWS systems to determine the extent to which the various rates are similar or distinct in current levels or trends (i.e., whether trends in various areas are similar in nature but with some areas lagging others, or whether trends are distinct to specific types of areas or systems).

Step D-6: Land Use Categorization for All PCWS Systems: Assemble available information on population, employment, residential units and office/commercial space (each by major category), and also major industries, by municipality. Where available, evaluate residential and office/commercial unit age distributions (i.e., using NJDEP LU/LC data) to help determine the extent to which building code requirements were applicable as units were constructed.

Status: General approach developed. Use Census tract data (as interpreted through dasymetric analysis), LULC data and PCWS system service areas to evaluate relative population, land use and housing age distributions within each PCWS system service area.

Step D-7: Current Water Demands for All PCWS Systems: Determine residential, commercial and industrial water demand rates by PCWS system and by municipality.

Status: General approach developed. A comprehensive understanding of current PCWS water demand in New Jersey will be critical for projecting future demand. This study will examine purveyor flows and service area delineations to determine total PCWS flows, municipal-level demands, and delivered water based on homogeneous development categories (e.g., single-family homes, multi-family homes, office use) within the service areas.

The NJDEP Bureau of Water Allocation and Well Permitting (BWAWP) has developed a statewide database of water withdrawals and discharges from 1990-2010. Data for the year 2011 are anticipated to be available by the end of 2014. Only sites that have the capacity to withdraw greater than 100,000 gallons a day are included in this database, as this is the cutoff volume for water allocation regulation by the NJDEP (N.J.A.C. 7:19 et seq.). Withdrawals are classified by five different categories of use: potable, commercial, industrial, agricultural, and power-generating. From this database we can extract water withdrawals for the self-supplied PCWS systems with water allocation permits.

To calculate total PCWS flows, systems with a capacity smaller than 100,000 gallons per day (don't require water an allocation permit) must be accounted for, along with water that is received by one PCWS system from another water supply source under contract. The NJDEP Division of Water Supply and Geoscience maintains an online database of public water system deficits and surpluses. The underlying database includes information for systems of every size, including systems that are too small to require a water allocation permit and those that receive water through contracts. Therefore, water flow information for PCWS systems that was not included in the BWAWP database can be extracted from this database. Additionally this database will be used to cross check the data for permitted systems acquired from the BWAWP database.

Once total purveyor flows have been calculated, municipal demands may be determined or estimated. In some cases, purveyors service areas may be entirely within a single municipality, or for multimunicipality systems, the purveyors may meter the total delivered water to each municipality. In either case, that information will be sufficient. For all other multi-municipal PCWS, the number of connections and/or service area delineations can be used to estimate individual municipal-level demands. If the service connections data for each PCWS are available by municipality, then demand for a given municipality can be estimated as follows. For each PCWS that has connections in the municipality, the number of connections in the municipality will be divided by the total connections of the PCWS, then multiplied by the average flow for that PCWS. Average flows for each PCWS will be calculated by dividing total flow by total connections. This method assumes equal flows for each connection within a PCWS. The dasymetric analysis of population clustering may be applied to adjust results.

Step D-8: Peak Season Water Use for All PCWS Systems: Evaluate seasonal aggregate per capita water use patterns (annual use vs. summer peak use) for all PCWS systems using peak annual and monthly demand data. Draw conclusions where possible on trends in seasonal water use patterns for urban versus suburban water systems.

Status: General approach developed. Divide the total annual demand and peak monthly demands by the population for each PCWS system. Compare peak season per capita water demands among PCWS systems with consideration of the relative land area in non-residential development as a proxy for non-residential water demand.

Step D-9: Water Demand Trend Analysis: Develop water conservation scenarios for application to future demands in all PCWS systems.

Status: General approach developed. Several aspects of water use trends will be analyzed using the customer demand and PCWS flow data over multiple years. Overall water demand trends will be evaluated in addition to the following aspects.

• **Comparison Rates** – Through a literature search and consideration of available open-source water demand forecast models, examine water demand rates for similarly situated PCWS systems

in other states with similar development patterns. Identify water demand trends and contributing factors.

- Non-Revenue Water and Water Losses Non-revenue water is water is the difference • between the water that is delivered by the purveyor and what is actually received at the customer meter. These differences can be explained by "real" water losses (e.g., leakage, firefighting, water main flushing) and "apparent" losses (e.g., metering inaccuracy, unmetered demand locations). As infrastructure ages, non-revenue water loss is expected to increase until the infrastructure is replaced or repaired. The percentage of water lost will be calculated for each PCWS system by subtracting total system water by total metered water and dividing the result by total system water. The percent loss will be plotted over time to identify trends. Detailed information on system water losses will be requested from the Delaware River Basin Commission for the year 2013 for the New Jersey PCWS systems under their jurisdiction. While 2012 information is available, the most recent available year will be used, with the assumption that the provided information will become more accurate as PCWS systems gain experience with the reporting requirements and IWA/AWWA Manual M36 process. Information on infrastructure repair or replacement is required to analyze the variability of water loss within a system. For the most part, this information will not be available statewide, but will be sought regarding the case example PCWS systems. Scenarios for water loss rates will be developed based on declining, stable and enhanced asset investment policies.
- Industrial Use An initial assumption of static industrial demand will be used, along with alternative scenarios of industrial demand loss or gain. Based on the results regarding industrial uses from the case example PCWS systems, a measure for volatility of industrial demand may be applied to the PCWS system, based on the land use mapping in Step D-6, for PCWS systems that have relatively large portions of their service area within industrial areas.
- Seasonal peaking factors An initial assumption will be made that seasonal water demand patterns will for each PCWS systems will match the results from the case example PCWS systems based on a comparison of each PCWS system to similar systems from the case examples. Alternative scenarios will be based on the potential for increased outdoor uses versus increased use of water conserving fixtures and behaviors.
- **Conservation and efficiency trends** The implementation of water conservation and efficiency measures must be taken into account in this study. In general, conservation is a result of user behaviors, while efficiency is a result of new technology. A review of applicable regulations and building codes that have been applied in New Jersey will be conducted. A more detailed analysis will be applied to the case example PCWS systems. Census data on housing age will provide a general sense of the proportion of residential development within the service areas for the case example PCWS systems. Building permit data will be acquired as available from the New Jersey Department of Community Affairs. The available building permit data shows new construction, additions, and alterations that can be disaggregated by commercial and residential use. This dataset can be used to estimate what buildings would have been subject to new regulations and alterations does not include the type of alteration or addition. This limits the usefulness of these data as it is impossible to tell if an alteration or addition included any aspect that would be subject to water conservation regulation. Based on the available information, an

estimate of "market penetration rates" will be developed for conservation retrofits on older housing. Scenarios will be developed for potential conservation trends based on future retrofits. In addition, the scenarios will address potential changes in residential lawn irrigation rates based on trends in the installation of irrigation systems with moisture/rainfall controls, and the retrofit of existing systems with such controls. Finally, the replacement of home appliances with more efficient devices will be more rapid than home retrofits. Information will be sought from the appropriate trade associations and the USEPA Water Sense program regarding this issue. Water efficiency rates will also be affected by industrial and office building renovations, as much of the office space in New Jersey was built in the 1980s and is now considered substandard.

Step D-10: Water Demand Trend Projections: Forecast water demand rates for residential and office/commercial uses, using generalized rates that are applicable to groups of PCWS systems, municipalities or both, with high, moderate and low forecasts with clearly identified assumptions and conditions.

Status: General approach developed. After focused analysis of the case example PCWS systems, the findings of the analysis will be extrapolated to all PCWS systems. Each PCWS system will have associated water use trends as they relate to conservation, non-revenue water loss, and seasonal peaking. Each municipality and PCWS system in New Jersey will be assigned an appropriate trend based on the most relevant case example PCWS systems (as individual systems, similar systems or regional aggregates of systems) considering similar geographic location, demographic makeup, and built environment characteristics. In this manner, the estimates generated for each municipality and PCWS system will more accurately portray variation in water use trends throughout the state.

	Water Conservation	Non-Revenue Water	Population Growth Rate
Scenario 1	Constant	Increase	Increase
Scenario 2	Constant	Constant	Constant
Scenario 3	Increase	Decrease	Decrease

Three scenarios will be developed for forecasting water demand to the year 2040.

Scenario 1 reflects conditions that are expected to increase water demand. Water conservation is held constant because it is not expected to regress in any scenario. Non-revenue water and population growth are increased from the current rate. Scenario 2 represents what will happen if water conservation, non-revenue water, and population growth (relative to MPO projections) are all held constant. Scenario 3 represents conditions that are expected to decrease water demand. Water conservation is increased and non-revenue water loss and population growth rate are both decreased. The decreases and increases among each category will be selected based on variations that are observed in the data from 2000-2010. For each municipality, the population of each scenario will be multiplied by the forecast per capita water use of that given scenario. This approach will provide a useful range of demand projections for each municipality. Municipal demand can then be aggregated to the county and state level as needed. The most appropriate scenario for each municipality will depend on the nature of the municipality, and so no single scenario can be considered the "most probable" statewide. Urban municipalities are more likely to see significant improvements in water conservation because most water uses are indoor and redevelopment is more likely in urban areas. Suburban municipalities will see gradual shifts due to home retrofits and business/industrial renovation and conversions. Relatively rural municipalities are more likely to see population growth associated with outdoor water uses, resulting in at best static water conservation. Recently developed areas are likely to have static indoor and outdoor water conservation, as little redevelopment or rehabilitation is likely and newer buildings already incorporate NJ requirements for water-conserving fixtures.

Step D-11: Water Demand Projections for All PCWS Systems: Develop water demand projections for all PCWS in New Jersey for each scenario, with an uncertainty analysis. Recommend a "most probable" scenario and water demand for each PCWS system.

Status: General approach developed. For each demand scenario, develop water demand projections for each PCWS system using the dasymetric analysis of population clusters, PCWS service area delineations, the municipal water demand projections and the relevant residential, commercial and industrial land uses of each municipality within the PCWS service area, so that a realistic proportion of municipal water demand is allocated to each PCWS service area within the municipality. Aggregate all demands up to the PCWS system level. Based on Step D-10, aggregate the "most probable" water demand projection at the PCWS level to the statewide level.