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This map was produced to conform with the 
National Geospatial Program US Topo Product Standard, 2011.
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INTRODUCTION
The Newton East 7.5-minute quadrangle is located in northwestern New Jersey where it straddles the boundary between 
two physiographic provinces, the New Jersey Highlands which underlies the southeastern part of the map area, and the 
Valley and Ridge which underlies the northwestern part. The Paulins Kill is the main river system in this quadrangle. 
Although the bedrock geology of the Newton East quadrangle has been the subject of study for more than a century (Spen-
cer and others, 1908; Sims and Leonard, 1952; Hague and others, 1956; Drake and Volkert, 1993; Drake and others, 1996), 
previous geologic mapping of the bedrock lithologies and structures lacks continuity with more recent detailed mapping of 
adjacent quadrangles, as well as conformity to the present geologic framework proposed for the Mesoproterozoic rocks 
in the New Jersey Highlands. Therefore, the interpretations presented here supersede those shown on previous bedrock 
geologic maps of the quadrangle, and provide updated, detailed geologic information on the stratigraphy, structure, ages 
and descriptions of geologic units in the map area. Cross-section A-A’ shows a vertical profile of the geologic units and their 
structure, and rose diagrams and contour plots provide a directional summary of selected structural features (Figure 1). 
Surficial geology is shown as in Witte and Monteverde (2006).

STRATIGRAPHY
Paleozoic Rocks

Lower Paleozoic rocks of Cambrian through Ordovician age of the Kittatinny Valley Sequence predominate in the western 
part of the quadrangle where they underlie valleys and lowland areas. They are also exposed in the eastern part of the 
quadrangle in fault-bounded belts that are down-dropped within Mesoproterozoic rocks at Lake Mohawk and in the Pimple 
Hills. The Kittatinny Valley Sequence was previously considered to be part of the Lehigh Valley Sequence of MacLachlan 
(1979) but was named as a separate sequence by Drake and others (1996). It includes the Hardyston Quartzite, Kittatinny 
Supergroup (Leithsville Formation, Allentown Dolomite, and lower and upper parts of the Beekmantown Group), “Sequence 
at Wantage”, Jacksonburg Limestone, and the Martinsburg Formation. The lower Cambrian Hardyston Quartzite uncon-
formably overlies Mesoproterozoic rocks east of Lake Mohawk and in the Pimple Hills.
Mesoproterozoic and Paleozoic rocks in the quadrangle are intruded by northwest-striking lamprophyre dikes that are part 
of the Beemerville Intrusive Suite (Drake and Monteverde, 1992). Dikes intruded Mesoproterozoic rocks east and north of 
Woodruffs Gap. Geochemical analyses of three dikes from the map area are provided in Drake and Volkert (1993). To the 
north, in the Branchville quadrangle, similar dikes and intrusive rocks of the Beemerville Intrusive Suite were radiometrically 
dated at 435 ± 20 Ma (million years ago) by Rb-Sr and K-Ar on biotite from nepheline syenite (Zartman and others, 1967) 
and 422 ± 14 Ma from a fission-track date on titanite from nepheline syenite (Eby and others, 1992), indicating they are 
Silurian in age. 

Neoproterozoic Rocks
Northeast-striking diabase dikes of Neoproterozoic age that are as much as 45 feet thick and 0.5 mile or more long intruded 
Mesoproterozoic rocks in the quadrangle. Dikes have coarse-grained interiors and fine-grained chilled margins against 
Mesoproterozoic rocks. Very locally they display columnar cooling joints and contain xenoliths of Mesoproterozoic rocks. 
Geochemical analyses of two dikes from the map area are provided in Volkert and Puffer (1995). 
Lithologic variants of the Chestnut Hill Formation of Neoproterozoic age (Drake, 1984; Gates and Volkert, 2004) uncon-
formably overlie, and locally are in fault contact with Mesoproterozoic rocks. They include coarse- to fine-grained siliciclastic 
rocks and sparse amounts of carbonate rock and felsic volcanic rock. Geochemical analyses of most facies of the Chestnut 
Hill Formation are provided in Volkert and others (2010b).

Mesoproterozoic Rocks
Mesoproterozoic rocks of the New Jersey Highlands that include various granites, gneisses and marble are present in the 
southeastern part of the map area and also occur locally in two klippen northeast of Lafayette. Most Mesoproterozoic rocks 
were metamorphosed under granulite-facies conditions at about 1,045 Ma (Volkert and others, 2010a) during the Ottawan 
phase of the Grenville orogeny. The estimated temperature for granulite-facies metamorphism is ~769oC based on regional 
calcite-graphite geothermometry (Peck and others, 2006). Geochemical analyses of the major Mesoproterozoic rock units 
in the map area are provided in Volkert and Drake (1999).
Among the oldest Mesoproterozoic lithologies in the map area are calc-alkaline rocks of the Losee Suite formed in a 
continental-margin magmatic arc, and spatially associated supracrustal rocks formed in a back-arc basin, inboard of the 
Losee magmatic arc (Volkert, 2004). The Losee Suite includes metamorphosed plutonic rocks mapped as quartz-oligoclase 
gneiss, albite-oligoclase granite and diorite gneiss, and metamorphosed volcanic rocks mapped as biotite-quartz-oligoclase 
gneiss, hornblende-quartz oligoclase gneiss, hypersthene-quartz-plagioclase gneiss, and amphibolite. Rocks of the Losee 
Suite yielded Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon ages of 1282-1248 Ma (Volkert and others, 
2010a).
Supracrustal metavolcanic rocks include felsic metavolcanic rocks mapped as microcline gneiss and mafic metavolcanic 
rocks mapped as amphibolite. Very locally, supracrustal amphibolite has undergone seafloor alteration by hydrothermal 
fluids to produce an unusual high-magnesium orthoamphibole-bearing gneiss (Volkert and Peck, 2017) that is present 
in two outcrops southeast of Limecrest quarry. Supracrustal metasedimentary rocks include quartzofeldspathic gneiss-
es mapped as biotite-quartz-feldspar gneiss, potassic-feldspar gneiss, clinopyroxene-quartz-feldspar gneiss, calc-silicate 
rocks mapped as pyroxene gneiss, and metacarbonate rocks mapped as marble. Supracrustal rocks yielded SHRIMP U-Pb 
zircon ages of 1,299-1,251 Ma (Volkert and others, 2010a) that closely overlap the age of the Losee Suite. 
Granite and related rocks of the Byram and Lake Hopatcong Intrusive Suites that comprise the Vernon Supersuite (Volkert 
and Drake, 1998) include monzonite, quartz monzonite, granite, and alaskite that intruded the Losee Suite and supracrustal 
rocks. Byram and Lake Hopatcong rocks yielded similar SHRIMP U-Pb zircon ages of 1,185-1,182 Ma (Volkert and others, 
2010a). Two bodies of monzogranite to quartz monzogranite that are exposed west of Sparta are here tentatively named 
the Sparta granite. These biotite- and hornblende-rich intrusive rocks are well foliated, but they are mineralogically distinct 
from other regional granitic rocks. A geochemical analysis of Sparta granite is provided in Drake and Volkert (1993). The 
Sparta granite is undated and thus its age and relationship to the Byram and Lake Hopatcong Suites is uncertain. However, 
the presence of a planar metamorphic foliation in the Sparta granite suggests that it is older than the granulite-facies meta-
morphism at 1,045 Ma. 
The youngest Mesoproterozoic rocks are small, irregular bodies of granite pegmatite too small to be shown. They are un-
deformed, contain xenoliths of foliated gneiss and intruded most other Mesoproterozoic rocks. Pegmatite at the Limecrest 
quarry yielded a U-Pb zircon age of 998 Ma (Volkert, 2004), and elsewhere in the Highlands pegmatites yielded U-Pb zircon 
ages of 1,004 to 986 Ma (Volkert and others, 2005), indicating they were emplaced following high-grade metamorphism 
during the waning stages of the Grenville Orogeny.

STRUCTURE
Paleozoic Bedding and Cleavage

Bedding in the Paleozoic rocks is fairly uniform in the quadrangle and strikes northeast an average of N43oE except in the 
hinge areas of folds. Most beds dip northwest and less commonly southeast, although locally they are overturned steeply 
southeast. The dip of bedding ranges from 4o to 90o and averages 51o (Figures 1c and 1f).
Cleavage (closely-spaced parallel partings) is present in most of the Paleozoic rocks but is best developed in finer-grained 
lithologies such as shale of the Martinsburg Formation. Cleavage strikes generally northeast and averages N47oE, nearly 
parallel to the strike of bedding. The dip of cleavage is mainly southeast and averages 62o (Figures 1d and 1g).

Proterozoic Foliation
Crystallization foliation, formed by the parallel alignment of mineral grains in the Mesoproterozoic rocks during high-grade 
metamorphism related to the Grenville Orogeny, defines the strike of Mesoproterozoic rocks (Figure 1a). Foliations are 
varied in strike due to deformation of the rocks during folding and also due to drag along faults. They strike an average of 
N39oE and dip southeast and, less commonly, northwest at 4o to 90o and average 47o. Locally, in the hinge areas of major 
folds, foliations strike northwest and dip gently to moderately northeast. 

Folds
Folds in Mesoproterozoic rocks deform crystallization foliations and therefore formed synchronous with, or slightly later than 
the high-grade metamorphism at 1,045 Ma. They are mainly northeast-striking, northeast-plunging, northwest-overturned to 
locally southeast-overturned antiforms and synforms. Axes of about S43oW at minor folds and mineral lineations on foliation 
surfaces plunge about N50oE at 4o to 40o and average 21o and locally plunge an average of 15o. 
Folds in the Paleozoic rocks were formed during the Taconian and Alleghanian orogenies at about 450 Ma and 250 Ma, 
respectively, and they postdate the development of bedding. The folds are open to tight, upright, to locally overturned, and 
gently inclined to recumbent. They strike mainly northeast and plunge southwest. Taconic-age folds were formed in the 
hinterland of emergent Taconic thrusting and they are cut by younger Alleghanian faults (Herman and Monteverde, 1989; 
Herman and others, 1997). Fold intensity and overturning increase southeast of the Newton East quadrangle.

Faults
The structural geology of the quadrangle is dominated by a series of northeast-striking faults that deform both Mesoprotero-
zoic and Paleozoic rocks. Most of these faults are characterized by brittle deformation fabric that consists of breccia, gouge, 
retrogression of mafic mineral phases, chlorite or epidote-coated fractures or slickensides, and/or close-spaced fracture 
cleavage. Of these, only the Tranquility (unmapped at the surface but known from drilling activity) and Zero faults display an 
older ductile deformation fabric consisting of mylonite that is overprinted by younger brittle deformation fabric.
The Tranquility thrust fault is a gentle to moderate southeast-dipping (average of 35o) fault that contains Mesoproterozoic 
rocks on the hanging wall and Paleozoic rocks on the footwall. The fault is poorly exposed in the map area, but was pen-
etrated at a depth of 1,422 feet in drill hole DR2 and 1593 feet in drill hole DR1 at the Limecrest quarry, during drilling in 
2009 (Volkert, 2010). To the southwest the fault was encountered by New Jersey Zinc Company geologists in drill core in 
the Tranquility quadrangle (Baum, 1967). The fault is characterized by an early ductile deformation fabric that is strongly 
overprinted by brittle deformation fabric. The Zero fault is a steeply southeast-dipping to vertical normal fault that bounds 
the western side of the Wallkill River Valley. It places Mesoproterozoic rocks on the footwall against Paleozoic rocks on the 
hanging wall along most of its length. It is characterized by ductile deformation fabric that is overprinted by younger brittle 
deformation fabric of probable Paleozoic age (Metsger, 2001). The Wright Pond fault is a steeply southeast-dipping to ver-
tical normal fault that also includes a component of left-lateral strike slip movement. The Kennedys-East fault is a steeply 

southeast-dipping reverse fault that bounds the east side of the Wallkill River Valley. Both the Wright Pond and East faults 
contain Mesoproterozoic rocks on both sides in the map area. The Sparta thrust fault dips moderately southeast and con-
tains Mesoproterozoic and Paleozoic rocks on both sides. It is cut off by the Zero fault at the southern end of Lake Mohawk.  

Joints
Joints are a common feature in the Mesoproterozoic and Paleozoic rocks. They are developed in all Paleozoic rocks, but are 
more common in massive rocks such as limestone, dolomite, and sandstone than in finer-grained rocks such as siltstone 
and shale. The dominant joint set in Paleozoic rocks strikes northwest an average of N36oW. and dips moderately to steeply 
southwest an average of 68o (Figures 1e and 1h). A subordinate set strikes an average of N40oE. and dips southeast or 
northwest an average of 46o. 
Joints in Mesoproterozoic rocks are characteristically planar, moderately well formed, and spaced from a foot or less to 
tens of feet apart. Those formed near faults are spaced 2 feet or less apart. Joint surfaces are typically unmineralized, ex-
cept near faults, and are smooth and less commonly slightly irregular. Those in granite and marble tend to be more widely 
spaced, irregularly formed and discontinuous than joints in the layered gneisses. The dominant joint strike in Mesoprotero-
zoic rocks is nearly perpendicular to the strike of crystallization foliations (Volkert, 1996) (Figure 1b). As a result, joints do not 
strike uniformly because of the varied orientation of foliations due to folding. Two principal joint sets are present, a dominant 
cross joint and less common strike joint. The cross joint set strikes an average of N52oW. and dips 15o to 90o southwest 
and less commonly northeast an average of 74o. The other joint set strikes an average of N50oE. and dips with near equal 
abundance northwest or southeast an average of 66o. 

ECONOMIC RESOURCES
Mesoproterozoic rocks host economic deposits of iron ore (magnetite) that was mined mainly during the 18th and 19th cen-
turies. Descriptions are given in Bayley (1910) and Sims and Leonard (1952). Hematite was extracted at the Andover mine 
that is hosted by unmetamorphosed Neoproterozoic-age rocks of the Chestnut Hill Formation (Volkert and others, 2010b). 
Mesoproterozoic marble and gneiss were quarried for crushed stone at Limecrest and slate was formerly quarried from the 
Bushkill Member of the Martinsburg Formation north of Lafayette. Deposits of peat were mined at Hyper-Humus and sand 
and gravel are mined at several locations mainly in Germany Flats (Witte and Monteverde, 2006). 
                                          

DESCRIPTION OF MAP UNITS

PALEOZOIC VALLEY AND RIDGE

Beemerville Intrusive Suite (Drake and Monteverde, 1992)

Lamprophyre dikes (Lower to Middle Silurian) – Light-medium- to medium-dark-gray, fine-grained to aphanitic dikes and 
small intrusive bodies of mainly alkalic composition. Contacts are typically chilled and sharp against enclosing country rock. 
Dikes intrude rocks that range in age from Mesoproterozoic through Ordovician. Field relationships in combination with 
radiometric age data of dikes indicate a lower Silurian age.

Kittatinny Valley Sequence
 
Ramseyburg Member of Martinsburg Formation (upper Middle Ordovician) (Drake and Epstein, 1967) – Interbedded 
medium- to dark-gray to brownish-gray, fine- to medium-grained, thin- to thick-bedded quartzose to graywacke sandstone 
and siltstone and medium- to dark-gray, laminated to thin-bedded shale and slate. Unit consists of fining upward sequences 
characterized by basal cross-bedded sandstone to siltstone grading upward through planar laminated siltstone into shale 
or slate. Locally, fining upward cycles may have a lower, medium- to thick-bedded, graded-bedded sandstone overlain by 
planar laminated sandstone to siltstone beneath the cross-bedded layer. Complete cycles may be an inch to several feet 
thick. Basal scour, sole marks, and soft-sediment distortion of beds are common in quartzose and graywacke sandstones. 
Lower contact placed at bottom of lowest thick- to very-thick-bedded graywacke, but contact locally grades through se-
quence of dominantly thin-bedded slate and minor thin- to medium-bedded discontinuous and lenticular graywacke beds 
in the Bushkill Member. Parris and Cruikshank (1992) correlate unit with Orthograptus ruedemanni zone to lowest part of 
Climacograptus spiniferus zone of Riva (1969, 1974) indicating Shermanian age (Caradocian). Regionally, unit is as much 
as 3,500 feet thick.

Bushkill Member of Martinsburg Formation (upper Middle Ordovician) (Drake and Epstein, 1967) – Medium- to 
medium-dark-gray-weathering, dark-gray to black, thinly laminated to medium-bedded shale and slate; less abundant me-
dium-gray- to brownish-gray-weathering, dark-gray to black, laminated to thin-bedded, greywacke siltstone. Unit consists 
of fining upward sequences characterized by either basal cross-bedded siltstone grading upward through planar laminated 
siltstone into slate, or laminated siltstone grading upward into slate. Locally, fining upward cycles may have a lower graded 
sandstone to siltstone overlain by planar laminated siltstone beneath the cross-bedded layer. Complete cycles may be an 
inch to several feet thick with slate comprising the thickest part. Lower contact with Jacksonburg Limestone gradational, but 
commonly disrupted by thrust faulting. Parris and Cruikshank (1992) show that regionally the unit contains graptolites of 
zones Diplograptus multidens to Corynoides americanus (Riva, 1969; 1974; Parris and others, 2001), which they correlate 
to the Climacograptus bicornis zone to Corynoides americanus subzone of Orthograptus amplexicaulis (Berry, 1960; 1971; 
1976) indicating Shermanian (Caradocian) age. Thickness ranges from about 1,000 to 1,500 feet regionally.

Jacksonburg Limestone (Middle Ordovician) (Kümmel, 1908; Miller, 1937) – Medium-dark-gray-weathering, medi-
um-dark to dark-gray, laminated to thin-bedded, argillaceous limestone (cement-rock facies) and minor arenaceous lime-
stone. Grades downward into medium-bluish-gray-weathering, dark-gray, very thin- to medium-bedded, commonly fossilif-
erous, interbedded fine- and medium-grained limestone and pebble-and-fossil limestone conglomerate (cement-limestone 
facies). Elsewhere, thick- to very thick-bedded dolomite cobble conglomerate occurs within basal sequence. Lower contact 
unconformable on Beekmantown Group, and on clastic facies of “Sequence at Wantage,” and conformable on carbonate 
facies of “Sequence at Wantage.” Unit contains North American Midcontinent province conodont zones Phragmodus unda-
tus to Aphelognathus shatzeri indicating Rocklandian to Richmondian and possibly Kirkfieldian (Caradocian) ages (Sweet 
and Bergstrom, 1986). Thickness ranges from 150 to 1,000 feet regionally.

Sequence at Wantage (Middle Ordovician) (Monteverde and Herman, 1989) – Interbedded, very thin- to medium-bed-
ded limestone, dolomite, siltstone, and argillite. Upper carbonate facies, locally present outside of the map area, is mod-
erate-yellowish-brown to olive-gray weathering, light- to dark-gray, very fine- to fine-grained, laminated to medium-bedded 
limestone and dolomite. Rounded quartz sand occurs locally as floating grains and very thin lenses. Clastic facies contains 
medium-gray, grayish-red to grayish-green, thin- to medium-bedded mudstone, siltstone and fine-grained to pebbly sand-
stone. Fine-grained beds commonly contain minor disseminated subangular to subrounded, medium-grained quartz sand 
and pebble-sized chert. Some coarse-grained beds are cross stratified. Unit is restricted to lows on surface of Beekmantown 
unconformity. Regional relations and North American Midcontinent province conodonts within carbonate facies, identified by 
Anita Harris (U.S. Geological Survey, written communication, 1990) limits age range from no older than Rocklandian to no 
younger than Kirkfieldian. Unit may be as much as 150 feet thick.

Beekmantown Group (Clarke and Schuchert, 1899)

Beekmantown Group, upper part (Lower Ordovician) – Light- to medium-gray- to yellowish-gray-weathering, medi-
um-light to medium-gray, aphanitic to medium-grained, thin- to thick-bedded, locally laminated, slightly fetid dolomite. Lo-
cally light-gray- to light-bluish-gray- weathering, medium- to dark-gray, fine-grained, medium-bedded limestone occurs near 
the top of unit. Grades downward into medium- to dark-gray on weathered surface, medium- to dark-gray where fresh, 
medium- to coarse-grained, medium- to thick-bedded, strongly fetid dolomite. Contains pods, lenses and layers of dark-gray 
to black rugose chert. Lower contact conformable and grades into the fine-grained, laminated dolomite of Beekmantown 
Group, lower part. Contains conodonts of North American Midcontinent province Rossodus manitouensis zone to Oepiko-
dus communis zone (Karklins and Repetski, 1989), so that unit is Ibexian (Tremadocian to Arenigian) as used by Sweet and 
Bergstrom (1986). In map area, unit correlates with the Epler and Rickenbach Dolomite of Drake and others (1985) and the 
Ontelaunee Formation of Markewicz and Dalton (1977). Thickness averages about 200 ft. but locally is as much as 800 feet. 

Beekmantown Group, lower part (Lower Ordovician) – Upper sequence is light- to medium-gray- to dark-yellowish-or-
ange-weathering, light-olive-gray to dark-gray, fine- to medium-grained, very thin- to medium-bedded locally laminated 
dolomite. Middle sequence is olive-gray- to light-brown- and dark-yellowish-orange-weathering, medium- to dark-gray, 
aphanitic to medium-grained, thin-bedded, locally well laminated dolomite which grades into discontinuous lenses of light-
gray- to light-bluish-gray-weathering, medium- to dark-gray, fine-grained, thin- to medium-bedded limestone. Limestone has 
“reticulate” mottling characterized by anastomosing light-olive-gray- to grayish-orange-weathering, silty dolomite laminae 
surrounding lenses of limestone. Limestone may be completely dolomitized locally. Grades downward into medium dark- to 
dark-gray, fine-grained, well laminated dolomite having local pods and lenses of black to white chert. Lower sequence con-
sists of medium- to medium-dark-gray, aphanitic to coarse-grained, thinly-laminated to thick-bedded, slightly fetid dolomite 
having quartz-sand laminae and sparse, very thin to thin, black chert beds. Individual bed thickness decreases and floating 
quartz sand content increases toward lower gradational contact. Contains conodonts of North American Midcontinent prov-
ince Cordylodus proavus to Rossodus manitouensis zones (Karklins and Repetski, 1989) as used by Sweet and Bergstrom 
(1986), so that unit is Ibexian (Tremadocian). Entire unit is Stonehenge Limestone of Drake and others (1985) and Stone-
henge Formation of Volkert and others (1989). Markewicz and Dalton (1977) correlate upper and middle sequences as 
Epler Formation and lower sequence as Rickenbach Formation. Unit is about 600 feet thick.

Allentown Dolomite (upper Cambrian) (Wherry, 1909) – Upper sequence is light-gray- to medium-gray-weathering, medi-
um-light- to medium-dark-gray, fine- to medium-grained, locally coarse-grained, medium- to very thick-bedded dolomite; lo-
cal shaly dolomite near the bottom. Floating quartz sand and two series of medium-light- to very light-gray, medium-grained, 
thin-bedded quartzite and discontinuous dark-gray chert lenses occur directly below upper contact. Lower sequence is me-
dium- to very-light-gray-weathering, light- to medium dark-gray, fine- to medium-grained, thin- to medium-bedded dolomite 
and shaly dolomite. Weathered exposures characterized by alternating light- and dark-gray beds. Ripple marks, oolites, 
algal stromatolites, cross-beds, edgewise conglomerate, mud cracks, and paleosol zones occur throughout but are more 
abundant in lower sequence. Lower contact gradational into Leithsville Formation. Unit contains a trilobite fauna of Dresba-

chian (early late Cambrian) age (Weller, 1903; Howell, 1945).  Approximately 1,800 feet thick regionally.

Leithsville Formation (middle to lower Cambrian) (Wherry, 1909) – Upper sequence, rarely exposed, is mottled, medi-
um-light- to medium-dark-gray-weathering, medium- to medium-dark-gray, fine- to medium-grained, medium- to thick-bed-
ded, locally pitted and friable dolomite. Middle sequence is grayish-orange or light- to dark-gray, grayish-red, light-greenish-
gray- or dark-greenish-gray-weathering, aphanitic to fine-grained, thin- to medium-bedded dolomite, argillaceous dolomite, 
dolomitic shale, quartz sandstone, siltstone, and shale. Lower sequence is medium-light- to medium-gray-weathering, me-
dium-gray, fine- to medium-grained, thin- to medium-bedded dolomite. Quartz-sand lenses occur near lower gradational 
contact with Hardyston Quartzite. Archaeocyathids of early Cambrian age are present in formation at Franklin, New Jersey, 
suggesting an intraformational disconformity between middle and early Cambrian time (Palmer and Rozanov, 1967). Unit 
also contains Hyolithellus micans (Offield, 1967; Markewicz, 1968). Approximately 800 feet thick regionally.

Hardyston Quartzite (lower Cambrian) (Wolff and Brooks, 1898) – Medium- to light-gray, fine- to coarse-grained, me-
dium- to thick-bedded quartzite, arkosic sandstone and dolomitic sandstone. Contains Scolithus linearis (?) and fragments 
of the trilobite Olenellus thompsoni of early Cambrian age (Nason, 1891; Weller, 1903). Thickness ranges from 0 ft. to a 
maximum of 100 feet regionally. 

PROTEROZOIC NEW JERSEY HIGHLANDS
 
Diabase dikes (Neoproterozoic) (Volkert and Puffer, 1995) – Light gray- or brownish-gray-weathering, dark-greenish-
gray, aphanitic to fine-grained dikes. Composed principally of plagioclase (labradorite to andesine), augite, and ilmenite 
and (or) magnetite. Locally occurring pyrite blebs are common. Contacts are typically chilled and sharp against enclosing 
Mesoproterozoic country rock. 

Chestnut Hill Formation (Neoproterozoic) (Drake, 1984; Gates and Volkert, 2004) – The lower part of the formation 
is fairly coarse clastic material that includes matrix-supported pebble conglomerate and lithic sandstones. Conglomerate 
and pebbly sandstone contain clasts of subangular to subrounded quartz and feldspar in near equal abundance and locally 
abundant lithic fragments of proximal Mesoproterozoic lithologies. The middle part of the formation is medium-grained 
feldspathic and quartzose sandstone, quartz pebble conglomerate, quartz arenite and less abundant siltstone and shale. 
Interbedded coarser-grained lithologies are as much as 6 feet thick, but are not laterally continuous and likely represent 
channel deposits. Graded beds, tabular cross beds, rip up clasts, slump folds, load casts, and clastic dikes are common. 
The upper part of the formation is cobble to pebble conglomerate, feldspathic sandstone, quartzite, siltstone, phyllite, very 
thin limestone beds, rhyolitic volcanic rocks, tuffaceous sediments, and banded hematite layers. Unit uncomformably over-
lies, and is in fault contact with Mesoproterozoic rocks. Maximum thickness regionally is about 90 feet.

Vernon Supersuite (Volkert and Drake, 1998)
Byram Intrusive Suite (Drake and others, 1991)

Hornblende granite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-white or light-pinkish-gray, medium- 
to coarse-grained, foliated granite composed principally of microcline microperthite, quartz, oligoclase, and hornblende. 
Locally contains clinopyroxene. Unit commonly grades into alaskite with decrease in modal mafic minerals, and into quartz 
monzonite or quartz syenite with decrease in modal quartz. Includes bodies of pegmatite too small to be shown. 

Microperethite alaskite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-white or light-pinkish-gray, medi-
um- to coarse-grained, foliated alaskite composed principally of microcline microperthite, quartz, and oligoclase. Locally 
contains small clots and disseminated grains of magnetite.

Hornblende monzonite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-gray or greenish-gray, medium- to 
coarse-grained, foliated monzonite and less abundant syenite or quartz monzonite to quartz syenite. Composed of micro-
cline microperthite, oligoclase, hornblende, and quartz. Locally contains clinopyroxene. 

Lake Hopatcong Intrusive Suite (Drake and Volkert, 1991)
 
Pyroxene granite (Mesoproterozoic) – Buff- or white-weathering, greenish-gray, medium- to coarse-grained, foliated 
granite containing mesoperthite to microantiperthite, quartz, oligoclase, and clinopyroxene. Common accessory minerals in-
clude titanite, magnetite, apatite, and trace amounts of zircon and pyrite. Unit commonly grades into alaskite with decrease 
in modal mafic minerals, and into quartz monzonite or quartz syenite with decrease in modal quartz.  

Pyroxene alaskite (Mesoproterozoic) – Buff- or white-weathering, greenish-buff to light pinkish-gray, medium- to coarse-
grained, foliated alaskite composed of mesoperthite to microantiperthite, quartz, oligoclase, and sparse amounts of clinopy-
roxene. Common accessory minerals include titanite, magnetite and apatite. 

Pyroxene monzonite (Mesoproterozoic) – Gray to buff- or tan-weathering, greenish-gray, medium- to coarse-grained, 
massive, foliated monzonite or syenite. Composed of mesoperthite, microantiperthite to microcline microperthite, oligo-
clase, clinopyroxene, titanite, magnetite, and sparse apatite and quartz. Very locally contains hornblende.

Back-Arc Basin Supracrustal Rocks (Volkert, 2004)

Amphibolite (Mesoproterozoic) – Grayish-black, fine- to medium-grained, foliated gneiss composed of hornblende and 
andesine. Some amphibolite contains biotite and (or) clinopyroxene. Most of the unit is metavolcanic and formed from a 
basalt protolith. Some amphibolite layers within metasedimentary rocks may be metasedimentary in origin. 

Microcline gneiss (Mesoproterozoic) – Pale pinkish-white weathering, tan to pinkish-white, fine- to medium-grained, 
layered and foliated gneiss composed of quartz, microcline microperthite, and oligoclase. Common accessory minerals 
include biotite, garnet, magnetite, and sillimanite. Unit is metavolcanic and formed from a rhyolite protolith. Locally contains 
conformable clots and lenses of partial melt.

Biotite-quartz-feldspar gneiss (Mesoproterozoic) – Gray-weathering, locally rusty, gray, tan, or greenish-gray, medi-
um- to coarse-grained, moderately layered and foliated gneiss containing microcline microperthite, oligoclase, quartz, and 
biotite. Locally contains garnet, tourmaline, sillimanite, and magnetite; graphite and pyrrhotite occur in rusty gneiss.  

Potassic feldspar gneiss (Mesoproterozoic) – Light-gray- or pinkish-buff-weathering, pinkish-white or light-pinkish-gray, 
fine- to medium-grained and locally coarse-grained, foliated gneiss composed of quartz, microcline microperthite, oligo-
clase, and varied amounts of biotite, garnet, sillimanite, and magnetite. 

Clinopyroxene-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray- or pinkish-buff-weathering, white, pale-pink-
ish-white, or light-gray, medium-grained and locally coarse-grained, foliated gneiss composed of quartz, microcline, oligo-
clase, clinopyroxene, and trace amounts of epidote, biotite, titanite, and magnetite. 

Pyroxene gneiss (Mesoproterozoic) – White- or tan-weathering, greenish-gray, fine- to medium-grained, layered and foli-
ated gneiss containing oligoclase and clinopyroxene. Quartz content is highly variable. Contains sparse amounts of epidote, 
titanite, scapolite, or calcite. Commonly interlayered with amphibolite (Ya) or marble. 

Franklin Marble (Mesoproterozoic) – White- to light-gray-weathering, white or light gray, fine- to coarse-crystalline, calcitic 
to locally dolomitic marble containing calcite, graphite, phlogopite, chondrodite, and clinopyroxene. Separated into two lower 
Franklin marble bands (Yff) and an upper Wildcat marble band (Yfw) by New Jersey Zinc Company geologists (Hague and 
others, 1956). Marble exposed in klippe and small detached body cannot be positively correlated to Franklin Marble and are 
mapped as undifferentiated marble (Ymr). 

Magmatic arc rocks (Volkert, 2004)
Losee Suite (Drake, 1984; Volkert and Drake, 1999)

Quartz-oligoclase gneiss (Mesoproterozoic) – White-weathering, light-greenish-gray, medium- to coarse-grained, mod-
erately foliated gneiss composed of oligoclase or andesine, quartz, and varied amounts of hornblende, biotite and clinopy-
roxene. Locally contains thin layers of amphibolite.  

Biotite-quartz-oligoclase gneiss (Mesoproterozoic) – White- or light-gray-weathering, medium-gray or greenish-gray, 
medium- to coarse-grained, layered and foliated gneiss composed of oligoclase or andesine, quartz, biotite, and trace 
amounts of garnet. Some outcrops contain hornblende. 

Hornblende-quartz-oligoclase gneiss (Mesoproterozoic) – White- or light-gray-weathering, greenish-gray, medium- to 
coarse-grained, foliated gneiss composed of oligoclase or andesine, quartz, hornblende, and magnetite. Some outcrops 

contain clinopyroxene. Locally interlayered with amphibolite. 

Albite-oligoclase gneiss (Mesoproterozoic) – Grayish-black, fine- to medium-grained, moderately foliated gneiss. Locally 
contains biotite, clinopyroxene, and/or orthopyroxene.

Hypersthene-quartz-plagioclase gneiss (Mesoproterozoic) – Gray- or tan-weathering, greenish-gray or greenish-brown, 
medium-grained, moderately layered and foliated gneiss composed of andesine or oligoclase, quartz, clinopyroxene, horn-
blende, and hypersthene. Commonly contains thin mafic layers. 

Diorite (Mesoproterozoic) – Light-gray- or tan-weathering, greenish-gray or greenish-brown, medium- to medi-
um-coarse-grained, massive, moderately foliated rock containing andesine or oligoclase, clinopyroxene, hornblende, hy-
persthene, and magnetite. Commonly contains thin mafic layers. 

Other rocks

Sparta granite (Mesoproterozoic) – Tan- to buff-weathering, light-greenish-gray to pinkish-green, medium- to coarse-
grained, massive, foliated monzogranite to quartz monzogranite composed of quartz, oligoclase, microperthite, biotite, horn-
blende, altered clinopyroxene, and magnetite. Relationship to rocks of the Byram and Lake Hopatcong Suites is uncertain.

Mesoproterozoic rocks, undifferentiated – Shown in cross section only.
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Figure 1: Contour plots and rose diagrams showing dip direction of foliation, bedding planes, joint planes, and cleavage planes within Proterozoic rocks (1a, 1b), 
carbonate rocks (1c, 1d, 1e), and the Martinsburg Formation (1f, 1g, 1h).
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