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INTRODUCTION

The Dover quadrangle is located in northern New Jersey in a mixed commercial, industrial and residen-
tial setting. Development is fairly extensive south of Route 80, whereas large tracts of land to the north 
remain undeveloped. The quadrangle is in the Rockaway River watershed which constitutes the primary 
drainage. 

The Dover quadrangle is situated in the central part of the New Jersey Highlands Physiographic 
Province and it is divided into western and eastern segments by the northeast-trending Green Pond 
Mountain Region (fig. 1). The topography of the central part of the quadrangle is dominated by a series 
of broad, linear, northeast-trending ridges (Green Pond and Copperas Mountains) and intervening 
stream valleys that are underlain by rocks of Paleozoic age. The linearity of the ridges and valleys is due 
to the uniform trend of the bedrock. The rest of the quadrangle is characterized by variably oriented 
ridges and stream valleys that reflect the greater structural complexity and nonlinear trend of the under-
lying Mesoproterozoic bedrock. The maximum elevation in the map area is about 1,320 feet above sea 
level on Mase Mountain, east of Beaver Brook.

All of the bedrock in the map area has been affected by the effects of Pleistocene-age glaciation. The 
terminal moraine, which records the southernmost advance of glacial ice, trends roughly east-west 
through the southern part of the quadrangle, nearly coincident with Route 80. The distribution, thickness 
and composition of unconsolidated glacial deposits in the map area is discussed by Stanford (1989).  

STRATIGRAPHY

Paleozoic rocks
The youngest bedrock in the map area is in the Green Pond Mountain Region, a northeast-trending 
block of downfaulted and folded sedimentary rocks of Paleozoic age that extends diagonally through the 
central part of the map. From oldest to youngest, Paleozoic formations include the Hardyston Quartzite 
and Leithsville Formation of Cambrian age, Green Pond Conglomerate, Longwood Shale, Poxino Island, 
and Berkshire Valley Formations of Silurian age, and the Connelly Conglomerate, Esopus Formation, 
Kanouse Sandstone, Cornwall Shale, Bellvale Sandstone and Skunnemunk Conglomerate of Devonian 
age. The Hardyston and Leithsville are rarely exposed in the quadrangle but are known from borings and 
water-well records.  These formations also crop out to the immediate southwest of the map area. The 
origin and stratigraphic relationships of the Paleozoic formations in the Green Pond Mountain Region is 
discussed in Darton (1894), Kummel and Weller (1902), and Barnett (1970). 

Neoproterozoic rocks
Diabase dikes of Neoproterozoic age intrude Mesoproterozoic rocks in the northwest part of the map 
near Woodport, at Hurdtown, and along the southern end of Mase Mountain. The dikes range in width 
from a few inches to as much as 30 ft., and they strike toward the east, northeast, or northwest. They 
have coarse-grained interiors and fine-grained to aphanitic chill margins and sharp contacts against 
enclosing Mesoproterozoic rocks.  Locally the dikes display columnar jointing and contain xenoliths of 
Mesoproterozoic rocks. Diabase dikes are interpreted as having been emplaced in a rift-related, exten-
sional tectonic setting in the Highlands at about 600 Ma during breakup of the supercontinent Rodinia 
(Volkert and Puffer, 1995).  

Mesoproterozoic rocks 
Most of the quadrangle is underlain by rocks of Mesoproterozoic age of the New Jersey Highlands. 
These include a heterogeneous assemblage of granites and gneisses that were metamorphosed to  
granulite facies at ca.1050 to 1030 Ma (Volkert et al., 2010). Temperature estimates for this high-grade 
metamorphism are constrained from regional calcite-graphite thermometry to ~769  C (Peck et al., 2006) 
and from biotite thermometry to ~754  C (Volkert, 2006). 

Among the oldest map units in the quadrangle are calc-alkaline, plagioclase-rich rocks of the Losee 
Suite (Drake, 1984; Volkert and Drake, 1999) that were formed in a continental-margin magmatic arc 
(Volkert, 2004). These include rocks mapped as quartz-oligoclase gneiss, biotite-quartz-oligoclase 
gneiss, hypersthene-quartz-plagioclase gneiss, amphibolite, diorite, and albite-oligoclase alaskite 
formed from plutonic and volcanic protoliths (Volkert and Drake, 1999; Volkert, 2004). Representative 
samples of the Losee Suite from elsewhere in the Highlands yield sensitive high-resolution ion micro-
probe (SHRIMP) U-Pb zircon ages of 1282 to 1248 Ma (Volkert et al., 2010).

Magmatic arc rocks of the Losee Suite are spatially and temporally associated with a succession of 
supracrustal rocks formed in a back-arc basin (Volkert, 2004). These include a bimodal suite of rhyolitic 
gneiss mapped as potassic feldspar gneiss and mafic volcanic rock mapped as amphibolite, as well as 
metasedimentary rocks mapped as biotite-quartz-feldspar gneiss, hornblende-quartz-feldspar gneiss, 
clinopyroxene-quartz-feldspar gneiss, and pyroxene gneiss. Supracrustal rocks from elsewhere in the 
Highlands yield SHRIMP U-Pb zircon ages of 1299 to 1251 Ma (Volkert et al., 2010).

Other Mesoproterozoic rocks in the quadrangle of uncertain age include biotite-plagioclase gneiss and 
hornblende-plagioclase gneiss. Biotite-plagioclase gneiss forms thin layers on Mase Mountain 
interpreted as sills formed from an anorthosite protolith (Young, 1969; Young and Icenhower, 1989). 
Hornblende-plagioclase gneiss crops out in two bodies southwest of Mase Mountain. This unit is also 
interpreted as formed from a anorthosite protolith (Young, 1969; Gorring and Volkert, 2004).

The quadrangle also contains voluminous granite and related rocks of the Byram and Lake Hopatcong 
Intrusive Suites that comprise the Vernon Supersuite (Volkert and Drake, 1998). Rocks of these suites 
include monzonite, quartz monzonite, granite, and alaskite. These suites are well exposed throughout 
the map area where they have intruded rocks of the Losee Suite and supracrustal rocks. Byram and 
Lake Hopatcong rocks have a characteristic A-type geochemical composition (Volkert et al., 2000). 
Granite of both suites yields similar SHRIMP U-Pb ages of 1188 to 1182 Ma (Volkert et al., 2010). 

The youngest Mesoproterozoic rocks are small, irregular, bodies of granite pegmatite that are unfoliated 
and have intruded other Mesoproterozoic rocks. Most of these occur in bodies that are too small to be 
shown on the map. Pegmatites elsewhere in the Highlands yield U-Pb zircon ages of 1004 to 987 Ma 
(Volkert et al., 2005).

Other Mesoproterozoic rock in the quadrangle includes amphibolite of several different origins. Most 
amphibolite associated with the Losee Suite is metavolcanic, whereas amphibolite intercalated with the 
supracrustal gneisses may be metavolcanic or metasedimentary in origin. All types of amphibolite are 
undifferentiated on the map, and most occurrences are too small to be shown. 

STRUCTURE

Paleozoic bedding
Bedding in the Paleozoic formations of the Green Pond Mountain Region is fairly uniform and strikes at 
an average of N.42  E. (fig. 2). Most beds are upright and dip northwest and less commonly southeast. 
Locally beds are overturned steeply southeast. Beds range in dip from 9   to 90  and average 60  . 

Proterozoic foliation
Crystallization foliation in the Mesoproterozoic rocks (formed by the parallel alignment of constituent 
mineral grains) strikes predominantly northeast at an average of N.39  E. (fig. 3). Foliations locally are 
somewhat varied in strike, especially in the west-central part of the quadrangle, owing to the folds of all 
scale, from outcrop to major regional extent. Foliations dip mainly southeast and very locally dip north-
west, although in the hinge areas of fold structures dips are gentle to moderate toward the north. Dips 
range from 20  to 90  and average 62  .  

Folds
Folds in the Paleozoic rocks are dominated by a major regional synclinorium in the Green Pond Moun-
tain Region. Beds on Copperas Mountain form an asymmetric, northeast-plunging upright syncline 
(Herman and Mitchell, 1991), the axis of which extends just west of the ridge crest. Beds on the west 
limb dip gently to moderately, whereas beds on the east limb dip steeply to vertically. The pattern of 
folding on Green Pond Mountain is more complex and consists of both upright and overturned synclines 
and anticlines.  

Characteristic fold styles in the Mesoproterozoic rocks consist of northeast-plunging and northwest-
overturned to northeast-plunging and upright antiforms and synforms. The plunge of mineral lineations 
and fold axes is parallel and averages 18 . The plunge trend ranges from N.23 E. to N.76 E. and 
averages N.52  E., with nearly 60 percent of all lineations plunging from N.45  E. to N.54  E. No southwest 
plunging lineations or folds were recognized. The overall sequence of folding is uncertain. It may be a 
continuum of the same fold phase that resulted from differences in the vector of compressional stress. 
Regardless, the folds clearly predate the development of folds in the Paleozoic rocks of the quadrangle 
and thus are of Mesoproterozoic age. 

Faults
Northeast-trending faults are the most common in the Dover quadrangle and they deform both Mesopro-
terozoic and Paleozoic rocks. Some of the wider fault zones are possibly due to the interaction of several 
smaller parallel or anastomosing faults, rather than consisting of a single, discrete fault. From the north-
west, the major faults are the Reservoir, Ledgewood, Longwood Valley, Berkshire Valley, Picatinny, 
Tanners Brook-Green Pond, and Gorge fault, that partition the map area into a series of structural blocks 
(fig. 1). In the Mesoproterozoic rocks, these faults are characterized by brittle deformation fabric that 
consists of breccia, gouge, retrogression of mafic mineral phases, chlorite or epidote-coated fractures or 
slickensides, and (or) close-spaced fracture cleavage. 

The Reservoir fault has a strike length of about 37 miles, extending from New York State southwest to 
Schooleys Mountain (Drake et al., 1996). Along its northern end, the fault has Paleozoic rocks on the 
hanging wall and Mesoproterozoic rocks on the footwall, but in the map area, and along strike to the 
south, it contains Mesoproterozoic rocks on both the hanging wall and footwall blocks. The Reservoir 
fault strikes about N.40  E. and ranges in dip from steep  northwest or southeast to 90  . The fault records 
a history of multiple reactivations dating from the Mesoproterozoic involving normal, strike slip, and 
reverse movement, with latest movement having been normal (east side down). The Reservoir fault is 
characterized by ductile deformation fabric in the center of the fault zone, overprinted by a pervasive 
brittle deformation fabric that envelops the mylonite on both sides of the fault zone over a total width of 
as much as 1,000 ft.

The Ledgewood fault has a strike length of about 10 miles. South of the map area it merges with, or is 
cut off by, the Longwood Valley fault, and within the area it is cut off by the Reservoir fault north of Lake 
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Shawnee. The Ledgewood fault strikes about N.25  E. and dips steeply southeast at about 70 . It contains 
Mesoproterozoic rocks on both sides along its entire length. Latest movement on the fault appears to have 
been dip-slip normal. The Ledgewood fault is characterized by a zone of brittle deformation fabric that is 
200 to 300 ft. wide.

The Longwood Valley fault has a strike length of nearly 40 miles, extending from Oak Ridge Reservoir 
south to the vicinity of High Bridge where it is cut off by a segment of the border fault (Drake et al., 1996). 
Along much of its length the fault contains Mesoproterozoic rocks on the footwall and Paleozoic rocks on 
the hanging wall. In the map area, the fault strikes about N.45  E. and dips steeply northwest to vertically. 
The fault is characterized by brittle deformational fabric along its entire length. Kinematic indicators 
suggest that latest movement on the Longwood Valley fault was predominantly reverse, although south of 
the map area the fault dips southeast and dip-slip normal movement is predominant.

The northeast-trending Berkshire Valley fault is not exposed in the map area, and its occurrence was 
inferred by Herman and Mitchell (1991) on the basis of missing stratigraphic units between the Green 
Pond Conglomerate and Cornwall Shale in the Berkshire Valley. This fault has a strike length of more than 
8 miles, extending along the northwest side of Green Pond Mountain southwestward where it is cut off by 
the Longwood Valley fault. The Berkshire Valley fault contains Paleozoic rocks on both sides along its 
entire length. It strikes about N.40  E. and dips southeast at about 45 . The latest movement appears to 
have been reverse. The fault is characterized by a zone of brittle fabric of indeterminate width.
 
The northeast-trending Picatinny fault has a strike length of more than 11 miles, extending along the south-
east side of Green Pond Mountain (Herman and Mitchell, 1991). The fault contains Paleozoic rocks on 
both sides along most of its length except for a short segment near Picatinny Lake, where Mesoprotero-
zoic rocks are on the hangingwall. Leithsville Formation is on the hanging wall and Green Pond Conglom-
erate on the footwall along most of the length of the fault. The Picatinny fault strikes N.40  E. and dips 
southeast at about 50 . Latest movement appears to have been reverse. The fault is characterized by a 
zone of brittle fabric that has a total width of as much as a few hundred feet. 

The Tanners Brook-Green Pond fault is a structure resulting from the merger of the Green Pond fault, that 
extends along the northwest side of Copperas Mountain from near Newfoundland to Picatinny Lake 
(Kummel and Weller, 1902; Barnett, 1976; Herman and Mitchell, 1991), and the Tanners Brook fault that 
extends from Picatinny Lake southwest to Califon where it bounds the south side of Long Valley (Volkert 
et al., 1990). The combined fault has a length of about 30 miles. It contains mainly Paleozoic rocks on both 
sides to the north and Mesoproterozoic rocks on both sides from Chester southwest to Califon. The fault 
strikes N.40  E. and dips northwest at about 75 .  Latest movement on the fault in the map area was 
predominantly reverse. The Tanners Brook-Green Pond fault is characterized by a zone of brittle fabric 
300 to 400 ft. wide.
  
The Gorge fault is a newly recognized structure that is named for the prominent gorge at Picatinny 
Arsenal. The fault has a strike length of about 6 miles, extending along the southeast side of Green Pond 
Mountain north to Newfoundland. The Gorge fault appears to be cut off on both ends by the Tanners 
Brook-Green Pond fault. The Gorge fault contains Mesoproterozoic rocks on the hanging wall and Green 
Pond Conglomerate on the footwall. The fault strikes N.40  E. and dips about 60  southeast. Latest move-
ment appears to have been reverse. The fault is characterized by ductile deformation fabric that is 
overprinted by strong brittle fabric over a total width of about 500 ft.

Mesoproterozoic rocks throughout the map area are also deformed by smaller, more localized faults. 
These northeast-trending or northwest-trending faults have widths of not more than a few tens of feet. 
Northwest-trending cross faults dip toward the south at about 50   to nearly vertical. Most of these faults 
are not exposed and are known from the subsurface offset of the orebodies in magnetite mines (Bayley, 
1910; Sims, 1958).

Joints
Joints are a common feature in the Paleozoic and Mesoproterozoic rocks of the quadrangle. They are 
characteristically planar, moderately well formed, and moderately to steeply dipping. Their surfaces are 
typically unmineralized, except near faults, and are smooth, and less commonly, slightly irregular. Joints 
are variably spaced from a ft. to tens of ft. Those developed in massive rocks such as Mesoproterozoic 
granite or Paleozoic conglomerate and quartzite tend to be more widely spaced, irregularly formed and 
discontinuous than joints developed in the Mesoproterozoic layered gneisses and finer-grained Paleozoic 
rocks. Joints formed near faults have a spacing of 2 ft. or less.
 
The dominant joint trend in the Mesoproterozoic rocks is nearly perpendicular to the strike of crystallization 
foliation, and this relationship is a consistent feature in Mesoproterozoic rocks throughout the Highlands 
(Volkert, 1996). Consequently, joint trends in the map area are somewhat varied because of folding of 
Mesoproterozoic rocks. The dominant joint set strikes northwest at an average of N.54  W. (fig. 4).  Joints 
of this set dip southwest at an average of 73  . A subordinate joint set strikes about N.42  E. (fig. 4) and dips 
gently to moderately northwest.
 
Within the Paleozoic rocks, northwest-trending cross joints are the most common. These joints strike at an 
average of N.40  W. (fig. 5) and dip nearly equally northwest and southeast at about 50  . 

ECONOMIC RESOURCES
Some Mesoproterozoic rocks in the quadrangle were host to economic deposits of magnetite (iron ore) 
mined predominantly during the 19th century. Detailed descriptions of the mines are given in Bayley 
(1910) and Sims (1958). Iron mines are distributed throughout the quadrangle, but the most economically 
important ones are in the south-central part in the Mount Hope district. The Mount Hope and Scrub Oaks 
mines were among the largest of these.  The latter was especially notable for the presence of rare-earth 
elements in the deposit (Klemic et al., 1959). 

Mesoproterozoic rocks in the map area are currently being quarried for crushed stone at Woodport and 
Mount Hope, and were formerly quarried for crushed stone on a small scale at Picatinny Arsenal. Green 
Pond Conglomerate was formerly quarried at Roxbury. Deposits of sand and gravel are being mined at 
Kenvil, and were formerly worked at various locations (Stanford, 1989). 

DESCRIPTION OF MAP UNITS

GREEN POND MOUNTAIN REGION

Bellvale Sandstone (Middle Devonian) (Bellvale Flags of Darton, 1894; Willard, 1937) –
Upper beds are grayish-red to grayish-purple sandstone containing quartz pebbles as much 
as 1 in. in diameter. Lower beds are light-olive-gray to yellowish-gray- and greenish-black-
weathering, medium-gray to medium-bluish-gray, very thin to very thick-bedded siltstone and 
sandstone crossbedded, graded, and interbedded with black to dark-gray shale. More sand-
stone occurs in upper beds and becomes finer downward. Lower contact conformable with 
the Cornwall Shale and placed where beds thicken and volume of shale and siltstone is about 
equal. Unit is 1,750 to 2,000 ft. thick. 

Cornwall Shale (Middle Devonian) (Hartnagel, 1907) – Black to dark-gray, very thin to 
thick-bedded, fossiliferous, fissile shale, interbedded with medium-gray and light-olive-gray to 
yellowish-gray, laminated to very thin bedded siltstone that increases in upper part. Lower 
contact with Kanouse Sandstone probably conformable. Unit is about 950 ft. thick. 

Kanouse Sandstone, Esopus Formation and Connelly Conglomerate, undivided 
(Lower Devonian) 
Kanouse Sandstone (Kummel, 1908) – Medium-gray, light-brown, and grayish-red, fine- to 
coarse-grained, thin to thick-bedded sandstone and pebble conglomerate. Basal conglomer-
ate is interbedded with siltstone and contains well-sorted, subangular to subrounded, gray 
and white quartz pebbles less than 0.4 in. long. Lower contact with Esopus Formation grada-
tional. Unit is about 46 ft. thick. 

Esopus Formation (Vanuxem, 1842; Boucot, 1959) – Light to dark-gray, laminated to 
thin-bedded siltstone interbedded with dark-gray to black mudstone, dusky-blue sandstone 
and siltstone, and yellowish-gray, fossiliferous siltstone and sandstone. Lower contact  prob-
ably conformable with Connelly Conglomerate. Unit is about 180 ft. thick.

Connelly Conglomerate (Chadwick, 1908) – Grayish-orange-weathering, very light gray to 
yellowish-gray, thin-bedded quartz-pebble conglomerate. Quartz pebbles are subrounded to 
well rounded, well sorted, and as much as 0.8 in. long. Unit is about 36 ft. thick. 

Berkshire Valley and Poxino Island Formations, undivided (Upper Silurian) 
Berkshire Valley Formation (Barnett, 1970) – Yellowish-gray-weathering, medium-gray to 
pinkish-gray, very thin to thin-bedded fossiliferous limestone interbedded with gray to 
greenish-gray calcareous siltstone and silty dolomite, medium-gray to light-gray dolomite 
conglomerate, and grayish-black thinly laminated shale. Lower contact conformable with 
Poxino Island Formation. Unit ranges in thickness from 90 to 125 ft. 

Poxino Island Formation (White, 1882; Barnett, 1970) – Very thin to medium-bedded 
sequence of medium-gray, greenish-gray, or yellowish-gray, mud-cracked dolomite; light-
green, pitted, medium-grained calcareous sandstone, siltstone, and edgewise conglomerate 
containing gray dolomite; and quartz-pebble conglomerate containing angular to subangular 
pebbles as much as 0.8 in. long. Interbedded grayish-green shale at lower contact is transi-
tional into underlying Longwood Shale. Unit ranges in thickness from 160 to 275 ft. 

Longwood Shale (Upper and Middle Silurian) (Darton, 1894) – Dark reddish-brown, thin to 
very thick-bedded shale interbedded with cross-bedded, very dark-red, very thin to 
thin-bedded sandstone and siltstone. Lower contact is conformable with Green Pond 
Conglomerate. Unit is 330 ft. thick.

Green Pond Conglomerate (Middle and Lower Silurian) (Rogers, 1836) – Medium to 
coarse-grained quartz-pebble conglomerate, quartzitic arkose and orthoquartzite, and thin to 
thick-bedded reddish-brown siltstone. Grades downward into less abundant gray, very dark 
red, or grayish-purple, medium to coarse-grained, thin to very-thick-bedded pebble to cobble 
conglomerate containing clasts of red shale, siltstone, sandstone, and chert; yellowish-gray 
sandstone and chert; dark-gray shale and chert; and white-gray and pink milky quartz. Quartz 
cobbles are as much as 4 in. long. Unconformably overlies the Leithsville Formation or Meso-
proterozoic rocks in the map area. Unit is about 1,000 ft. thick. 

Leithsville Formation (Middle and Lower Cambrian) (Wherry, 1909) – Light to dark-gray 
and light-olive-gray, fine to medium-grained, thin to medium-bedded dolomite. Grades down-
ward through medium-gray, grayish-yellow, or pinkish-gray dolomite and dolomitic sand-
stone, siltstone, and shale to medium-gray, medium-grained, medium-bedded dolomite 
containing quartz sand grains as stringers and lenses near the base. Lower contact grada-
tional with Hardyston Quartzite. Approximately 800 ft thick regionally. 

Hardyston Quartzite (Lower Cambrian) (Wolff and Brooks, 1898) – Light to medium-gray 
and bluish-gray conglomeratic sandstone. Varies from pebble conglomerate, to fine-grained, 
well-cemented quartzite, to arkosic or dolomitic sandstone. Conglomerate contains subangu-
lar to subrounded white quartz pebbles as much as 1 in. long. Lower contact unconformable 
with Mesoproterozoic rocks. Unit ranges from 0 to 30 ft. thick regionally. 

NEW JERSEY HIGHLANDS

Diabase dikes (Neoproterozoic) (Volkert and Puffer, 1995) – Light-gray to brownish-gray-
weathering, dark-greenish-gray, aphanitic to fine-grained dikes that intrude Mesoproterozoic 
rocks but not Paleozoic cover rocks. Composed principally of labradorite to andesine, augite, 
and ilmenite and (or) magnetite. Pyrite blebs are common. Contacts are chilled and sharp 
against enclosing Mesoproterozoic rocks. Dikes are as much as 30 ft. wide and a mile or 
more long.   

Vernon Supersuite (Volkert and Drake, 1998)
Byram Intrusive Suite (Drake, 1984)

Hornblende granite (Mesoproterozoic) – Pinkish-gray or buff-weathering, pinkish-white or 
light-pinkish-gray, medium- to coarse-grained, massive, foliated granite and sparse granite 
gneiss composed of mesoperthite, microcline microperthite, quartz, oligoclase, and hasting-
site. Common accessory minerals include zircon, apatite and magnetite. Contains small 
bodies of pegmatite too small to be shown. 

Microperthite alaskite (Mesoproterozoic) – Pale pinkish-white- or buff-weathering, 
pinkish-white, medium- to coarse-grained, massive, foliated rock composed of microcline 
microperthite, quartz, oligoclase, and trace amounts of hastingsite, biotite, zircon, apatite, 
and magnetite. 

Lake Hopatcong Intrusive Suite (Drake and Volkert, 1991)

Pyroxene granite (Mesoproterozoic) – Buff or white-weathering, greenish-gray, medium to 
coarse-grained, foliated granite containing mesoperthite to microantiperthite, quartz, 
oligoclase, and hedenbergite. Common accessory minerals include titanite, magnetite, 
apatite, and trace amounts of zircon and pyrite. 

Pyroxene monzonite (Mesoproterozoic) – Gray, buff, or tan-weathering, greenish-gray, 
medium to coarse-grained, massive, moderately to indistinctly foliated syenite to monzonite. 
Composed of mesoperthite, microantiperthite to microcline microperthite, oligoclase, heden-
bergite, titanite, magnetite, and apatite. Locally contains sparse quartz and (or) hornblende.

Pyroxene alaskite (Mesoproterozoic) – Buff or white-weathering, greenish-buff or light 
pinkish-gray, medium- to coarse-grained, massive, foliated rock composed of mesoperthite to 
microantiperthite, quartz, oligoclase, and sparse amounts of hedenbergite. Common acces-
sory minerals include titanite, magnetite, apatite, and zircon. 

Supracrustal Rocks

Potassic feldspar gneiss (Mesoproterozoic) – Buff or pale pinkish-white-weathering, buff, 
pale pinkish-white or light-pinkish-gray, medium-grained, massive, foliated gneiss composed 
of quartz, microcline microperthite, oligoclase, biotite, and magnetite. Garnet and sillimanite 
occur locally. 

Biotite-quartz-feldspar gneiss (Mesoproterozoic) – Pale pinkish-white, pinkish-gray, or 
gray-weathering, locally rusty-weathering, pinkish-gray, tan, or greenish-gray, fine to coarse-
grained, moderately layered and foliated gneiss containing microcline microperthite, 
oligoclase, quartz, biotite, and garnet. Very locally contains kornerupine. Graphite and 
pyrrhotite are confined to the variant that weather rusty. The rusty variant is commonly associ-
ated with thin, layered quartzite containing biotite, feldspar, graphite, and pyrrhotite. 

Hornblende-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray or buff-weathering, 
pinkish-gray or pinkish-white, medium-grained, layered and foliated gneiss composed of 
microcline, quartz, and hornblende. Locally contains biotite, garnet and magnetite.

Clinopyroxene-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray or pinkish-buff-
weathering, white, pale-pinkish-white or light-gray, medium to coarse-grained, foliated gneiss 
composed of microcline, quartz, oligoclase, diopside, and trace amounts of titanite, magne-
tite, biotite, and epidote. 

Pyroxene gneiss (Mesoproterozoic) – Light-gray or white-weathering, greenish-gray or 
light-greenish-gray, medium-grained, layered and foliated gneiss containing oligoclase, 
diopside, varied amounts of quartz and titanite, and trace amounts of magnetite and epidote. 
Locally interlayered with clots and layers of dark-green, medium to coarse-grained diopsidite 
composed almost entirely of diopside. West of Longwood Lake unit is interlayered with light-
gray or light greenish-gray, layered and foliated quartz-epidote gneiss.

Magmatic Arc Rocks

Losee Metamorphic Suite (Drake, 1984; Volkert and Drake, 1999)

Quartz-oligoclase gneiss (Mesoproterozoic) – White-weathering, light-greenish-gray, 
medium to coarse-grained, layered to massive, foliated gneiss composed of oligoclase or 
andesine, quartz, and varied amounts of hornblende, augite, biotite, and magnetite. Locally 
contains layers of amphibolite too thin to be shown. Commonly has gradational contacts with 
biotite-quartz-oligoclase gneiss and hypersthene-quartz-plagioclase gneiss.  Locally forms 
thin, conformable layers within diorite. 

Biotite-quartz-oligoclase gneiss (Mesoproterozoic) – Light-gray-weathering, light-
greenish-gray, medium to coarse-grained, layered and foliated gneiss composed of 
oligoclase or andesine, quartz, biotite, and local hornblende. Locally contains conformable  
layers of amphibolite. 

Albite-oligoclase alaskite (Mesoproterozoic) – Pale pink, or white-weathering, light-
greenish-gray or light-pinkish-green, medium to coarse-grained, foliated rock composed of 
albite or oligoclase, quartz, and variable amounts of hornblende, augite and magnetite. 
Locally contains rutile. Commonly contains conformable layers of amphibolite.  

Hypersthene-quartz-plagioclase gneiss (Mesoproterozoic) – Light-gray or 
tan-weathering, greenish-gray or greenish-brown, medium-grained, moderately layered and 
foliated, greasy lustered gneiss composed of andesine or oligoclase, quartz, augite, 
hornblende, hypersthene, and magnetite. Commonly contains conformable layers of 
amphibolite and quartz-plagioclase gneiss containing hornblende and augite. 

Diorite (Mesoproterozoic) – Light-gray or tan-weathering, greenish-gray or greenish-brown, 
medium-grained, greasy lustered, massive, foliated rock containing andesine or oligoclase, 
augite, hornblende, hypersthene, and magnetite. Thin mafic layers having the composition of 
amphibolite and leucocratic to mafic layers of quartz-oligoclase gneiss occur locally. 

Other Rocks

Amphibolite (Mesoproterozoic) – Grayish-black-weathering, black or grayish-black, 
medium-grained gneiss composed of hornblende, andesine, and magnetite. Some variants 
contain biotite and others contain augite and local hypersthene. Amphibolite associated with 
the Losee Suite is metavolcanic in origin and that associated with supracrustal rocks may be 
metavolcanic or metasedimentary. All types are undifferentiated on the map.

Biotite-plagioclase gneiss (Mesoproterozoic) – White or light-gray-weathering, greenish-
gray, medium-grained, foliated gneiss composed of biotite, plagioclase, and varied amounts 
of hornblende, clinopyroxene, and garnet. 

Hornblende-plagioclase gneiss (Mesoproterozoic) – White or light-gray-weathering, 
greenish-gray, medium- to coarse-grained, foliated rock containing hornblende, plagioclase, 
and local clinopyroxene, apatite, and magnetite. 

Mesoproterozoic rocks, undifferentiated – Shown in cross section only.  
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Figure 5. Rose diagram of 138 joint orientations in Paleozoic rocks

Figure 4. Rose diagram of 861 joint orientations in Mesoproterozoic rocks

Figure 3. Rose diagram of 760 crystallization foliation orientations in Mesoproterozoic rocks

Figure 2. Rose diagram of 116 bedding orientations in Paleozoic rocks

Mean trend = N.42  E.
Sector size = 10
n = 116

o
o

Mean trend = N.39  E.
Sector size = 10
n = 760

o

o

Mean trend = N.54  W.
Sector size = 10
n = 861

o
o

Mean trend = N.40  W.
Sector size = 10
n = 138

o

o

Yk Yb

Ylb YhYlo

SILURIAN

CAMBRIAN

MESOPROTEROZOIC

 

NEW JERSEY HIGHLANDS

Ybh Yba Ypg Yps Ypa

Byram Intrusive Suite Lake Hopatcong Intrusive Suite

Supracrustal Rocks

Losee Metamorphic Suite

Yd

Other Rocks 

NEOPROTEROZOIC

Sg

Zd

YpYmpYmh

Ya YhpYbp

GREEN POND MOUNTAIN REGION

Yu

Unconformity

INTRUSIVE CONTACTS

INTRUSIVE CONTACTS

Yla

Sl

Ch

Cl

Unconformity

Sbp

Unconformity

Dkec

Dcw

Dbv

DEVONIAN

CORRELATION OF MAP UNITS

Vernon Supersuite

Dbv

Dcw

Dkec

Sl

Sg

Cl

Ch

Zd

Ybh

Yba

Ypg

Yps

Ypa

Yk

Yb

Ymh

Ymp

Yp

Ylo

Ylb

Yla

Yh

Yd

Ya

Ybp

Yhp

Yu

Ya

Sbp

Miles

0 2

Stanhope block

      Lake 
Hopatcong
 block

Mount Arlington
      block

Dover block

Reservo
ir fa

ult

Le
dg

ew
oo

d 
fa

ul
t

Lo
ng

woo
d V

all
ey

 fa
ult

Be
rk

sh
ire

 V
all

ey
 fa

ult

Pica
tin

ny
 fa

ult

Gorg
e f

au
lt

Ta
nn

er
s B

ro
ok

-G
re

en
 P

on
d 

fa
ult

      Green 
    Pond
Mountain 
Region

Unn
co

nfo
rm

ity

Unc
on

fo
rm

ity

Figure 1. Simplified map of the Dover quadrangle showing locations of the principal 
structural blocks and the faults that bound them.
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