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Introduction

The Princeton 7½-minute quadrangle is in west-central New Jersey,  where it covers parts of Mercer and Middlesex 
Counties. Topographic elevations range from approximately 400 ft in the north to 80 ft in the south. The highest elevations 
are on Mount Rose, a prominent ridge of igneous diabase, commonly called trap rock, lying along the northern quadrangle 
boundary.  Less resistant shale and mudstone that have been metamorphosed to hornfels surrounds the diabase and 
forms slightly lower elevations.  Elevations remain fairly uniform with several small, broad hills in the northwestern third of 
the quadrangle where Stony Brook cuts through sedimentary rock units.  South of Princeton elevation drops slightly 
forming a broad flat landscape that is underlain by some less resistant sandstones.  Crystalline metamorphic rocks create 
a slight positive landscape in the southwest corner of the the quadrangle.  Unlithified sediment underlies the gentle 
landscape morphology on the southeastern third of the quadrangle up to 100 ft in elevation.

The Delaware and Raritan Canal is a prominent physical feature in the quadrangle. It runs northeast southwest, close to, 
and approximately parallel to, US Route 1, a major northeast-southwest transportation corridor.  The canal connects the 
Delaware and Raritan Rivers, and it facilitated commerce between Philadelphia and New York in the 1800’s.  It now 
serves as a local water-supply source.  The Route 1 corridor roughly separates areas of good to moderate bedrock 
exposures in the northwest from areas of less common and more deeply weathered exposures in the southeast.  The Fall 
line separates bedrock of the Piedmont Province from the unconsolidated material of the Coastal Plain Province.

Stratigraphy

The Princeton quadrangle straddles the contacts between three primary bedrock groups. From the northwest to the 
southeast, these groups are: 1) Early Mesozoic sedimentary and igneous rocks of the Newark Basin, 2) Proterozoic and 
Paleozoic metamorphic crystalline rocks of the Trenton Prong, and 3) Upper Cretaceous semiconsolidated to 
unconsolidated bedrock of the Coastal Plain.  Rocks of the Newark Basin unconformably overlie the Trenton Prong rocks 
which form the geological basement for all the younger materials in the study area.   Coastal Plain deposits also 
unconformably overlie Trenton Prong units in the Princeton quadrangle.  Outside the study area Coastal Plain units 
completely blanket the Trenton Prong and onlap rocks of the Newark Basin.  

Early Mesozoic rocks include sedimentary and igneous varieties that were deposited in the Newark Basin, a regional half 
graben, fault-bounded on its northern boundary,  that extends from eastern Pennsylvania through New Jersey and into 
southeastern New York. The basin was filled with as much as 20,000 feet of Late Triassic through Early Jurassic rocks.  
Fluvial systems developed between border-fault segments and deposited Proterozoic and Paleozoic sediment into the 
basin from the Highlands to the north and west.  Additional sediment came from the Trenton Prong metamorphic rocks in 
the south through north-draining rivers and streams (Glaeser, 1966; Van Houten, 1969). Extensive lakes periodically 
developed in the basin throughout much of its depositional history.  

Sedimentary rocks of the Newark Basin include fluvial and lacustrine deposits that are locally intruded with diabase and 
interbedded with basaltic rocks that are approximately 201 my in age (McHone and others, 2003).  The basal sedimentary 
unit in the Newark Basin is the Stockton Formation, a fluvial conglomerate and arkosic sandstone with red, light brown, 
gray and white interbeds.  Conglomerate is more common near its base and the basin margins whereas sandstone, 
siltstone and mudstone are more common in the upper half of the unit and in areas away from the basin margins 
(McLaughlin, 1945, 1959; Glaeser, 1966).  Smoot (1991) and Smoot and Olsen (1994) suggest that the Stockton was 
deposited by high-gradient, braided streams that cut down through a residual surface mantled by gravel and colluvium.  
Infilling toward the basin center eventually reduced stream gradients and resulted in deposition of an overall, 
fining-upward, fluvial sequence.  The uppermost units gradually grade into cyclical lacustrine beds of the Lockatong 
Formation. The Lockatong is mostly gray and black siltstone and argillte and lesser, interbedded red shale and siltstone. 
Smoot (1991) described the Lockatong as cyclic deepwater deposits that shortly grade upward into desiccated features 
and subaerial deposits with little to no associated fluvial facies.  The Passaic Formation overlies the Lockatong.  The 
Passaic is a thick sequence of red-brown and reddish-purple mudstone, siltstone and sandstone, and lesser cycles of 
gray and black siltstone, mudstone and rare sandstone.  Its coarser grain size, marginal alluvial facies, and broader lateral 
extent compared to the Lockatong, suggest a broadening of the basin through time (Smoot, 1991).   

Cyclic color variations in beds of the Lockatong and Passaic formations indicate deposition during alternating, wet and dry, 
climatic periods (Olsen and Kent, 1996, Olsen and others 1996). Vast, deep lakes developed in the basin during wetter 
periods when the gray and black units of the deeper water environments were deposited. Red and brown units correlate to 
dryer climatic periods marker by shallow lakes and subaerial mud-flat deposits. Outcrops of the Lockatong formation in the 
Princeton quadrangle are too few to enable mapping of individual beds or color sequences like those defined by Olsen 
and others (1996). In the Passaic Formation more numerous outcrops make some subdivision possible.  Here gray-bed 
sequences have been mapped where possible within the red and brown beds. These thin, gray to black interbeds form 
distinctive marker horizons that may be mappable for miles along strike. These beds help depict fold patterns.  A 
sequence of three gray beds in the northwest corner of the quadrangle are thought to correlate with part of the Perkasie 
member of the Passaic Formation, based on comparison of mapped units with the subsurface coring results of Olsen and 
others (1996), and on unpublished, detailed bedrock mapping of units in the adjacent Pennington quadrangle to the west.   

The northern edge of the Princeton quadrangle consists of a large diabase body intruded into Triassic sedimentary rocks.  
It forms an east-west ridge that includes Mount Rose and Rocky Hill farther to the east. The thickest part of the body 
forms a sill which has been injected subparallel to bedding.  Along strike to the west, the diabase thins dramatically, and 
cuts across bedding to form a dike.  Much of it was delineated by mapping diabase float.  Thermally metamorphosed 
sedimentary rocks (hornfels) surround the diabase intrusion.  A topographic break separates low-lying, unaltered Passaic 
Formation rocks from more resistant hornfels and diabase at higher elevations. Dunning and Hodych (1990) and Husch 
(1990) proposed that the Mount Rose – Rocky Hill diabase body is a lateral continuation of the Palisades sill.

The Trenton Prong in the Princeton area is part of a larger metamorphic rock belt that plunges northeastward from 
Pennsylvania into New Jersey, where It pinches out at the surface directly to the east, in the bordering Hightstown 
7½-minute quadrangle. Trenton Prong rocks include felsic, intermediate and mafic metamorphic varieties of probable 
Ordovician, Mesoproterozoic, and Neoproterozoic ages (Volkert and Drake, 1993). The Wissahickon is dated at ~480 Ma 
based on U-Pb radioisotopes (Bosbyshell and others, 2001). Fine-grained diabase dikes locally intrude the older 
metamorphic rocks. These dikes are similar in composition and petrography to diabase dikes in the New Jersey 
Highlands. They may have been emplaced during rifting and breakup of the Rodinian supercontinent about 600 Ma 
(Volkert and Puffer, 1995; Volkert, 2004).  Weathered float at the land surface and a limited number of natural outcrops 
and excavated exposures faciliated delineation of its contact with older rocks of the Trenton Prong.  

Erosion of rocks of the Newark Basin and Trenton Prong since the Cretaceous has supplied sediment to the Atlantic 
Coastal Plain.  These sediments include the Potomac Formation and the overlying Magothy Formation. The Potomac 
Formation consists of interbedded sand and clay laid down in a coastal river system in the Late Cretaceous, about 95 Ma. 
The Potomac sand and clay are typically red and white in color, due to weathering and soil development on the river 
plains in which they were deposited.  The Magothy Formation also consists of interbedded sand, silt, and clay, although its 
sand is generally finer than that of the Potomac, and its clay and silt are more thinly bedded and less abundant. The 
Magothy is more commonly gray because it was not exposed to weathering and soil development. It was laid down in 
nearshore marine settings in the Late Cretaceous, about 85 Ma. Additional marine deposits were laid down during 
numerous sea-level highstands through the Cretaceous and Tertiary periods, probably until the Middle Miocene (about 10 
Ma). These deposits almost certainly covered the entire Princeton quadrangle and extended well to the north and west of 
the present Coastal Plain. Subsequently they were completely eroded by rivers, except for the remaining Magothy and 
Potomac sediments, during the late Miocene and Pliocene (10 to 2 Ma).

Surficial deposits, shown here by an overprint pattern where thicker than 10 feet, include alluvial, wetland, hillslope, and 
windblown sediments of Pliocene through Quaternary age (Stanford, 1993). 

Structure

In the Trenton Prong, the Huntingdon Valley Fault is a major thrust fault interpreted to be of Paleozoic age. It strikes 
southwest-northeast and separates the Ordovician Wissahickon Formation in the hanging wall from Mesoproterozoic and 
Neoproterozoic (?) rocks in the footwall. The footwall rocks are in a secondary thrust-fault slice that splays off the 
Huntingdon fault to the east. The Huntingdon Valley Fault plunges eastward beneath rocks of the Newark basin and is 
interpreted to correlate with the Cameron’s Line thrust fault in the Manhattan Prong (Volkert and others, 1996).

Rocks in the Newark basin have been tilted, fractured, folded, and faulted (Schlische, 1992; Olsen and others, 1996). 
Most tectonic deformation is probably of Late Triassic to Middle Jurassic age (Lucas and others, 1988; de Boer and 
Clifford, 1988).  In the Princeton quadrangle, these rocks chiefly dip gently and uniformly to the north and northwest, 
except near faults where they dip moderately to steeply, or where they are locally folded into southeast-dipping beds.   
Faults within the Mesozoic rocks in the Princeton quadrangle are enigmatic. Abundant, complex fault movements are 
evident at stratigraphic levels in and near the Lockatong Formation, but outcrops are scarce enough to obscure evidence 
as to whether these faults link with larger faults in adjacent areas that are covered with surficial material.  Normal fault slip 
is seen in borehole-televiewer images of the Lockatong Formation north of Lawrenceville, but complex, reverse slip is 
documented at other nearby faults near Princeton, where the Stockton through Passaic formations are arched and locally 
faulted and folded. Herman and others (2010) interpreted these structures as part of a larger, regional oblique-slip 
transform-fault system that probably developed during late stages of basin extension. However it is also possible that  
some of these faults were reactivated during late compression and inversion of the basin.  

Rocks of the Trenton Prong and Newark basin are highly fractured. Three sets of systematic extension fractures (joints) 
cut through the New Jersey part of the basin (Herman, 2005 and 2009). Together they record a counterclockwise rotation 
of the extensional stress field from northwest-southeast to west-east which developed during the extensional phases of 
basin development.  The earliest of these joint sets, striking northeast southwest and complimentary cross joints, are most 
abundant in the Princeton quadrangle.  The latest set, striking north south with complimentary east-west cross joints is 
less common.   
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DESCRIPTION OF MAP UNITS

Surficial Deposits

(Quaternary and Pliocene) Unidivided surficial sediments more than 10 feet thick.

Coastal Plain

Magothy Formation (Upper Cretaceous) - Quartz sand, fine-to-medium-grained, sparsely coarse-grained; and clay and silt, 
thin-bedded. Sand is white, yellow, light gray where weathered, gray where unweathered. Clay and silt are white, yellow, 
brown where weathered, gray to black where unweathered. Sand includes some lignite, pyrite, and minor mica. Clay and 
silt include abundant mica and lignite. As much as 30 feet thick. Late Cretaceous (Turonian-Coniacian) in age, based on 
pollen (Christopher, 1979, 1982; Miller and others, 2004).
 
Potomac Formation (Upper Cretaceous) - Quartz sand, medium-grained to very coarse grained, sparsely fine-grained, and 
clay and silt, thick- to thin-bedded. Sand is white, yellow, red, brown, pink where weathered, light gray where 
unweathered. Clay and silt are white, red, yellow, brown, pink where weathered, gray where unweathered. Weathered clay 
and silt more abundant than the unweathered. As much as 150 feet thick. The Potomac Formation in the Princeton 
quadrangle is equivalent to the Potomac Formation unit 3 (Doyle and Robbins, 1977) based on pollen (Owens and others, 
1998) and is of Late Cretaceous (early Cenomanian) age.  

Piedmont

Diabase (Lower Jurassic) - Fine-grained to very-fine-grained dikes (?) and sills; and medium-grained, discordant, 
sheet-like intrusion of dark-gray to dark greenish-gray, sub-ophitic diabase; massive-textured, hard, and sparsely 
fractured. Composed dominantly of plagioclase, clinopyroxene, and opaque minerals. Contacts are typically fine-grained, 
display chilled, sharp margins adjacent to enclosing sedimentary rock. Underlies Mount Rose where it occurs as a sill that 
cuts across section in the northwest of the quadrangle. Regional thickness of the diabase is approximately 1,325 feet.

Passaic Formation - (Lower Jurassic and Upper Triassic) (Olsen, 1980a) - Interbedded sequence of reddish-brown to 
maroon and purple, fine-grained sandstone, siltstone, shaly siltstone, silty mudstone and mudstone, separated by 
interbedded olive-gray, dark-gray, and/or black siltstone, silty mudstone, shale and lesser silty argillite.  Reddish-brown 
siltstone is medium- to fine-grained, thin- to medium-bedded, planar to cross-bedded, micaceous, and locally contains 
mud cracks, ripple cross-lamination, root casts and load casts.  Shaly siltstone, silty mudstone, and mudstone form 
rhythmically-fining-upward sequences as much as 15 feet thick. They are fine-grained, very thin- to thin-bedded, planar to 
ripple cross-laminated, fissile, locally bioturbated, and locally contain evaporite minerals.  Gray bed sequences (JTrpg) are 
medium- to fine-grained, thin- to medium-bedded, planar to cross-bedded siltstone and silty mudstone.  Gray to black 
mudstone, shale and argillite are laminated to thin-bedded, and commonly grade upward into desiccated purple to 
reddish-brown siltstone to mudstone.  Where possible gray sequences have been correlated based on downhole optical 
televiewer data in Pennington to individual members designated by letters as described in Olsen and others, 
(1996).Thickness of gray-bed sequences ranges from less than a foot to several feet.   Unit is approximately 11,000 feet 
thick in the map area.

Lockatong Formation (Upper Triassic) (Kummel, 1897) - Cyclically deposited sequences of mainly gray to greenish-gray, 
and in upper part, locally reddish-brown siltstone to silty argillite and dark-gray to black shale and mudstone. Siltstone is 
medium- to fine-grained, thin-bedded, planar to cross-bedded, with mud cracks, ripple cross-laminations and locally 
abundant pyrite. Shale and mudstone are very thin-bedded to thinly laminated, platy, locally containing desiccation 
features. Lower contact gradational into Stockton Formation and placed at base of lowest continuous black siltstone bed 
(Olsen, 1980a).  Maximum thickness of unit regionally is about 2,200 feet (Parker and Houghton, 1990a, 1990b). 

Stockton Formation (Upper Triassic) (Kummel, 1897) - Unit is interbedded sequence of gray, grayish-brown, or slightly 
reddish-brown, medium- to fine-grained, thin- to thick-bedded, poorly sorted to clast-imbricated conglomerate, planar to 
trough cross-bedded, and ripple cross-laminated arkosic sandstone, and reddish-brown clayey fine-grained, sandstone, 
siltstone and mudstone.  Coarser units commonly occur as lenses and are locally graded.   Fining upwards sequences are 
common, the finer grained beds are bioturbated. Conglomerate and sandstone layers are deeply weathered and more 
common in the lower half; siltstone and mudstone are generally less weathered and more common in upper half.   Lower 
contact is an erosional unconformity.   Thickness is approximately 4,500 feet.

Trenton Prong

Wissahickon Formation (Lower to Middle Ordovician?) – Medium- to coarse-grained, gray to pinkish-gray, foliated and 
layered schist and gneiss in alternating layers. Unit composed of quartz, plagioclase, microcline, and biotite. Has locally 
undergone partial melting, forming veinitic migmatites of granitic composition.  Unit does not crop out in the map area, but 
is known from artificial exposures and borings.

Metabasalt (Neoproterozoic?) -  Intercalated sequence of weakly metamorphosed greenstone and greenschist. 
Greenstone is a dark greenish-gray, nonfoliated, fine-grained rock composed essentially of plagioclase, altered 
clinopyroxene, and small blebs of sulfide. Schist is a fine- to medium-grained, grayish-green, layered rock composed of 
quartz, plagioclase, and chlorite. Locally contains garnet and thin conformable, sulfide-rich layers. Cut by clots and veins 
of blue quartz. Unit does not crop out in the map area, but is known from artificial exposures and borings north of Central 
Mercer County Park.

Gabbro and rocks of intermediate composition (Mesoproterozoic?) -  Medium-grained, medium-gray to very dark 
greenish-gray, locally greasy-lustered, foliated rocks composed principally of plagioclase (oligoclase to andesine), 
hornblende, clinopyroxene, and opaque oxides. Locally contain hypersthene, garnet, biotite, sulfide, and quartz. Typically 
contain thin, conformable layers of hornblende-plagioclase amphibolite. Locally have been injected and migmatized by 
thin, conformable layers of felsic magma composed of quartz and feldspar. Principal variants of this unit are gabbro and/or 
diorite, andesite, trachy-andesite, and basaltic andesite.

Gneiss, granofels, and migmatite (Mesoproterozoic?) – Medium- to coarse-grained, buff, tan, light gray, greenish-gray, or 
pinkish-white, foliated and/or layered gneiss, granofels, and schist that include a wide variety of rock types, principally of 
felsic composition. Composed of quartz, microcline, plagioclase, clinopyroxene, hornblende, and biotite. Many rocks 
contain characteristic blue quartz. Some units are intruded by a medium- to coarse-grained granitoid of alaskitic 
composition. Unit represents a sequence of metavolcanic and metasedimentary rocks injected and migmatized by felsic 
magma.

Undivided metamorphic units (Ordovician to Proterozoic) - used only in cross section
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Depth Lithologic description
0-72’ Surficial sand and gravel
72’ – 128’ Decomposed fine- to medium-grained biotite-quartz-feldspar gneiss and possible trace garnet. Some seams   
 composed of quartz and feldspar that appear to be local melt .
128’-138’ More decomposed biotite-quartz-feldspar gneiss. Contact with medium-grained, massive textured, indistinctly  
 foliated, tan, clinopyroxene- quartz-microperthite granulite.
138’-153’ Medium-grained, foliated, massive-textured, light-gray-weathering, gneiss composed of    
 hornblende, clinopyroxene, quartz,  plagioclase, biotite, and trace sulfide. Quartz is colorless to medium blue.  
 Zone of ductile deformation from 147‘-148’ is overprinted by moderately-dipping to high-angle brittle   
 fractures mineralized by quartz and plagioclase. Small offset (4mm) along one fracture with normal movement  
 sense. 
153’-169’ Same as above. Also cut by high-angle fractures.
169’-187’  Same as above. Some variation in texture and mafic content. Foliation dips at a moderate angle. 
187’-200’ Gneiss, same as above. Brittle deformation zone at 191’ with abundant chlorite-coated fractures.
200’-213’ Same gneiss. Contains thin (1 cm), conformable layers of quartz and plagioclase. Some small mafic clots of  
 green clinopyroxene surrounded by rims of black amphibole at approximately 203‘. 
213’-224’ Same gneiss to 216.5’, below medium- to coarse-grained, pinkish-white, nonfoliated quartz microperthite  
 alaskite containing blue quartz. Same gneiss from 222-224’ but somewhat more leucocratic.
224’-242’ Same gneiss to 226’, then abrupt change to weathered, dark greenish-gray, aphanitic rock composed of  
 plagioclase, chlorite, trace sulfide. Appears to be a mafic dike (probably Neoproterozoic) intruding the   
 basement sequence. Dike is coarser grained from 228’ to end of run.  Gneiss from 226‘-228’ may be the chilled  
 margin. 
242’-260’ Same coarser-grained dike to 251’ then finer-grained to 258’ and aphanitic from 258-260’, probably   
 reflecting other chilled margin. Cut by several high-angle brittle fractures coated by chlorite.
260’-270’ Fault contact at 260’ between aphanitic dike above and gneiss below.  Gneiss is brittly deformed from   
 260‘-261’ and much less deformed from 261‘-270’. Gneiss is medium-grained, foliated, light-greenish-gray, and  
 composed of hornblende, clinopyroxene, quartz, plagioclase, and biotite.  Foliation dips at 35o to 40o.

Table 1. Lithologic log from the Mercer County Park Well. Drilled in May 1987 by the New Jersey Geological Survey and logged 
in November 1987 by R.A. Volkert and S.D. Stanford.
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EXPLANATION OF MAP SYMBOLS

Contact - Dashed where approximately located; queried where uncertain; dotted where concealed.

 
Fault - Dashed where approximately located; queried where uncertain; dotted where concealed. 

             Normal fault - U, upthrown side; D, downthrown side. Ball shows direction of dip.

             Reverse fault - U, upthrown side; D, downthrown side, triangles show direction of dip.

             Strike-slip fault, Arrows show relative motion.

             High-angle fault of unknown movement.

             Minor inclined fault observed in outcrop or with Downhole Optical Televiewer - showing strike and dip.

Folds                    
    
             Anticline - showing trace of axial surface, direction of limbs, and direction of plunge.

             Syncline - showing trace of axial surface, direction of limbs, and direction of plunge.

Planar features

             Strike and dip of inclined beds.

             Strike and dip of magmatic flow structure in igneous rocks.

             Strike and dip of foliation in metamorphic rocks.

Other features

Bedrock-controlled strike ridge (from Stanford, 1993).

Abandoned rock quarry.

Location of Mercer County Park well

Downhole Optical Televiewer interpretation.  Marker beds identified in borehole projected to land surface based  
             on dip of bedding in well.  Data obtained by Opitical Televiewer.  Red dot shows well location. Red  
             boxes represent red horizons within the otherwise gray-colored formation  
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Mercer County
Park well

Rose diagrams of structural data within the map area.  Data depicted consist of strike orientation of 
bedding and fracture planes.  Bins are 10o sectors and numbers on X and Y axes represent per cent 
of total data population.  Trenton Prong rocks are not shown due to paucity of outcrop locations.
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