Perimeter Air Monitoring Technical Guidance Training Day 1 of 2

Moderators

Alissa Ambacher

Co-Moderator DEP/CSRR Training Committee

Diane Hagmann

Co-Moderator DEP/CSRR Training Committee

Continuing Education Credits

Site Remediation Professional Licensing (SRPL) Board has approved

2.5 Technical CECs

for this Training Session

Attendance Requirements:

 Webinar participants: must be logged-in for the entire session and answer all poll questions (randomly inserted in the presentation)

CECs: What's the Process?

Since the SRPL Board has approved CECs for the course:

- NJDEP compiles a list of "webinar" participants eligible for CECs and provides the list to the Licensed Site Remediation Professional Association (LSRPA)
- LSRPA will email eligible participants a link to an LSRPA webpage with certificate access instructions
- Certificates are issued by the LSRPA after paying a \$25 processing fee

Test Your Knowledge

Test Poll

Why are you here today?

- A. Earn CECs
- **B.** Learn more about ECCC
- C. Learn more about CSRR

Remember!

Day 2 of the Perimeter Air Monitoring (PAM) training will be held tomorrow, January 24th, 2024 from 9am- 12pm

You must register for day 2 separate from today's training!

To Register for day 2:

https://attendee.gotowebinar.com/register/6565538406766491742

Please fill out the Course Evaluation here:

https://www.surveymonkey.com/r/RNRCJPK

Communication

Question Function

- Please use the questions function to ask any questions you may have for the presenters at any time during the presentation. These will be addressed during the questions segments.
- If a question isn't addressed during a question segment of the presentation, it will be answered after the presentation.
- In order for a question to be answered live, the question must not be case specific and must be relatively short.

Chat Function

- Please use the **chat function** to advise the Department of technical issues with the presentation.
- Please do not use the chat function to comment on presentations, to ask questions, or to answer other attendees' questions.

Your Job in this Training

- Participate!
- Complete polls
- Provide feedback

January 23 - 24, 2024

NJDEP Perimeter Air Monitoring Guidance Training

Credits

2.5 Technical Credits for Day One and 2.5 Technical Credits for Day Two

(Course # 2024-003)

NJ Licensed Site Remediation Professionals Association

Thank You to Our Annual Partners

Diamond Partners

Platinum Partners

Academic Institution Partner

Gold Partners

Silver Partners

UPCOMING LSRPA COURSES & EVENTS

➤ Aspiring Professionals Series: Understanding Risks and Liabilities

January 25, 2024 - Session I – LSRP Third-Party Reliance & LSRP Liability

February 1, 2024 - Session II – Risk Management/Insurance

February 15, 2024 - Session III – LSRPs Practitioner's Perspective

► February 13, 2024 – LSRPA Virtual Regulatory Roundtable

Mitigating Delays Due to Offsite Access

Instructors: Jordan M. Asch, Esq., Riker Danzig

Alexander J. Saltzman, LSRP, French & Parrello

William Lindner, Director- Environmental Services, NJ Natural Gas Company

Moderator: Ken Haduch, LSRP, ERM

▶ February 15, 2024 – NJ Site Remediation Professional Licensing Board Rule Updates

Instructors: Kathi Stetser, LSRP, GEI Consultants, Inc.
Joann Held, NJSRPL Board Member
Joanne Vos, Esq., Maraziti Falcon, LLP

▶ February 29, 2024 – NJDEP Field Sampling Procedures Manual Training

UPCOMING LSRPA COURSES & EVENTS

➤ March 12, 2024 – LSRPA Virtual Regulatory Roundtable

Unmanned Aerial Systems (UAS) Applications for Environmental Assessments, Due Diligence & Remediation Planning

Instructors: James J. Heiser, President, DPK Consulting

Golky Barrios, UAS Operations Manager, DPK Consulting

Moderator: Kassidy Klink, PG LSRP, Nova Group, GBC, Peak Environmental Division

➤ March 19, 2024 – Remediation Funding Source and Financial Assurance Training for Environmental Practitioners

Instructors: Jennifer MacLeod, NJDEP, Remediation Funding Source Coordinator Vincent Fasanella, NJDEP, Financial Assurance Coordinator Christopher Venezia, LSRP, ESA Environmental Consultant

➤ April 16 & 18, 2024 – LSRPA Hazardous Waste Operations and Emergency Response 8 Hour Refresher Training

Instructor: David Sweeney, LSRPA, Assistant Executive Director

Stay connected through Isrpa.org and these social media platforms.

DON'T FORGET TO RENEW YOUR MEMBERSHIP FOR 2024

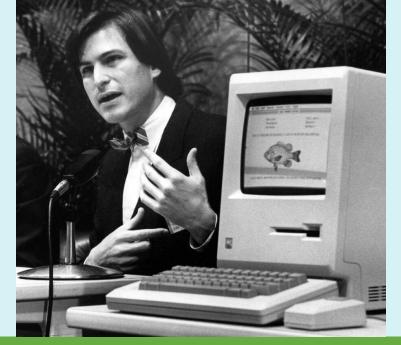
SCAN ME

Not a Member of the LSRPA?

Advance your knowledge, expertise and career. Get the most current regulatory and technical updates. Network and join committees!

JOIN TODAY!

https://bit.ly/joinlsrpa


THANK YOU!

January 23, 2024

This Day in History

- •1984 The Apple Macintosh computer goes on sale
- •The "Mac" was the first commercially successful personal computer using a graphical user interface and a mouse

Introduction – Why do we need Perimeter Air Monitoring (PAM)?

- Required by N.J.A.C. 7:26E-5.5(b)7 (May 7, 2012)
 - A perimeter air monitoring and action plan to be implemented during a remedial action, if applicable, designed to monitor and control offsite excursion of dust, vapor and odors
 - Applicable
 - Dust, Vapor and Odors
 - Off-Site Excursion
 - Monitor and Control
 - PAM Plan in Remedial Action Workplan (RAW), Document Final PAM Report in Remedial Action Report (RAR)

History

- Initial committee started in 2001
 - Internal committee completed 2010
 - Document reviewed by NJ Science Advisory Board (SAB) review completed 2013
 - Released as draft with SAB charge questions
- 2017 Effort
 - NJDEP staff and stakeholders
 - Longest standing committee to produce a document

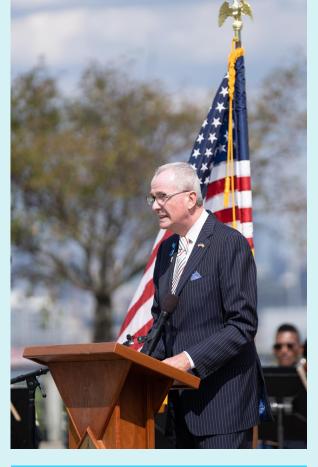
Two Key Terms

- Health-Based Threshold Values (HBTV)
 - Health-based value
 - Time-weighted average for the length of the workday
 - Not to exceed value (averaged over workday)
- Response Level
 - Value at which instrument will be set to alarm
 - Higher than HBTV for non-specific instruments (e.g., photoionization detector (PID), flame ionization detector (FID), dust monitor)

2017 Committee Members

Retired

- Terry Sugihara, NJDEP, Chair
- Kathleen Kunze, NJDEP, Facilitator


Current

- Allan Motter, NJDEP, Co-Chair
- Erica Snyder, NJDEP, Co-Chair
- Amanda Gettelfinger, NJDEP
- Deborah Barsotti, Emilcott/Triumvirate Environmental
- Bruce Groves, Emilcott/Triumvirate Environmental
- Joann Held, Air Toxics Analysis Services
- Robert Scotto, Minnich and Scotto, Inc.

Thank you!

January 23, 2024

Topics

Intended use of this guidance document

Purpose

Applicability

Document overview

Basic Principles

- Real-time monitoring is prioritized
- Deviation from guidance must be documented
- Designated Perimeter Monitoring Technician encouraged
- Best practices employed to minimize air emissions
- Attention must be paid to QA/QC
- Odors must be addressed

Why this document is needed

• Perimeter Air Monitoring is required by the Tech Regs (N.J.A.C. 7:26E-5.5(b)7)

Previously, only draft guidance has existed

 Reminder: Departure from Guidance must be documented (N.J.A.C. 7:26E-1.5(b))

When does this become applicable?

- There is a 6-month "phase in" period for guidance
 - It must be used by June 3, 2024

- However, you may begin using this guidance immediately
 - This option is encouraged, unless you are already in the middle of a PAM program

Purpose of this Guidance Document

- When is PAM required
- How to plan and execute a PAM program
- Evaluating data and taking "actions"
- Quality of the PAM program
- Emphasis on real time monitoring

Who does the planning and the work?

- Investigator (may be an LSRP, non-LSRP environmental consultant or other environmental professional)
- Designated Perimeter Monitoring Technician
- Reminder to LSRPs:
 - An LSRP shall not provide professional services outside his or her areas of professional competence, unless the LSRP has relied upon the technical assistance of another professional whom the LSRP has reasonably determined to be qualified by education, training, and experience (N.J.A.C. 7:26I-6.3(e))

What triggers the PAM requirements?

- Remediation activities
 - With potential to generate air emissions
 - Project duration greater than 20 working days within a 30-day period
 - Off-site receptors may be impacted

May be exception if in direct oversight

Test Your Knowledge

Poll #1

Is Perimeter Air Monitoring required by regulation?

- A. No
- B. Yes

Poll #1

Is Perimeter Air Monitoring required by regulation?

A. No

B. Yes

As per the Technical Requirements for Site Remediation (N.J.A.C. 7:26E-5.5(b)7)

Document Overview

- Perimeter Air Monitoring plan development (7 steps)
- Quality assurance considerations
- Additional considerations
- Appendices
- PAM calculator

Document Overview: Seven Steps

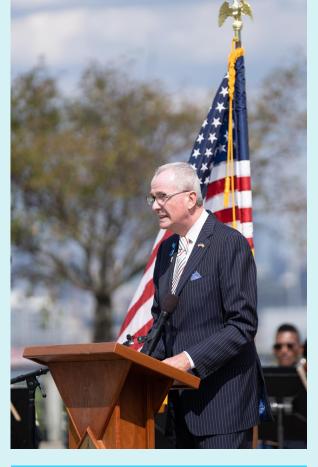
- 1. Contaminants of Concern (COCs)
- 2. Potential Airborne Exposures
- 3. Health-Based Threshold Values (HBTVs) & response levels
- 4. Monitoring Methods & Technologies
- 5. Sampling & Monitoring Locations & Schedules
- 6. Actions to Address Exceedances of response levels & HBTVs
- 7. Plan Review, Modifications & Documentation

Document Overview: Additional Considerations

- Analytical Sampling Concerns
- Real-Time Monitoring Concerns
- Asbestos
- Air Permits
- Hot Spots
- Best Management Practices

Document Overview: Appendices

- A. PAM Plan Contents
- B. HBTV Equations & Inhalation Toxicity Factors
- C. Real-Time Monitoring Methods
- D. Analytical Methods
- E. Data Quality Objective Checklists
- F. Case Study
- G. Glossary
- H. Acronyms


Final Notes

Thank you!

PAM Steps 1-3: Shining Light on the "Black Box"

Toxicology 101

Paracelsus (Father of Toxicology, 1493-1541)

"All things are poisons - the dose makes the difference..."

Toxicity x Exposure (Dose) = Risk or Hazard

Why is this concept important for Perimeter Air Monitoring (PAM)?

Protective of Human Health

Concentration of inhaled exposure over the specified time (dose) that would not cause adverse health effects

Step 1: Identify Contaminants of Concern (COCs)

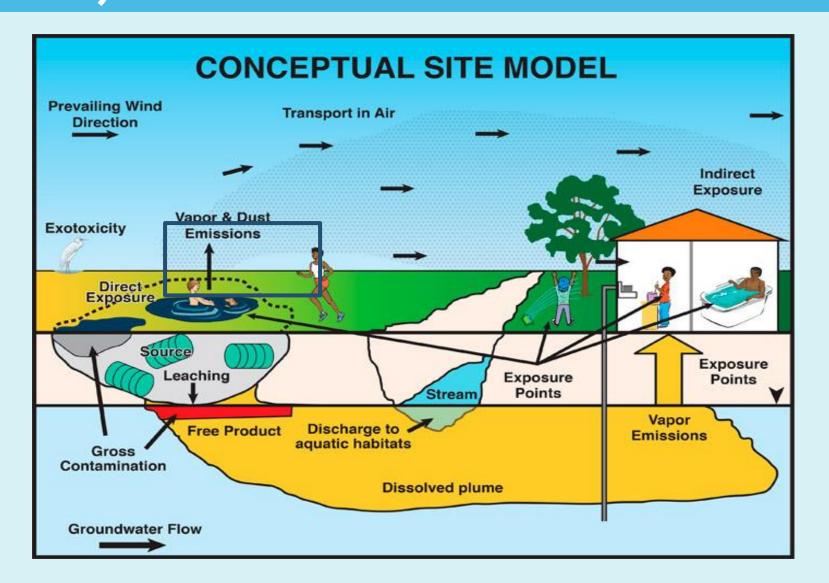
- Collect sufficient data to characterize the site
- Focus to control and monitor off-site inhalation exposures
- Target:
 - Volatile Organic Chemicals (VOCs)
 - Semi-volatile Organic Chemicals (SVOCs)
 - Inhalable Particulate Matter (PM₁₀)
 - Other compounds (e.g., mercury vapor, metal fumes, and odorants)

Step 1: Identify Contaminants of Concern (COCs) (Cont.)

Predict inhalation exposures from duration of remedial action using PAM calculator

Consider:

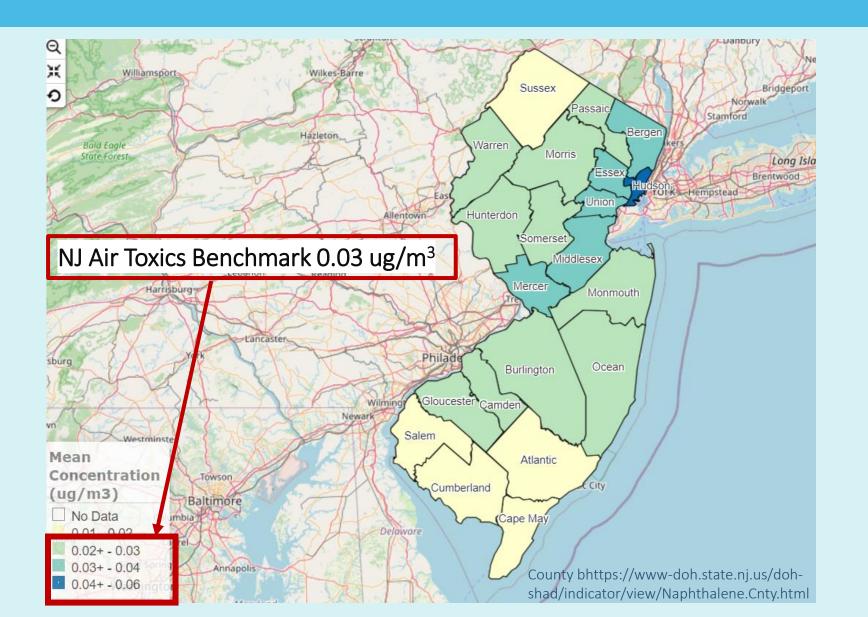
- Acute short-term exposure
- Long-term exposure
- Exceedances of PM₁₀ National Ambient Air Quality Standard (NAAQS) of 150 ug/m³
- Nuisance odors (H₂S, NH₃)


Step 2: Identify Potential Airborne Exposure Conceptual Site Model (CSM)

- Components
 - Based on how COCs from Step 1 impact receptors
 - Characteristics of source material
 - Transport mechanisms (air and/or particulates)
 - Inhalation exposure pathways
- Update with new data and information
- Effective communication tool for stakeholders and community

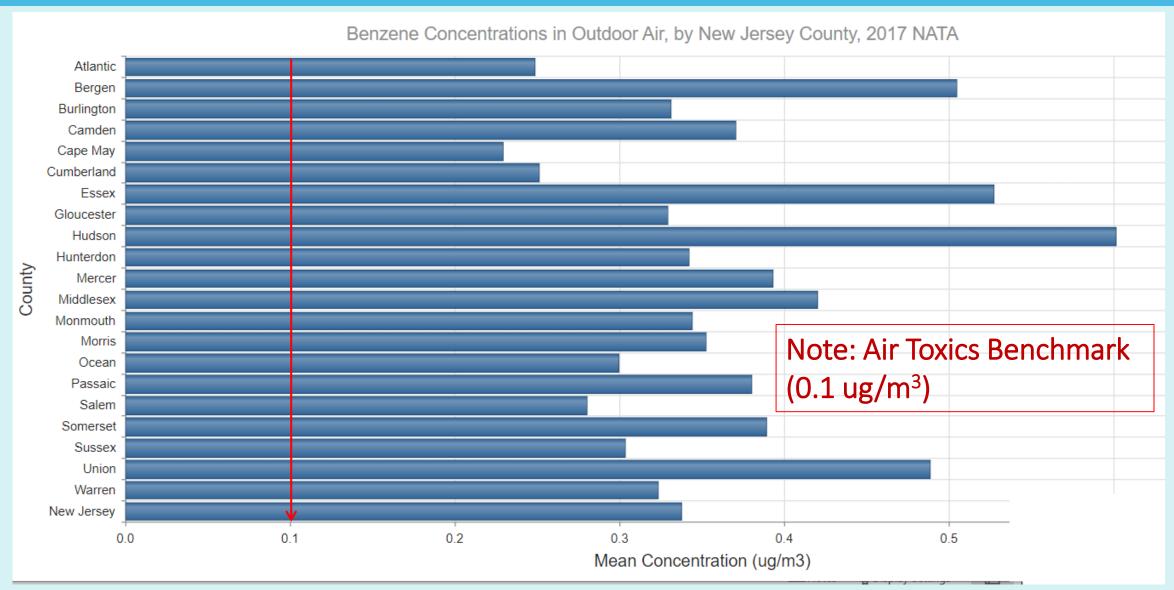
Step 2: Identify Potential Airborne Exposure CSM (Cont.)

Step 2: Identify Potential Airborne Exposure CSM (Cont.)



CSM answers important questions:

- What are the source materials and emission generating activities?
- How are COCs transported to off-site receptors?
- What are the exposure pathways (particulate or volatiles)?
- Is there another source of the COCs (i.e., upwind off-site)?
- Who are the potential receptors of concern?


Naphthalene Concentrations: 2017

Concentrations of Benzene in Ambient Air

Step 3: Establish Health-Based Threshold Values (HBTVs)

What are HBTVs?

- Based on NJDEP hierarchy of toxicity factors
 - Same toxicity factors used for remediation standards
 - 1 x10⁻⁶ risk for carcinogens
 - Hazard Quotient (HQ) of 1 for noncarcinogens
- PAM calculator can be used
- Contaminant-specific lab and real-time monitoring data compared to HBTV

What is the difference between an HBTV and a Response Level?

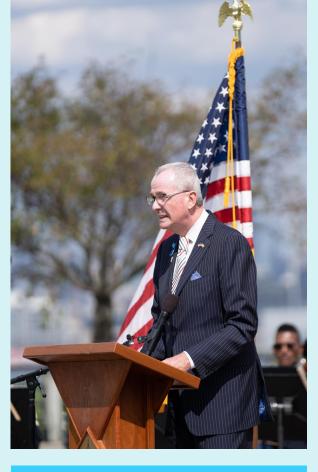
HBTV

- Chemical-specific
- Exposure (dose)
 - 8-10 hours/day
 - Equal to or less than 1 year
- Toxicity
 - Cancer (10⁻⁶ risk)
 - Noncancer Hazard Quotient =1

Response Level

- Usually not chemical-specific but a surrogate for the HBTV
- Particulates adjust specific COC to a dust level to measure real time
 - HBTV*(10⁶/Soil Concentration)
- Volatiles adjust specific VOC to a total VOCs to measure real time total VOC meter
 - HBTV*(100/% Total Volatiles)

Step 3: Establish Response Levels


What are response levels?

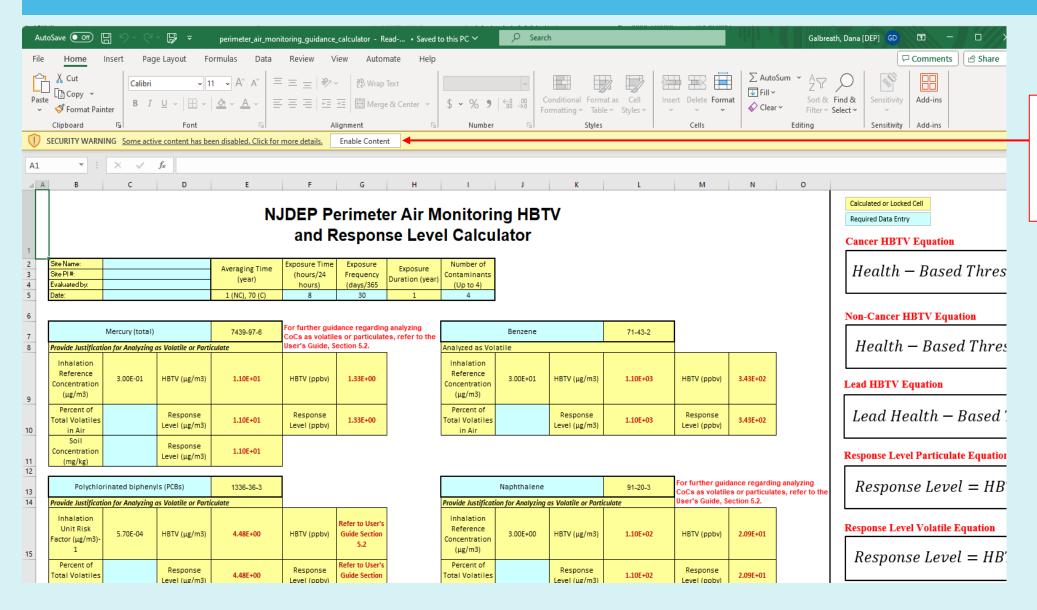
- Based on HBTVs
 - Adjusted based on soil concentrations
 - Consideration of methods for real-time monitoring
- Surrogate for HBTVs, e.g., PM₁₀ for particulate bound COCs
- Less restrictive than HBTV
- Require chemical-specific laboratory sampling to confirm assumptions

Thank you!

PAM Calculator

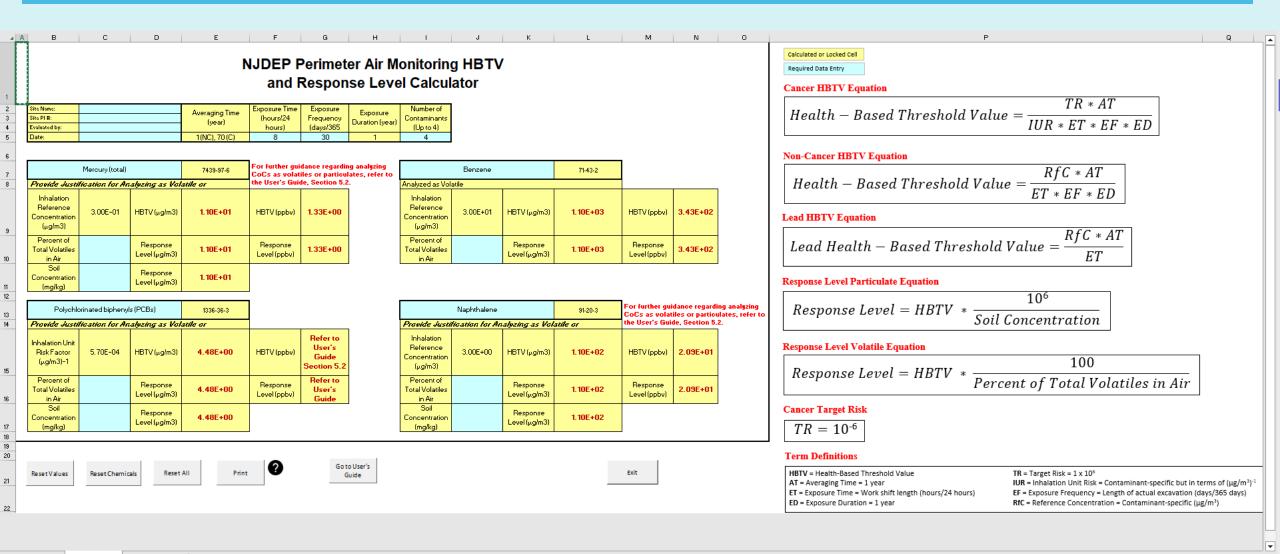
January 23, 2024

PAM Calculator: What is the Purpose?


Why should investigators use the calculator?

- Sites can contain different contaminants that may require perimeter air monitoring, but the Health-Based Threshold Values (HBTVs) vary based on exposure parameters, and response levels vary based upon the level of contamination on the site
- The calculations to determine these thresholds may be complicated, and calculating site-specific HBTVs and response levels for each contaminant could be a significant time cost
- This tool was created so that investigators may use the calculator to quickly create site-specific HBTVs and response levels

Upon Opening the Calculator



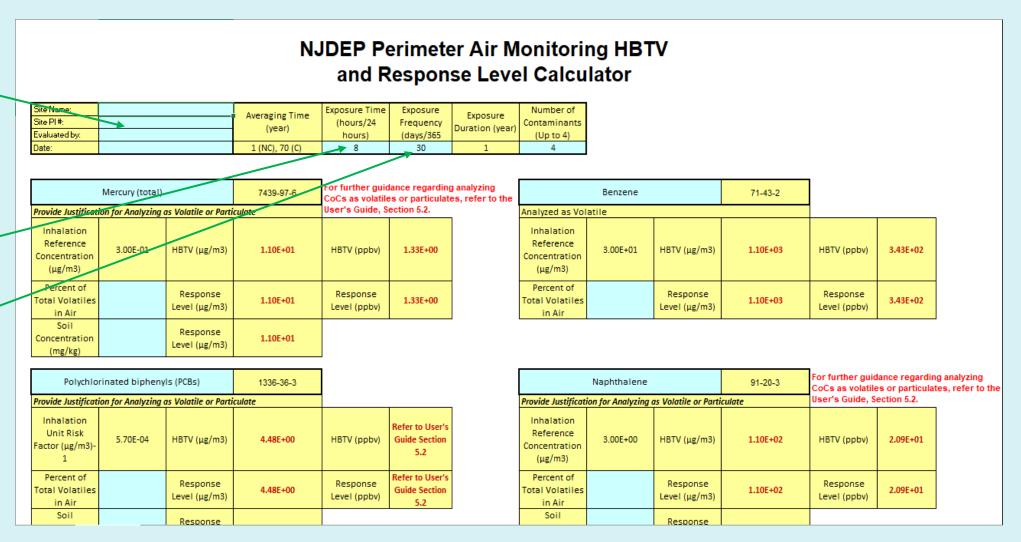
Be sure to enable content so that the calculator's macros will run

Upon Opening the Calculator (Cont.)

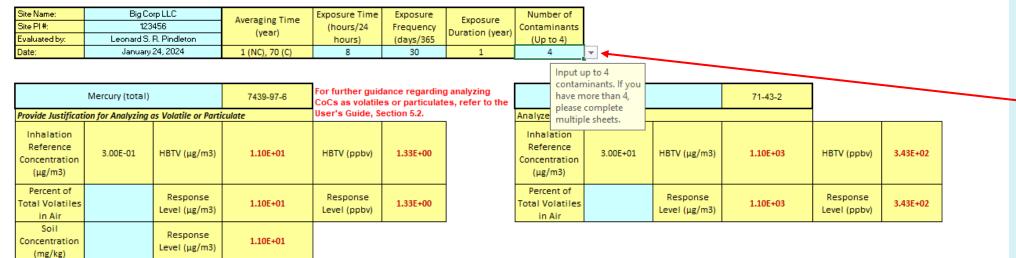
1

Calculator Select destination and press ENTER or choose Paste

User's Guide


How to Use the Calculator

Fill in blue boxes with your site information. Yellow boxes cannot be edited


Exposure time (8 to 12 hours) and frequency (20 to 225 days) can be edited as well

If values outside of those ranges are entered, an error message will appear

NJDEP Perimeter Air Monitoring HBTV and Response Level Calculator

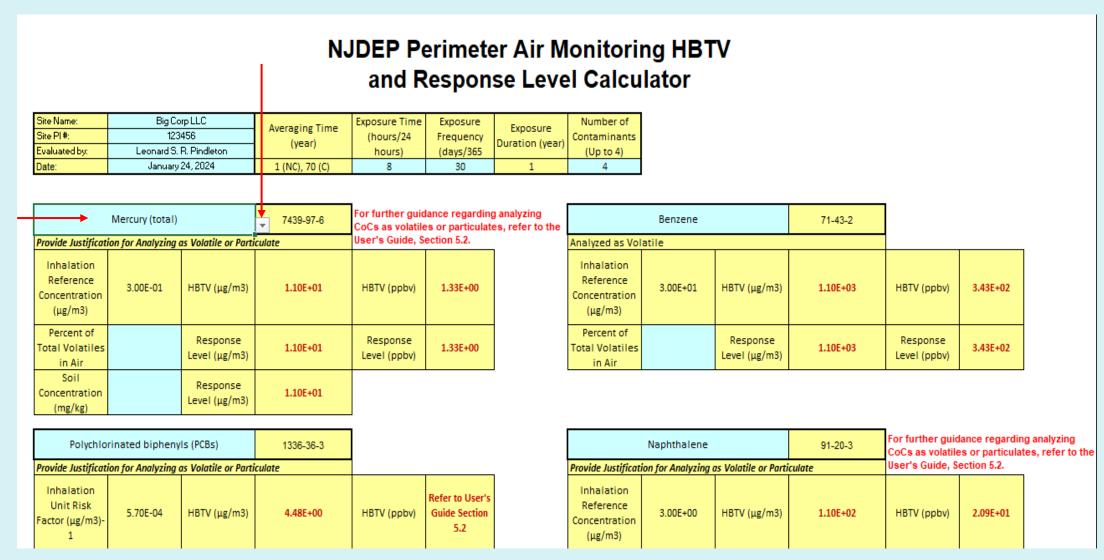
Select your number of contaminants. If you have more than 4, you will need to print the current sheet, save it, and start a new sheet with your new contaminants

Polychlo	rinated bipheny	Is (PCBs)	1336-36-3		
Provide Justificati	ion for Analyzing (
Inhalation Unit Risk Factor (µg/m3)- 1	5.70E-04	HBTV (μg/m3)	4.48E+00	HBTV (ppbv)	Refer to User's Guide Section 5.2
Percent of Total Volatiles in Air		Response Level (µg/m3)	4.48E+00	Response Level (ppbv)	Refer to User's Guide Section 5.2
Soil Concentration (mg/kg)		Response Level (μg/m3)	4.48E+00		

Provide Justificat	Naphthalene	as Volatile or Parti	91-20-3	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to the User's Guide, Section 5.2.		
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01	
Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+02	Response Level (ppbv)	2.09E+01	
Soil Concentration (mg/kg)		Response Level (µg/m3)	1.10E+02			

Provide Justificat	Mercury (total)	as Volatile or Parti	7439-97-6	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to th User's Guide, Section 5.2.		
Inhalation Reference Concentration (µg/m3)	3.00E-01	HBTV (μg/m3)	1.10E+01	HBTV (ppbv)	1.33E+00	
Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+01	Response Level (ppbv)	1.33E+00	
Soil Concentration (mg/kg)		Response Level (µg/m3)	1.10E+01			

e		Benzene		71-43-2		
	Analyzed as Vol	atile				
	Inhalation Reference Concentration (µg/m3)	3.00E+01	HBTV (μg/m3)	1.10E+03	HBTV (ppbv)	3.43E+02
	Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+03	Response Level (ppbv)	3.43E+02


Polychlo	rinated bip	heny	Is (PCBs)	1336-36-3		
Provide Justificat	ion for Analy	zing a	as Volatile or Parti	culate		
Inhalation Unit Risk Factor (µg/m3)- 1	5.70E-0	4	HBTV (μg/m3)	4.48E+00	HBTV (ppbv)	Refer to User's Guide Section 5.2
Percent of Total Volatiles in Air			Response Level (µg/m3)	4.48E+00	Response Level (ppbv)	Refer to User's Guide Section 5.2
Soil Concentration (mg/kg)	1		Response Level (µg/m3)	4.48E+00		

	Naphthalene		91-20-3	For further guid CoCs as volatile	s or particulat	
Provide Justificati	ion for Analyzing (as Volatile or Parti	User's Guide, S	ection 5.2.		
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01	
Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+02	Response Level (ppbv)	2.09E+01	
Soil Concentration (mg/kg)		Response Level (µg/m3)	1.10E+02			•

Reset Values Reset Chemicals Reset All Print Go to User's Guide

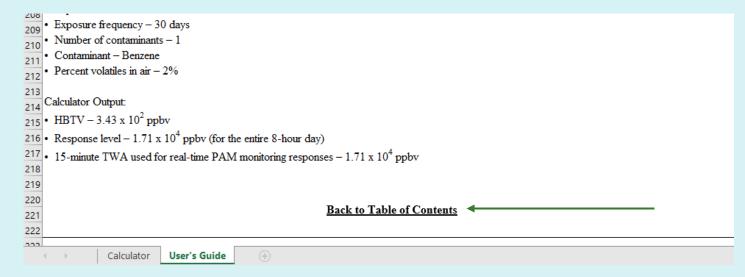
Exit

NJDEP Perimeter Air Monitoring HBTV and Response Level Calculator

Site Name:	Big Corp LLC	Averaging Time	Exposure Time	Exposure	Exposure	Number of
Site PI#:	123456		(hours/24	Frequency	Duration (year)	Contaminants
Evaluated by:	Leonard S. R. Pindleton	(year)	hours)	(days/365		(Up to 4)
Date:	January 24, 2024	1 (NC), 70 (C)	8	30	1	2

	Lead (total)						
Analyzed as Par	ticulate						
Lead NAAQS 0.15 μg/m3	1.50E-01	HBTV (μg/m3)	4.50E-01				
Soil Concentration (mg/kg)	6.00E+03	Response Level (µg/m3)	7.50E+01				

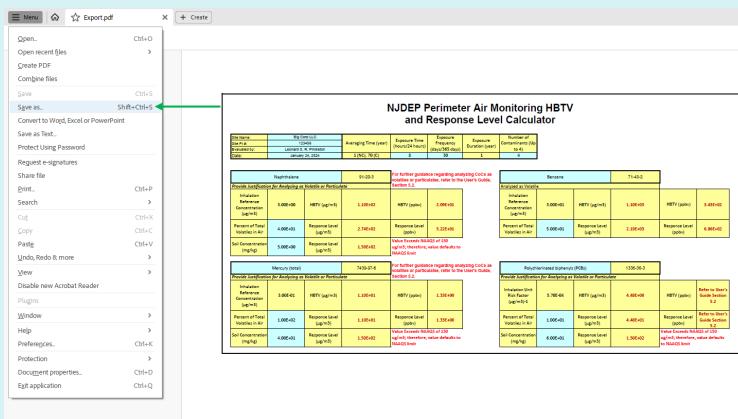
	Benzene		71-43-2		
Analyzed as Vol	atile				
Inhalation Reference Concentration (µg/m3)	3.00E+01	HBTV (μg/m3)	1.10E+03	HBTV (ppbv)	3.43E+02
Percent of Total Volatiles in Air	5.00E+01	Response Level (μg/m3)	2.19E+03	Response Level (ppbv)	6.86E+02


NJDEP Perimeter Air Monitoring HBTV and Response Level Calculator

Site Name:	Big Corp LLC	Averaging Time	Exposure Time	Exposure	Exposure	Number of
Site PI#:	123456	(year)	(hours/24	Frequency	Duration (year)	Contaminants
Evaluated by:	Leonard S. R. Pindleton	(year)	hours)	(days/365	Duration (year)	(Up to 4)
Date:	January 24, 2024	1 (NC), 70 (C)	8	30	1	1

	Naphthalene		91-20-3	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to the			
Provide Justificat	ion for Analyzing (as Volatile or Parti	User's Guide, Section 5.2.				
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01		
Percent of Total Volatiles in Air	4.00E+01	Response Level (µg/m3)	2.74E+02	Response Level (ppbv)	5.22E+01		
Soil Concentration (mg/kg)	5.00E+00	Response Level (µg/m3)	1.50E+02	Value Exceeds N/ ug/m3; therefore to NAAQS limit		-	

(mg/kg)		Level (μg/m3)		to NAAQS limit	,		1 2	<u>User's Guide</u>
	Mercury (total)	as Volatile or Parti	7439-97-6	For further guid CoCs as volatile User's Guide, S	s or particulat		3 4	1. Enter the Site name, PI #, the name of person conducting the evaluation, and the date. 2. Enter the number of hours per day and days per year. 3. Select the number of chemicals that need an HBTV and Initial Response Level.
Inhalation Reference Concentration (µg/m3)	3.00E-01	HBTV (μg/m3)	1.10E+01	HBTV (ppbv)	1.33E+00		6 7 F: 8	4. Select the chemicals from the drop-down list(s). 5. Enter the soil concentration or percent of total volatiles for each chemical, as appropriate. 6. Print results.
Percent of Total Volatiles in Air	1.00E+02	Response Level (μg/m3)	1.10E+01	Response Level (ppbv)	1.33E+00		T 10	Table of Contents: 1. PAM Calculator Standard Operating Procedure
Soil Concentration (mg/kg)	4.00E+01	Response Level (µg/m3)	1.50E+02	Value Exceeds NA ug/m3; therefore to NAAQS limit	-	-	C 13	2. Calculator Scope
Reset Values	Reset Chemic	Reset	All Print	• •		to User's Guide	15 16 17 18 19 20	4. HBTV Equations 5. Response Levels 6. Measuring Protectiveness of Response Levels 7. Response Level Equations Return to Calculator



Or DIV			Averaging Time	11 10 A		Exposure	C
Site PI#:	123	i. R. Pindleton (year)		(hours/24 Frequency Durati	Duration (year)	Contaminante	
Evaluated by:	Leonard S.			hours)	(days/365	Duration (year)	(Up to 4)
Date:	January	24, 2024	1 (NC), 70 (C)	8	30	1	4
				_			
	Naphthalene			For further guidance regarding analyzing CoCs as volatiles or particulates, refer to the			
Provide Justificat	ion for Analyzing	as Volatile or Parti	culate	User's Guide, S	ection 5.2.		Analyzed as Vo
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01		Inhalation Reference Concentration (µg/m3)
Percent of Total Volatiles in Air	4.00E+01	Response Level (µg/m3)	2.74E+02	Response Level (ppbv)	5.22E+01		Percent of Total Volatiles in Air
				Value Exceeds NAAQS of 150 ug/m3; therefore, value defaults to NAAQS limit			
Soil Concentration (mg/kg)	5.00E+00	Response Level (μg/m3)	1.50E+02	ug/m3; therefore			
Concentration				ug/m3; therefore to NAAQS limit For further guid	, value defaults lance regarding		Polychio
Concentration (mg/kg)	Mercury (total)	Level (μg/m3)	7439-97-6	ug/m3; therefore to NAAQS limit For further guid CoCs as volatile	, value defaults lance regarding es or particulat		Polychlo
Concentration (mg/kg)	Mercury (total)		7439-97-6	ug/m3; therefore to NAAQS limit For further guid	, value defaults lance regarding es or particulat		Polychlo Provide Justificat
Concentration (mg/kg)	Mercury (total)	Level (μg/m3)	7439-97-6	ug/m3; therefore to NAAQS limit For further guid CoCs as volatile	, value defaults lance regarding es or particulat		·
Concentration (mg/kg) Provide Justificat Inhalation Reference Concentration	Mercury (total)	Level (µg/m3)	7439-97-6 culate	ug/m3; therefore to NAAQS limit For further guid CoCs as volatile User's Guide, S	, value defaults lance regarding es or particulate ection 5.2.		Provide Justificat Inhalation Unit Risk Factor (µg/m3)-

Exposure Time Exposure

Big Corp LLC

Site Name:	Big Corp LLC	Averaging Time	Exposure Time	Exposure	Exposure	Number of
Site PI#:	123456	(year)	(hours/24	Frequency	Duration (year)	Contaminants
Evaluated by:	Leonard S. R. Pindleton	(year)	hours)	(days/365	Duration (year)	(Up to 4)
Date:	January 24, 2024	1 (NC), 70 (C)	8	30	1	4

	Naphthalene		91-20-3	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to t		
Provide Justificati	Provide Justification for Analyzing as Volatile or Part		culate	User's Guide, S	User's Guide, Section 5.2.	
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01	
Percent of Total Volatiles in Air	4.00E+01	Response Level (µg/m3)	2.74E+02	Response Level (ppbv)	5.22E+01	
Soil Concentration (mg/kg)	5.00E+00	Response Level (µg/m3)	1.50E+02	Value Exceeds NAAQS of 150 ug/m3; therefore, value defaults to NAAQS limit		

е		Benzene		71-43-2		
	Analyzed as Vol	atile				
	Inhalation Reference Concentration (µg/m3)	3.00E+01	HBTV (μg/m3)	1.10E+03	HBTV (ppbv)	3.43E+02
	Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+03	Response Level (ppbv)	3.43E+02

	Mercury (total)		7439-97-6	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to t			
rovide Justification for Analyzing as Volatile or Part			culate	User's Guide, S	User's Guide, Section 5.2.		
Inhalation Reference Concentration (µg/m3)	3.00E-01	HBTV (μg/m3)	1.10E+01	HBTV (ppbv)	1.33E+00		
Percent of Total Volatiles in Air	1.00E+02	Response Level (µg/m3)	1.10E+01	Response Level (ppbv)	1.33E+00		
Soil Concentration (mg/kg)	4.00E+01	Response Level (µg/m3)	1.50E+02	Value Exceeds NAAQS of 150 ug/m3; therefore, value defaults to NAAQS limit			

Polychlo	rinated bipheny	Is (PCBs)	1336-36-3			
Provide Justificat	rovide Justification for Analyzing as Volatile or Particulate					
Inhalation Unit Risk Factor (µg/m3)- 1	5.70E-04	HBTV (μg/m3)	4.48E+00	HBTV (ppbv)	Refer to User's Guide Section 5.2	
Percent of Total Volatiles in Air	1.00E+01	Response Level (µg/m3)	4.48E+01	Response Level (ppbv)	Refer to User's Guide Section 5.2	
Soil Concentration (mg/kg)	6.00E+01	Response Level (µg/m3)	1.50E+02	Value Exceeds NAAQS of 150 ug/m3; therefore, value defaults to NAAQS limit		

Special Notes

NJDEP Perimeter Air Monitoring HBTV and Response Level Calculator

Site Name:	Big Corp LLC	Averaging Time	Exposure Time	Exposure	Exposure	Number of
Site PI#:	123456	(year)	(hours/24	Frequency	Duration (year)	Contaminants
Evaluated by:	Leonard S. R. Pindleton	(year)	hours)	(days/365	Duration (year)	(Up to 4)
Date:	January 24, 2024	1 (NC), 70 (C)	8	30	1	2

	Acenaphthene			
Analyzed as Par	ticulate			
No RfC/IUR Available for This Contaminant	Not Available	HBTV (μg/m3)	Appropriate Toxicity Value Not Available, Choose a Surrogate or Consult with Department	
Soil Concentration (mg/kg)		Response Level (µg/m3)	Not Available	

Polychlo	Polychlorinated biphenyls (PCBs)				
Provide Justificati	ion for Analyzing (as Volatile or Parti	culate		
Inhalation Unit Risk Factor (µg/m3)- 1	5.70E-04	HBTV (μg/m3)	4.48E+00	HBTV (ppbv)	Refer to User's Guide Section 5.2
Percent of Total Volatiles in Air		Response Level (µg/m3)	4.48E+00	Response Level (ppbv)	Refer to User's Guide Section 5.2
Soil Concentration		Response Level (µg/m3)	4.48E+00		1

For some contaminants, the HBTVs and/or response levels cannot be calculated. Please contact the Department for assistance.

Test Your Knowledge

Poll#2

A Health-Based Threshold Value (HBTV) is:

- A. contaminant-specific
- B. calculated air concentration averaged over the workday
- C. assumed protective of human health for offsite receptors
- D. all of the above

Poll#2

A Health-Based Threshold Value (HBTV) is:

- A. contaminant-specific
- B. calculated air concentration averaged over the workday
- C. assumed protective of human health for offsite receptors
- D. all of the above

PAM Calculator User's Guide

Purpose and Contents of User's Guide

 Purpose - To provide instruction on developing Health-Based Threshold Values and response levels for site-specific contaminants

• Contents:

- 1. Standard Operating
 - **Procedures**
- 2. Calculator Scope
- 3. Health-Based Threshold Values
- 4. HBTV Equations

- 5. Response Levels
- 6. Measuring Protectiveness of Response Levels
- 7. Response Level Equations

Contents of User's Guide

Contents:

- 1. Standard Operating Procedures discusses calculator input parameters (e.g., 20-225 working days) and how to run calculator
- 2. Calculator Scope discusses the calculator outputs (HBTV, response level)
- 3. Health-Based Threshold Values defines HBTV and its purpose
- 4. HBTV Equations provides different equations used to derive contaminantspecific HBTVs

Contents of User's Guide (Cont.)

Contents:

- 5. Response Levels defines response level and discusses how to calculate them; provides examples of different surrogates; discusses contaminant-specific exceptions; discusses time-weighted averages
- 6. Measuring Protectiveness of response levels discusses role of confirmatory sampling to demonstrate response levels are protective of HBTVs; details steps to follow if confirmatory samples indicate HBTVs are being exceeded
- 7. Response Level Equations provides different equations used to derive contaminant-specific response levels

User's Guide Functions

NJDEP Perimeter Air Monitoring HBTV and Response Level Calculator

Site Name:	Averaging Time	Exposure Time	Exposure	Exposure	Number of
Site PI#:	(year)	(hours/24	Frequency	Duration (year)	Contaminants
Evaluated by:	(year)	hours)	(days/365	Duration (year)	(Up to 4)
Date:	1 (NC), 70 (C)	8	30	1	4

Mercury (total)			7439-97-6	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to the		
Provide Justificat	ion for Analyzing (as Volatile or Parti	culate	User's Guide, Section 5.2.		
Inhalation Reference Concentration (µg/m3)	3.00E-01	HBTV (μg/m3)	1.10E+01	HBTV (ppbv)	1.33E+00	
Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+01	Response Level (ppbv)	1.33E+00	
Soil Concentration (mg/kg)		Response Level (µg/m3)	1.10E+01			

е		Benzene		71-43-2		
	Analyzed as Vol	atile				
	Inhalation Reference Concentration (µg/m3)	3.00E+01	HBTV (μg/m3)	1.10E+03	HBTV (ppbv)	3.43E+02
	Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+03	Response Level (ppbv)	3.43E+02

Polychlorinated biphenyls (PCBs)			1336-36-3		
Provide Justificati	on for Analyzing	as Volatile or Parti	culate		
Inhalation Unit Risk Factor (μg/m3)- 1	5.70E-04	HBTV (μg/m3)	4.48E+00	HBTV (ppbv)	Refer to User's Guide Section 5.2
Percent of Total Volatiles in Air		Response Level (µg/m3)	4.48E+00	Response Level (ppbv)	Refer to User's Guide Section 5.2
Soil Concentration (mg/kg)		Response Level (µg/m3)	4.48E+00		

Naphthalene			91-20-3	For further guidance regarding analyzing CoCs as volatiles or particulates, refer to the		
Provide Justificati	ion for Analyzing	as Volatile or Parti	User's Guide, Section 5.2.			
Inhalation Reference Concentration (µg/m3)	3.00E+00	HBTV (μg/m3)	1.10E+02	HBTV (ppbv)	2.09E+01	
Percent of Total Volatiles in Air		Response Level (µg/m3)	1.10E+02	Response Level (ppbv)	2.09E+01	
Soil Concentra (p		Response Level (µg/m3)	1.10E+02			•

Reset Values

Reset Chemicals

Reset All

0

Print

Go to User's Guide

Exit

User's Guide Functions (Cont.)

User's Guide

- 1. Enter the Site name, PI #, the name of person conducting the evaluation, and the date.
- 2. Enter the number of hours per day and days per year.
- 3. Select the number of chemicals that need an HBTV and Initial Response Level.
- 4. Select the chemicals from the drop-down list(s).
- 5. Enter the soil concentration or percent of total volatiles for each chemical, as appropriate.
- 6. Print results.

Table of Contents:

- 1. PAM Calculator Standard Operating Procedure
- 2. Calculator Scope
- 3. Health-Based Threshold Values (HBTV)
- 4. HBTV Equations
- 5. Response Levels
- 6. Measuring Protectiveness of Response Levels
- 7. Response Level Equations

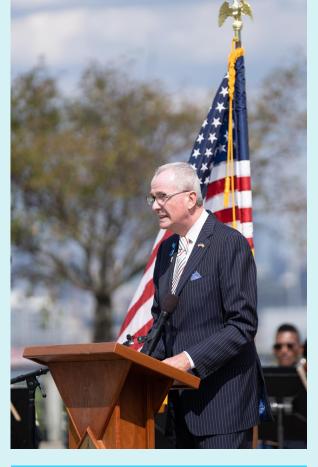
Return to Calculator

User's Guide Functions (Cont.)

2. Calculator Scope

The NJDEP Perimeter Air Monitoring (PAM) Calculator is used to aid in calculating the HBTV and Response Level for a given contaminant at a remediation site. The HBTV is a calculated air concentration that is protective of human health for off-site receptors. The HBTV is calculated from selected chemical specific toxicity reference values and site-specific exposure assumptions (e.g., expected duration of the remedial activities having the potential for causing air emissions, hours worked per day, etc.). The response level is derived from the HBTV input values and is calculated using site-specific soil data. The response level is a concentration of a contaminant that is present as a vapor and/or particulate matter (PM10) which, if exceeded, acts as a threshold that dictates when additional actions should be taken to reduce vapors/particulate matter for the protection of receptors.

Please be advised that the HBTV and response level values calculated using this resource are suggested concentrations that are not to be exceeded. More stringent HBTVs and response level values may be used if they are required to ensure receptor or public safety/health or to address other receptor and public concerns. The HBTVs and response levels may also be adjusted throughout the PAM process as confirmatory analytical data become available.


Back to Table of Contents

Thank you!

Perimeter Air Monitoring Technical Guidance Training Day 1 of 2

January 23, 2024

Questions?

PAM Steps 4 and 5

January 23, 2024

Step 4: Identify Monitoring Methods and Technologies- Identify Monitoring Strategy

Identify Monitoring Strategy

- Type, quantity, and quality of measurements to be made, consistent with established Data Quality Objectives (DQOs)
- To provide real-time data in controlling and reducing emissions to prevent adverse offsite exposures to the public
- To corroborate that real-time data and associated response levels are adequate in meeting HBTVs
- To document that the PAM program is working as designed and is protecting the public

Step 4: Identify Monitoring Methods and Technologies- Identify Monitoring Strategy (Cont.)

- The type of remedial technologies selected;
- The source-receptor relationship;
- The list of COCs identified in Step 1;
- The HBTVs developed in Step 3; and
- The real-time technology for specific COCs and document HBTV exceedances

Monitoring Strategy

The type of remedial technologies selected

Monitoring Strategy

The source/receptor relationship

Step 4: Identify Monitoring Methods and Technologies- Identify Monitoring Strategy (Cont.)

- The list of COCs identified in Step 1
- The HBTVs developed in Step 3
 - Benzene
 - Trichloroethylene (TCE)
 - Hexavalent chromium (Cr₆)
 - Lead (Pb)

Monitoring Strategy

The real-time technology for specific COCs and document HBTV exceedances

Step 4: Identify Monitoring Methods and Technologies-Select Air Monitoring Methods and Technologies

Select Air Monitoring Methods and Technologies

Real-Time Monitoring

- Handheld real-time monitoring
- Stationary or mobile real-time monitoring
- Meteorological monitoring

Select Monitoring Methods and Technology

Handheld

Select Monitoring Methods and Technology

Stationary or Mobile

Select Monitoring Methods and Technology

Meteorological

Test Your Knowledge

Poll#3

A real time monitor is equipment that:

- A. can measure total concentration for group of contaminants
- B. can be handheld or fixed
- C. can display instantaneous concentration readings
- D. all of the above

Poll#3

A real time monitor is equipment that:

- A. can measure total concentration for group of contaminants
- B. can be handheld or fixed
- C. can display instantaneous concentration readings
- D. all of the above

Step 4: Identify Monitoring Methods and Technologies-Select Air Monitoring Methods and Technologies (Cont.)

Confirmatory Measurements: Sample Collection and Laboratory Analysis

- The verification of the underlying assumptions, on which the real-time monitoring program is based, requires analytical measurements (e.g., TO-15 for volatiles) of specific COCs
- Method Detection Limits (MDLs) and sensitivity versus HBTVs

Laboratory Method and Certification

- EPA, National Institute for Occupational Safety and Health (NIOSH),
 Occupational Safety and Health Administration (OSHA), others
- NJDEP certification
- For exceptions contact the Department

Step 4: Identify Monitoring Methods and Technologies-Select Air Monitoring Methods and Technologies (Cont.)

Confirmatory Sampling Considerations

- Analytical results from confirmatory sampling should be compared directly to the HBTVs calculated for each site-specific COC
- Frequency initial/periodic/other
 - e.g. 3 days initially
 - Hotspots
 - Change in remediation methods and/or locations
- Using data to validate or change monitoring reporting limits and/or frequency of confirmatory sampling

Step 4: Identify Monitoring Methods and Technologies-Select Air Monitoring Methods and Technologies (Cont.)

Chemical-Specific Concerns

- Mercury (Hg)
- Polychlorinated Biphenyls (PCBs)
- Naphthalene

Step 5: Identify Sampling & Monitoring Locations and Schedule

Considerations:

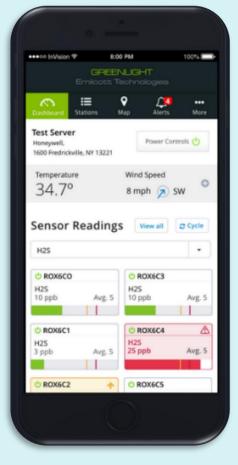
- The locations where air monitoring and sampling will occur;
- The frequency of monitoring and sample collection;
- How data will be collected and stored; and
- Whether additional specialized monitoring (e.g., radiation) will be necessary

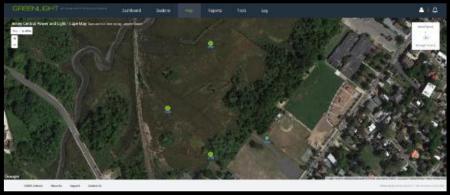
Step 5: Identify Sampling & Monitoring Locations and Schedule (Cont.)

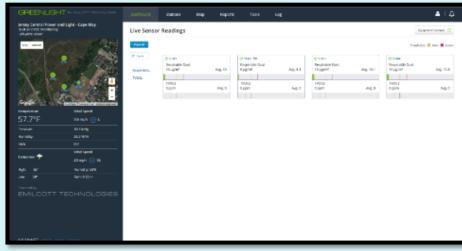
- Air Sampling and Monitoring Locations
- Fixed vs. Mobile Air Sampling and Monitoring Locations
- Frequency of Monitoring and Air Sample Collection at Each Location
- Air Monitoring and Sampling Station Specifications
- Ancillary Meteorological Data
- Determining the Need for Additional Monitoring Procedures
- Background Sampling

Locations

Fixed vs. Mobile Locations


Frequency of Monitoring & Sampling




Station Specifications

Ancillary Met Data

Step 5: Identify Sampling & Monitoring Locations and Schedule (Cont.)

Determining the need for additional monitoring procedures

Background sampling

Thank you!

Perimeter Air Monitoring Technical Guidance Training Day 1 of 2

January 23, 2024

Questions?

Remember!

Day 2 of the Perimeter Air Monitoring (PAM) training will be held tomorrow, January 24th, 2024 from 9am- 12pm

You must register for day 2 separate from today's training!

To Register for day 2:

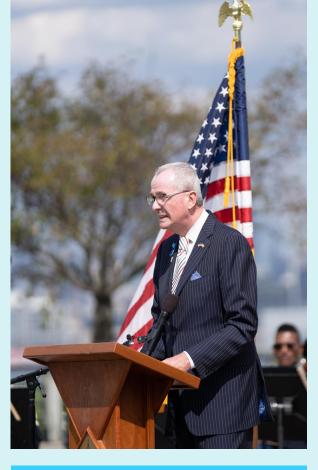
https://attendee.gotowebinar.com/register/6565538406766491742

Please fill out the Course Evaluation here:

https://www.surveymonkey.com/r/RNRCJPK

Reminders!

 Questions not answered today will be answered via email in the coming weeks


Look out for an email from the LSRPA for CEC certificate access

 Slides and presentation will be posted on the CSRR Training page

Thank you!

