New Jersey Department of Environmental Protection (NJDEP) Division of Water Resource Management Bureau of Pesticide Control, Licensing & Registration Pesticide Evaluation and Monitoring Section

GOLF COURSE PESTICIDE USE IN NEW JERSEY: 2023 SURVEY

Introduction

The Pesticide Evaluation & Monitoring Section (PEMS) began a series of pesticide use surveys in 1985. These surveys address pesticide use by licensed applicators in the state of New Jersey for agriculture, golf courses, termite control, right-of-way, mosquito control, and lawn care. The golf course survey is conducted every three years and targets pesticides used for golf course maintenance. This report focuses on the twelfth survey completed in the golf course series (2023).

All statewide pesticide use surveys are performed under the authority of the New Jersey Pesticide Control Code (NJPCP), N.J.A.C. 7:30-6.8(d) requiring licensed applicators to maintain pesticide records for three years and to submit use records to the state when requested. This regulative authority provides an accuracy and level of response that is difficult to duplicate in a voluntary, nationwide survey.

The information collected from the PEMS pesticide use surveys is used by programs within the NJ Department of Environmental Protection along with other state agencies to aid in research, exposure management and monitoring efforts in areas such as ground water protection, farm worker protection and education, and residual pesticide sampling.

Survey Methods

A list of all the golf courses in New Jersey has been maintained by PEMS since the first golf course survey in 1990. The list is updated before each survey mailing. Survey forms were mailed to each golf course, along with instructional letters asking for 2023 golf course pesticide use. A total of three mailings were sent during the first three months of 2024.

The survey requested information on each pesticide product used, including trade name, EPA registration number, percent active ingredient and amounts applied.

Survey information was entered into a database file. This information file was then merged with a second database that linked trade names with chemical names, and a subprogram converted reported amounts of formulated product to amounts of active ingredient (lbs. a.i.).

Results & Discussion

Once all three mailings were completed, 259 out of 315 golf courses (82%) had responded. This is a 1% increase in response rate from the 2020 survey. A survey will be returned to PEMS if the address has changed or the course has shut down. PEMS also forwarded a list of non-responders to our Bureau of Pesticide Control, Licensing and Registration Enforcement unit for follow-up.

Pesticides used by the golf course industry in New Jersey for 2023 totaled 334,360 lbs. a.i. This is a 3,805 lbs. a.i. increase from 2020.

Table 1 lists all the compounds reported in the 2023 survey and the amounts (lbs. a.i.) applied. Fungicides comprise 80% of the total pesticide use reported in the New Jersey golf course industry. Herbicides (10%), insecticides (7%), growth regulators (3%), and miscellaneous compounds (<1%) account for the rest.

Table 1. Pesticide amounts (lbs. a.i.) reported in the New Jersey 2023 Golf Course Pesticide Use Survey. *Indicates a compound not reported in the 2020 survey. ^Miscellaneous compounds include synthetic alternatives (naturally occurring elements/compounds), synergists, and disinfectants.

HERBICIDES	lbs. a.i.	HERBICIDES (cont.)	lbs. a.i.
2,4-D	4,887	Methiozolin	2
2,4-DP	12	MSMA	24
Acetic acid	11	Oxadiazon	1085
Aminopyralid	47	Pelargonic acid	99
Bensulide	1,088	Pendimethalin	2,480
Bispyribac-sodium*	2	Penoxsulam	1
Carfentrazone-ethyl	60	Prodiamine	3,954
Clopyralid	270	Quinclorac	716
Dicamba	880	Sethoxydim	180
Dimethenamid	99	Siduron	29
Dipotassium endothall	45	Sulfentrazone	115
Dithiopyr	13,217	Topramezone	32
Ethofumesate	1	Triclopyr	1,254
Fenoxaprop-ethyl	59	Total:	33,849
Florasulam	77		
Fluazifop-p-butyl	142	GROWTH REGULATORS	lbs. a.i.
Fluroxypyr-meptyl	164	Ethephon	5,380
Glufosinate-ammonium	27	Flurprimidol	605
Glyphosate	234	Mefluidide	2
Halosulfuron	26	Paclobutrazol	655
Imazamox	3	Prohexadione calcium	905
Imazosulfuron	482	Trinexapac-ethyl	2,981
Isoxaben	191	Total:	10,528
MCPA	696		
Mecoprop	430	MISCELLANEOUS	lbs. a.i.
Mefenoxam	675	Bacillus amyloliquefaciens*	20
Mesotrione	52	Citric acid*	25
Metolachlor	1	Hydrogen peroxide	72
		Peroxyacetic acid	7
		Reynoutria sachalinensis*	2

Total:

126

Table 1. (cont.)

FUNGICIDES	lbs. a.i.	FUNGICIDES (cont.)	lbs. a.i.
Acibenzolar 249		Propiconazole	6,853
Aluminum tris*	83	Prothioconazole	951
Azoxystrobin	2,721	Pydiflumetofen	285
Benzovindiflupyr	56	Pyraclostrobin	2,245
Boscalid	1,324	Tebuconazole	10,079
Chloroneb*	2	Thiophanate-methyl	15,120
Chlorothalonil	138,943	Thiram	639
Copper hydroxide	61	Triadimefon	3,072
Copper sulfate	133	Trifloxystrobin	1,047
Cyazofamid	1,350	Triticonazole	137
Difenoconazole	303	Vinclozolin	9
Etridiazole	94	Total:	267,555
Fluazinam	9,208		
Fludioxonil	315	INSECTICIDES	lbs. a.i.
Fluindapyr*	36	Abamectin	13
Flumioxazin*	3	Alpha-cypermethrin*	15
Fluopicolide	3	Bifenthrin	694
Fluopyram	227	Burkholderia spp.	32
Fluoxastrobin	355	Carbaryl	323
Flutolanil	563	Chlorantraniliprole	2,407
Flutriafol	590	Chlorpyrifos	3,727
Fluxapyroxad	1,091	Clothianidin	194
Fosetyl-al	23,766	Cyantraniliprole	183
Iprodione	17,176	Cyhalothrin*	15
Isofetamid	92	Dinotefuran*	59
Mancozeb	7,214	Diquat	22
Mandestrobin	172	Imidacloprid	1,983
Mefentrifluconazole	1,982	Indoxacarb	222
Metalaxyl	185	Lambda-cyhalothrin	177
Metconazole	801	Novaluron*	861
Myclobutanil	45	Oil	9,929
Octhilinone*	2	Quillaja extract*	1
Penthiopyrad	568	Spinosad	445
PCNB	1,473	Tetraniliprole*	356
Phosphorous acids salts	3,936	Thiamethoxam	62
Picarbutrazox*	148	Trichlorfon	518
Polyoxin D	87	Zeta-cypermethrin*	64
Potassium phosphite	2,614	Total:	22,302
Propamacarb HCl	9,147		

Table 2 lists the highest use compounds in the three main golf course pesticide. The most highly reported pesticide used on golf courses was chlorothalonil (fungicide). Chlorothalonil accounted for approximately 52% of the fungicides used on New Jersey golf courses in 2023, and 42% of the total pesticides used on golf courses overall. Chlorothalonil is a broad spectrum, non-systemic fungicide used to control a variety of turf diseases on golf courses. Chlorothalonil formulations can be applied as a dust, dry or water-soluble grains, a wettable powder, a liquid spray, a fog, and a dip.

Compound	Total (lbs. a.i.)	% of Category	% of Total Usage
FUNGICIDES			
Chlorothalonil Fosetyl-al	138,943 23,766	52 9	42 7
Iprodione	17,176	6	5
Thiophanate-methyl Tebuconazole	15,120 10,079	6 4	5 3
HERBICIDES			
Dithiopyr	13,217	39	4
2,4-D	4,887	14	1
Prodiamine	3,954	12	1
Pendimethalin	2,480	7	1
Triclopyr	1,254	4	<1
INSECTICIDES			
Oil	9,929	45	3
Chlorpyrifos	3,727	17	1
Chlorantraniliprole	2,407	11	1
Imidacloprid	1,983	9	1
Novaluraon	861	4	<1

Table 2. Highest use compounds in the New Jersey 2023 Golf Course Pesticide Use Survey from the main pesticide categories.

Table 3 shows golf course pesticide use by county. Monmouth county had the highest use overall, with a increase from 53,548 lbs. a.i. in 2020 to 58,286 lbs. a.i. in 2023. Monmouth county accounted for 17% of the total golf course pesticide use in New Jersey. Five counties (Atlantic, Bergen, Essex, Morris and Somerset) all reported at least 20,000 lbs. a.i. each. The remaining 15 counties only accounted for 31% of the total reported use. Between 2020 and 2023,

some counties opened new courses while other counties closed courses. Overall, the net change was a gain of 6 courses over the three years between the survey periods.

County	# of	Amount	% of Total
County	Courses	lbs. a.i.	Total
Atlantic	24	27,639	8
Bergen	24	26,625	8
Burlington	19	12,782	4
Camden	9	14,631	4
Cape May	13	16,468	5
Cumberland	3	134	<1
Essex	18	26,874	8
Gloucester	11	5,754	2
Hudson	3	2,783	1
Hunterdon	7	10,195	3
Mercer	15	7,455	2
Middlesex	18	17,037	5
Monmouth	37	58,286	17
Morris	23	24,326	7
Ocean	20	18,187	5
Passaic	7	15,443	5
Salem	6	3,232	1
Somerset	21	26,439	8
Sussex	18	8,087	2
Union	12	9,098	3
Warren	7	2,882	1

Table 3. Total pesticide amounts (lbs. a.i.) reported by county in the New Jersey 2023 GolfCourse Pesticide Use Survey.

Figure 1 shows the total lbs. a.i. used in New Jersey for each golf course survey conducted. The reported pesticide usage for golf courses has been consistent over the last six surveys conducted. An overall increase of approximately 150,000 lbs. a.i. has been reported since the first survey in 1990.

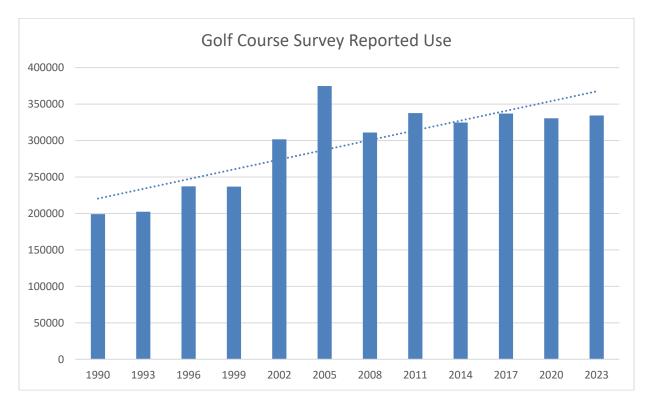


Figure 1. Total lbs. a.i. used in New Jersey for each golf course survey conducted (1990-2023).