dipping steeply northwest at approximately 77°. Three subordinate, fracture sets are evident in the data. Two sets dipping 70° and 36° (70/127, 34/133 dip/dip azimuth) to the southeast have similar strikes to the dominant set. A final set dips at more moderate angle of approximately 36° northwest (36/308, fig. 4). The gently-dipping fractures (fractures that dip less than 30°) dominantly dip northwest and are nearly subparallel to the trend of bedding. Two main trends displayed in the data have a dip and dip azimuth of 1/315 and 25/313). More than 70 percent of the fractures measured dip less than 20°. All borehole data contain abundant, sub-horizontal, mineral-filled fractures (veins) resembling the gypsum veins reported by El Tabakh and others (1997), Simonson and others (2010), Herman (2010), and Herman and Curran (2010). The BTV images show that in many places, the gently-dipping veins parallel bedding planes but cut them at acute angles elsewhere. The steepest fractures locally show apparent, normal dip-slip offset of mineralized sub-horizontal planes (fig. 5). ## **DESCRIPTION OF MAP UNITS** Diabase (Lower Jurassic to Upper Triassic) - Medium-grained, discordant, sheet-like intrusion of dark-gray to dark greenish-gray, sub-ophitic diabase; massive-textured, hard, and sparsely fractured. Composed dominantly of plagioclase, clinopyroxene, and opaque minerals. Contacts are typically fine-grained, display chilled, sharp margins and may be vesicular adjacent to enclosing sedimentary rock. Not presently exposed on the quadrangle but Kűmmel (1898) describes exposures at the tidal zone along the eastern edge of Newark Bay that is now covered by artificial fill. The Palisades sill has a thickness is approximately 1312 ft based on mapped contacts on the Elizabeth and Jersey City quadrangle (Olsen, 1980c; R. Parker, unpub. data, 1985). Passaic Formation (Upper Triassic) (Olsen, 1980) – Interbedded sequence of reddish-brown, and less often maroon or purple and gray, fine-grained sandstone, siltstone, shaly siltstone, silty mudstone, and mudstone. Reddish-brown sandstone and siltstone are thin- to medium-bedded, planar to cross-bedded, micaceous, and locally mudcracked and ripple cross-laminated. Root casts and load casts are common. Shaly siltstone, silty mudstone, and mudstone are fine-grained, very thin to thin-bedded, planar to ripple cross-laminated, locally fissile, bioturbated, and contain evaporite minerals. They form rhythmically fining-upward sequences as much as 15 ft thick. Unit was subdivided into a siltstone, silty mudstone and shale of classic Passaic to the south (Rp) and sandstone, siltstone and mudstone facies (Rpm) and gray facies (Rpg) from driller's logs, BTV data and outcrops. Unit is only exposed in two streams on the Kean University (shown as Newark State College campus in the central western part of the map area, but regionally is as much as 11,480 ft thick. Lockatong Formation (Upper Triassic) (Kűmmel, 1898) – Cyclically deposited sequences Fill of mainly gray to greenish-gray, siltstone and white to buff arkosic sandstone. Siltstone is medium- to fine-grained, thin-bedded, laminated, platy to massive. Arkose (Trla) has affinities for the Stockton Formation (Olsen, 1989) and is massive to cross-bedded. Occurs in the middle to upper section of cycles. Thermally altered where intruded by Palisades sill to dark gray to black hornfels consisting of plagioclase, orthoclase and recrystallized diopside-rich arkose and calc-silicate minerals such as grossularite, diopside and prehnite in siltstone beds and biotite and albite in finer grained beds (Olsen 1980c, Van Houten, 1969). Hornfels thickness unknown due to lack of exposure and poor well log descriptions (see table 1). Lower contact gradational into Stockton Formation and placed at base of lowest continuous black siltstone bed (Olsen, 1980). Maximum thickness of unit regionally is about 700 ft (Parker, 1993). Stockton Formation (Upper Triassic) (Kűmmel, 1898) – In cross section only. Unit is interbedded sequence of gray, grayish-brown, or slightly reddish-brown, medium- to finegrained, thin- to thick-bedded, poorly sorted, to clast imbricated conglomerate, planar to trough cross-bedded, and ripple cross laminated arkosic sandstone, and reddish-brown clayey fine-grained, sandstone, siltstone and mudstone. Coarser units commonly occur as lenses and are locally graded. Finer units are bioturbated sequences and are fining upward. Conglomerate and sandstone units are deeply weathered and more common in the lower half; siltstone and mudstone are generally less weathered and more common in upper half. Lower contact is an erosional unconformity. Thickness is approximately 820 ft (Olsen 1980b). Manhattan prong, undivided (Mesoprotozoic to Middle Ordovician) – unit may contain autochthonous rocks of the Walloomsac Formation and/or allochthonous rocks of the Hartland Formation and Serpentinite (Volkert, 2015). Shown in cross section only. ## **EXPLANATION OF MAP SYMBOLS** **Contact** – Dashed where covered. Dotted where concealed by water. Queried where uncertain Normal fault - Identity or existence questionable, location accurate. Ball and bar on downthrown block Planar features Strike and dip of inclined beds Well with log in table 1 - Location accurate to within 100 feet. Well with log in table 1 - Location accurate to within 500 feet. Elevation of bedrock surface - contour interval 50 feet. Downhole Optical Televiewer interpretation - Shows marker beds identified in borehole projected BTV 1 to land surface using bed orientation identified in well. Red dot shows well location. Data from Herman and Curran (2010) and Herman and others (2015). Driller's log - Used to project gray bed to surfaces and other characteristic beds. Solid circle accurate to within 100 feet. Open circle accurate to within 500 feet. REFERENCES CITED AND USED IN CONSTRUCTION OF MAP Allmendinger, R.W., Cardozo, N.C., and Fisher, D., 2013, Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 p. Cardozo, N., and Allmendinger, R.W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, p.193–205. El Tabakh, M., Riccioni, R., and Schreiber, B.C., 1997, Evolution of late Triassic rift basin evaporites (Passaic Formation): Newark basin, eastern North America, Sedimen- tology, v. 44, p. 767-790. Fedosh, M.S. and Smoot, J.P., 1988, A cored stratigraphic section through the northern Newark basin, New Jersey; in, Froelich, A.J., and Robinson, G.R., Jr., eds., Studies of the Early Mesozoic Basins in the eastern United States, U.S. Geological Herman, G.C., 2001, Hydrogeological framework of bedrock aquifers in the Newark basin, New Jersey: in, LaCombe, P.J. and Herman, G.C., eds., Geology in Service to Public Health, Field Guide and Proceedings of the 18th Annual Meeting of the Geological Association of New Jersey, p. 6-45. Survey Bulletin 1776, p. 19-24. Herman, G.C., 2005, Joints and veins in the Newark basin, New Jersey, in regional tectonic perspective: in, Gates, A. E., ed., Newark basin – View from the 21st Century: Field Guide and Proceedings of the 22nd Annual Meeting of the Geological Association of New Jersey, p. 75-116. Herman, G.C. 2009, Steeply-dipping extension fractures in the Newark basin, Journal of Structural Geology, v. 31, p. 996-1011. Herman, G.C. 2010, Hydrogeology and borehole geophysics of fractured-bedrock aquifers, in, Herman, G.C., and Serfes, M.E., eds., Contributions to the geology and hydro- geology of the Newark basin: N.J. Geological Survey Bulletin 77, Chapter F., p. Herman, G.C. and Curran, John, 2010, Borehole geophysics and hydrogeology studies in the Newark basin, New Jersey, in, Herman, G.C., and Serfes, M.E., eds., Con tributions to the geology and hydrogeology of the Newark basin: N.J. Geological Survey Bulletin 77, Appendixes 1-4, 245 p. Herman, G.C., French, M.A. and Curran, J.F., 2015, Borehole geophysical logs and geological interpretation of two deep, open boreholes in the Passaic Formation, Elizabeth City, Union County, New Jersey: N.J. Geological and Water Survey Geological Herpers, H.H., and Barksdale, H.G., 1951, Preliminary report on the geology and ground- water supply of the Newark, N.J. Area, N.J. Department of Conservation and Eco- nomic Development, Division of Water Policy and Supply Special Report 10, 52 p. Houghton, H.F., ca. 1985, unpublished data on file in the office of the New Jersey Geological and Water Survey, Trenton, New Jersey. Kűmmel, H.B., 1898, Report on the Newark System of New Jersey, New Jersey Geological Survey, Annual Report of the State Geologist of New Jersey, p. 27-159. Kűmmel, H.B., ca. 1900, unpublished data on file in the office of the New Jersey Geological and Water Survey, Trenton, New Jersey. Lovegreen, J.R., 1974, Paleodrainage history of the Hudson estuary, New York, Columbia University, unpublished M.S. thesis, 152 p. Morton, N., 2008, Details of voting on proposed GSSP and ASSP for the base of the Hettangian Stage and Jurassic System, International Subcommission on Jurassic Stratigraphy, Newsletter 35 (1), 74. Olsen, P.E., 1980a, The latest Triassic and Early Jurassic formations of the Newark basin (eastern North America, Newark Supergroup): Stratigraphy, structure, and correlation: New Jersey Academy of Science Bulletin, v. 25, p. 25-51. Olsen, P.E., 1980b, Triassic and Jurassic formations of the Newark basin, in, Manspeizer, Warren, ed., Field studies of New Jersey Geology and guide to field trips: 52nd Annual Meeting of the New York State Geological Association, p. 2-41. Olsen, P.E., 1980c, Fossil great lakes of the Newark Supergroup in New Jersey, in, Manspeizer, Warren, ed., Field studies of New Jersey Geology and guide to field trips: 52nd Annual Meeting of the New York State Geological Association, p. 352-398. rassic formations of the Newark basin, in, Olsen, P.E., Schlische, R.W., and Gore, P.J.W., eds., Tectonic,
depositional, and paleoecological history of Early Mesozoic rift basins, eastern North America, Field trip guidebook T351, American Geophysical Union, p. 98-102. Olsen, P.E., 1989, Stop 6.6, Yale Quarry, Kings Bluff, Weehawken, N.J., Triassic and Ju- Olsen, P.E., Schlische, R.W., and Gore, P.J., 1989, Tectonic, depositional, and paleoecological history of Early Mesozoic rift basins in eastern North America: Field trip guidebook T351, American Geophysical Union, 174 p. Olsen, P.E., Kent, D.V., Cornet, Bruce, Witte, W.K., and Schlische, R.W., 1996, High-resolu- tion stratigraphy of the Newark rift basin (early Mesozoic, eastern North America): Geological Society of America, Bulletin, v. 108, p. 40-77. Olsen, P.E., Kent, D.V., and Whiteside, J.H., 2011, Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for tempo and mode of the early diversification of the Dinosauria, Earth and En- vironmental Science Transactions of the Royal Society of Edinburgh, v.101, p. Parker, R.A., 1985, unpublished data on file in the office of the New Jersey Geological and Water Survey, Trenton, New Jersey. Parker, R.A., 1993, Stratigraphic relations of the sedimentary rocks below the Lower Jurassic Orange Mountain Basalt, northern Newark Basin, New Jersey and New York: U.S. Geological Survey, Miscellaneous Field Studies, MF-2208, scale 1:100,000. Parker, R.A., Houghton, H.F., and McDowell, R.C., 1988, Stratigraphic framework and dis- Figure 3. Geophysical logs and borehole diagram showing gray strata of the Passaic Formation penetrated by holes EG1 and EG20 relative to water-bearing features and the member-level stratigraphy of Olsen and others (1996). Logs collected in EG1 EG20 are black and red respectively. Subhorizontal mineralized fractures (veins) occur with regularity from the bottom of casing (~280 feet) of hole EG1 to about 1300 foot depth, directly above a deep water-bearing zone that occurs at about 1288 feet to 1377 feet below land surface. The section between 920 feet and 1500 feet has a high fluid-temperature anomaly relative to a linear geothermal gradient. EG20 is only clear in the upper 200 feet, owing to logging shortly after drilling with limited opportunity to develop the well. Color banding in borehole represents degree of water opacity. Other aspects of this diagram are discussed in Herman and others (2015). Sector angle = 10° Max value = 20.38835% between 321° - 330° Mean Vec = 328.9 degr; Max value = 22.94118% between 301° - 310° Mean Vec = 308.5 degr; Figure 2a. Bedrock surface contours of the Newark Bay region from Stanford (2002) supplemented by seismic refraction data of David Hall and Jeffery Waldner (unpublished data, 2010). refraction data of Hall and Waldner (unpublished data). The buried paleovalley parallels regional strike of the Passaic and Lockatong Formations. Figure by David Hall and Jeffery Waldner, New Jersey Geological Survey, August 28, 1997. Figure 4. Plots of structural data collected from surface outcrops and borehole optical BTV1, EG1 and EG20 records. Data analyzed includes bedding, steep fractures of greater than or equal to 30° dip, shallow fractures of less than 30° dip and gypsum veining in the OPTV1 records of the Hillside well. Rose diagrams depict dip direction in 10° sectors. Stereonets are lower hemisphere equal angle projections that show both contours of poles to planes and representations of all the orientations in each type of structural features. Girdles correlate to maximum (Girdle 1, red) and decreasing density values (Girdle 2, blue, Girdle 3, black, Girdle 4, green) of structural elements depicted on the stereonets. Max value = 14.7541% between 351° - 360° Mean Vec = 014.6 degr; Mesozoic Basins in the eastern United States, U.S. Geological Survey Bulletin Parrillo, D.G., 1959, Bedrock map of the Hackensack Meadows, New Jersey Geological Survey, Geologic Report 1, 25 p. Revised by H. Kasabach, 1962. tribution of Early Mesozoic rocks of the northern Newark Basin, New Jersey and New York, in, Froelich, A.J., and Robinson, G.R., Jr., eds., Studies of the Early Puffer, J.H., 1984, Volcanic rocks of the Newark Basin, in, Puffer J.H. ed., Igneous Rocks of the Newark Basin: Petrology, Mineralogy, Ore Deposits, and Guide to Field Trip: Geological Association of New Jersey, 1st Annual Field Conference, p. 45-60. Puffer, J.H., Block, K.A. and Steiner, J.C., 2009, Transmission of flood basalts through a shallow crustal sill and the correlation of sill layers with extrusive flows: The Pal- Schlische, R.W., 1992, Structural and stratigraphic development of the Newark extensional basin, eastern North America: Evidence for the growth of the basin and its bounding structures; Geological Society of America, Bulletin, v. 104, p. 1246-1263. Schlische, R.W., 1993, Anatomy and evolution of the Triassic-Jurassic continental rift sys- tem, eastern North America; Tectonics, v. 12, p. 1026-1042. The Journal of Geology, v. 117, p. 139–55. isades intrusive system and the basalts of the Newark Basin, New Jersey, USA. Simonson, B.M., Smoot, J.P., and Juges, J.L., 2010, Atuthigenic minerals in macropores and veins in Late Triassic mudstones of the Newark basin: implications for fluid migration through mudstone, in, Herman, G.C., and Serfes, M.E., eds., Contributions to the geology and hydrogeology of the Newark Basin, New Jersey Geological Survey Bulletin 77, p. B1-B26. interpretation of the Newark Supergroup, in, Robinson, G.R., and Froelich, A.J., eds., Proceedings of the second U.S. Geological Survey workshop on the Early Mesozoic basins of the Eastern United States: U.S. Geological Survey Circular Smoot, J.P., and Olsen, P.E., 1994, Climatic cycles as sedimentary controls of rift-basin Smoot, J.P., and Olsen, P.E., 1985, Massive mudstones in basin analysis and paleoclimatic lacustrine deposits in the early Mesozoic Newark Basin based on continuous core, in, Lomando, T., and Harris, M., eds., Lacustrine depositional systems: Society of Economic Paleontologists and Mineralogists Core Workshop Notes, v. 19, p. Stanford, S.D., 2002, Surficial Geology of the Elizabeth Quadrangle, Essex, Hudson and Union Counties, New Jersey, New Jersey Geological Survey, Open-file Map OFM-42. scale 1:24.000. Van Houten, F.B., 1965, Composition of Triassic Lockatong and associated Formation of Stanford, S.D., and Harper, D.P., 1991, Glacial lakes of the lower Passaic, Hackensack, and lower Hudson Valleys, New Jersey and New York, Northeastern Geology, v. 13, p. 271-286. Newark Group, Central New Jersey and adjacent Pennsylvania: American Journal of Science, v. 263, p. 825-8631. Van Houten, F.B., 1969, Late Triassic Newark Group, north central New Jersey and adjacent Pennsylvania and New York, in, Subitzky, S., ed., Geology of selected area in New Jersey and eastern Pennsylvania and guidebook of excursions, Rutgers University Press, New Brunswick, New Jersey, p. 314-347. Van Houten, F.B., 1980, Late Triassic part of Newark Supergroup, Delaware River section, west-central New Jersey, in, Manspeizer, Warren, ed., Field studies of New Jersey Geology and guide to field trips: 52nd Annual Meeting of the New York State Geo- logical Association, p. 264-276. Volkert, R.A., 2015, Bedrock Geologic Map of the Jersey City Quadrangle, Hudson and Essex Counties, New Jersey, New Jersey Geological and Water Survey, Open-File Map OFM-110, scale 1:24,000. fractures apparently cross cut and offset sub horizontal, mineralized fractures. The sub horizontal fractures are commonly reported as being the youngest, mineralized fractures in the basin, and therefore, such localized effects may signal reactivation of older extension fractures (Herman and others, 2015). ## Bedrock Geology of the Elizabeth Quadrangle, Essex, Hudson, and Union Counties, New Jersey ## New Jersey Geological Survey Geological Map Series GMS 15-4 2015 text to accompany map Table 1.--Selected well and boring logs from Stanford (2002) with several additions and more detailed bedrock information. | Well
No. | Identifier ¹ | Driller's Log | | | |-------------|-------------------------|--|--|--| | 110. | | Depth ² | Description ³ | | | 1 | 26-672 | 0-25
25-312 | clay and boulders
red sandstone rock | | | 3 | 26-1334 | 0-21
21-214 | hardpan
red rock | | | 4 | BWA files
26-12-785 | 0-58
58-304 | red clay, stones and boulders
red sandstone rock | | | 5 | 26-22852 | 0-20
20-50 | red-brown clay silt, trace gravel
brown weathered sandstone | | | 6 | 26-22335 | 0-15
15-30 | red-brown sand and silt
weathered sandstone | | | 7 | 26-25843 | 0-3
3-51 | red-brown medium-to-fine sand and gravel red shale | | | 8 | 26-28623 | abbreviated
0-26
26-35 | red-brown silty clay with rock fragments red-brown rock fragments | | | 9 | 26-19805 | 0-6
6-18 | brown to black sand and gravel
red-brown shale | | | 12 | 26-3173 | 0-50
50-70
70-215 | sand and gravel
red rock
red shale | | | 13 | 26-3532 | 0-30
30-44
44-300 | sand and dirt
fine sand
red rock | | | 14 | 26-24369 | abbreviated
0-12
12-22
22-36
36-56
56-65
65-71 | red-brown silty sand red-brown clay silt red-brown silty sand red-brown silty sand red-brown sandy silt red-brown silty sand red-brown silty sand red shale, highly weathered red rock | | | 16 | 26-25763 | abbreviated
0-4
4-28
28-43
43-54 | fill red-brown fine-to-medium sand, trace silt red-brown very fine sand and silt red-brown sand, trace silt, some gravel | | | | | 54-61 | weathered siltstone | |----|------------|--
---| | 18 | 26-4930 | 0-56
56-308 | sand, gravel
red shale | | 20 | 26-1053 | 0-147
147-700 | sandy clay, clay
shale | | 21 | NJGS files | 0-6
6-13
13-25
25-35
35-45
45-58
58-63 | sand, brick, cinder fill fine red sand and gravel red sand and coarse gravel fine red sand red silt red sand, gravel, clay binder shale | | 22 | 26-3924 | 0-10
10-65
65-280 | basement
gravel, sand, clay
red rock | | 23 | 26-3194 | 0-75
75-300 | red sandy clay
red shale | | 24 | 26-28483 | 0-50
50-53
53-55 | brown fine sand
fine-to-coarse sand and gravel
broken shale | | 25 | 26-28481 | 0-7
7-28
28-40 | fill
sand and gravel, silt
red shale | | 26 | 26-22996 | 0-3
3-6
6-8
8-28 | fill
red-brown clay silt
weathered shale
red shale | | 27 | 26-19107 | 0-3
3-52 | red-brown fine sand, some silt, little cobbles
and gravel
red-brown siltstone | | 28 | 26-9762 | 0-14
14-19 | gravel till
shale bedrock | | 29 | 26-25529 | 0-4
4-19
19-54 | sand, gravel, brick fill
red-brown clay, silt, gravel
red shale | | 30 | 26-22996 | 0-3
3-6
6-8
8-28 | sand, gravel, wood fill
red-brown clay silt
weathered shale
red shale | | 31 | 26-16549 | 0-30
30-35 | red-brown silty fine sand, trace gravel red-brown decomposed shale | | 33 | 26-3864 | 0-8
8-19
19-32
32-500 | fill
clay and stone
red hardpan with clay and sand
red shale | | 34 | 26-17979 | 0-8
8-24 | sand, cement, brick, glass fill
Brunswick Formation | | 35 | 26-29971 | abbreviated
0-6
6-17 | log
silt, sand, gravel, crushed stone, brick, wood fill
red-brown silt, clay, trace sand and gravel | | | | 17-29 | weathered siltstone | |----|------------------------|---|---| | 37 | 26-7998 | abbreviated
0-22 | log reddish to gray-reddish sandy clayey silt with gravel | | | | 22-24 | micaceous laminated red shale | | 38 | 26-22287 | abbreviated
0-14
14-18 | log
red-brown sandy clayey silt
red-brown weathered shale | | 39 | NJGS files | 0-21
21-26 | red sand, clay, gravel, boulders
shale | | 40 | 26-968 | 0-35
35-298 | fill
red rock | | 41 | 26-156 | 0-20
20-496 | earth
red rock | | 42 | 26-29462 | 0-13
13-34 | red-brown medium-to-fine silty sand red shale | | 43 | 26-6962 | 0-55
55-200 | sand, gravel, clay
shale | | 46 | 26-315 | 0-78
78-303 | earth and clay
red shale rock | | 47 | BWA files
26-22-254 | 0-30
30-104
104-107
107-119
119-123
123-129
129-131
131-143
143-187
187-330
330-335
335-370
370-389 | sand and gravel gravel clay, sand, and stones soft gray rock, yellow clay soft gray rock and a little clay gray shale black shale gray shale red sandstone gray rock black rock red rock gray rock | | 49 | 26-28999 | 0-10
10-26 | brown clayey silt
red shale | | 52 | BWA files
26-12-979 | abbreviated
0-15
15-35
35-45
45-65
65-145
145-180
180-193
193-212
212-218
218-699 | log fill dark fine sand, some gravel at base sticky clay fine reddish brown sand and some stone sandy clay and soft brownstone sticky clay coarse brown sand brownstone water-bearing gravel brownstone | | 56 | 26-4982 | 0-176
176-194 | sand and gravel
red shale | | 58 | 26-20605 | abbreviated
0-20
20-40
40-113
113-151 | log no log brownish gray medium-to-coarse sand laminated fat clay and sandy silt reddish brown gravel with sand and silt | | | | 151-404 | reddish brown shale | |----|---|---|--| | 59 | 26-20606 | 0-90
90-112
112-431 | overburden, no log
till or gravel
shale | | 61 | 26-537 | 0-90
90-112
112-225 | sand and red clay
soft red shale
harder red shale | | 66 | 26-2926 | 0-11
11-33
33-55
55-73
73-406 | fill sandy shale sand with little gravel sand with red shale hard red shale | | 68 | 26-2130 | 0-10
10-30
30-45
45-55
55-70
70-90
90-140
140-144
144-500 | fill sandy clay clay sandy clay sandy clay clay and gravel sandy clay clay matrix soft shale red shale | | 71 | 26-355 | 0-8
8-35
35-116
116-208 | fill
gray clay
sand, gravel, and clay
red rock | | 72 | 26-94 | 0-6
6-24
24-42
42-67
67-78
78-87
87-359 | fill river bottom muck sand and gravel fine silt sand and gravel fine silt red shale rock | | 74 | 26-1940 | 0-90
90-500 | clay, sand
red rock and shale | | 75 | 26-3293 | 0-55
55-300 | overburden
sandstone | | 78 | 26-1783 | 0-65
65-503 | clay and stones
shale | | 80 | 26-4947 | 0-72
72-400 | silt, clay
red shale, sandstone | | 81 | 26-5082 | abbreviated
0-20
20-40
40-45
45-70
70-85
85-300 | log black muck red fine sand and muck red fine sand red clay and pieces of shale red clay red shale | | 82 | 26-2141 | 0-82
82-500 | clay and dead sand
red rock | | 83 | NJGS files
Pulaski Skyway
boring 91 | 0-10
10-20
20-50
50-61 | fill
river mud
red sand
soft red shale | | | | 61-81 | red shale | |-----|--|---|---| | 84 | NJGS files
Pulaski Skyway
boring 97 | 0-10
10-30
30-50
50-60
60-80 | cinder fill
brown sand
fine red sand and clay
coarse red sand and clay
red shale | | 90 | 26-4514 | 0-82
82-300 | sand and gravel
red shale | | 92 | NJGS files
Central Railroad
of New Jersey
boring 47 | 0-6
6-15
15-17
17-31
31-34
34-45
45-50
50-51 | fill sand and ashes coarse sand sand gravel sand and clay sand red shale | | 93 | 26-28979 | 0-20
20-22
22-24
24-50
50-55
55-57 | miscellaneous fillash, sand
chemical residue
black peat
brown-red medium-to-fine sand with silt
brown-red shale till
weathered shale | | 95 | NJGS files
Central Railroad
of New Jersey
boring 45 | 0-5
5-24
24-34
34-44
44-54
at 54 | fill red sand and clay gray sand and clay fine sand red sand and clay red shale | | 97 | NJGS files
Route 25 viaduct
boring 52 | 0-5
5-25
25-46
46-55
55-67
67-68 | fill red medium-to-coarse sand red clayey fine sand red sandy clay gravelly and sandy clay red shale | | 98 | NJGS files
Route 25 viaduct
boring 48 | 0-6
6-32
32-76
76-82
82-83 | sand and gravel fill
red fine-to-coarse silty sand, little clay
stiff red clay and sandy clay
red gravelly clay
red shale | | 99 | 26-1180 | 0-NR
NR-500 | clay, silty clay, quicksand
red shale | | 105 | NJGS files
Route 25 viaduct
boring 23 | 0-21
21-61
61-67
67-74 | cinder fill
red clay
red clay with gravel
red shale | | 106 | 26-2977 | 0-20
20-77
77-306 | filldirt, wood, sand
clay, sand, and gravel mix
red shale | | 107 | 26-2053 | 0-95
95-400 | silt, clay sediments
shale | | 108 | Woolman, 1896,
p. 183, Unger well | 0-80
at 80 | clay and quicksand
red rock | | 109 | 26-4345 | 0-20 | garbage | | | 20-71
71-405 | red hardpan
red shale | |--------------|---|--| | 111 26-25243 | abbreviated
0-6
6-8
8-60
60-65
65-67 | d log fillblack cinders, gravel, ash, sand gray-brown clay, fine-to-medium sand red-brown silt and clay, trace gravel silt, gravel, weathered gravel red-brown weathered shale | | 112 26-5450 | abbreviated
0-6
6-8
8-10
10-62
62-71
71-72 | d log fillbricks, cinders, sand black, brown peat gray fine-to-coarse sand reddish brown silt and clay, little gravel red-brown silt and clay with gravel reddish brown shale | | 113 26-4784 | 0-5
5-38
38-50
50-105
105-170 | stony fill
gray clay
red hardpan
red shale
red sandstone | | 114 26-24406 | 0-48
48-72
72-78 | red-brown sand and silt
red-brown till
red-brown sandstone | | 116 26-1420 | 0-42
42-220 | fill-clay-sand-clay
shale | | 117 26-20558 | 0-18
18-44
44-57 | fillblack, brown sand, wood, brick, cement red-brown fine-to-medium sand, silt red shale, decomposed | | 119 26-17934 | abbreviated
0-27
27-30
30-35
35-65
65-70
70-75
75-85 | d log brown, gray sand, silt; some cinders, wood, slag brown peat gray sand and silt, little peat red silt, clay, trace fine sand red dense sand and gravel, little silt, trace clay red weathered siltstone red siltstone | | 120 26-15459 | abbreviated
0-29
29-34
34-42
42-55
55-65 | d log brown, gray silt, sand, cinders brown peat red fine sand, little silt red silt, some clay red very stiff silt, some clay, trace sand and gravel red weathered shale | | 121 26-20333 | abbreviated
0-19
19-33
33-68
68-73 | d log fillbrown sand, silt, gravel, wood gray-brown organic silt and peat red-brown clayey silt, little sand, trace gravel red-brown fine-to-coarse sand with some gravel and silt red-brown
fractured shale | | 123 26-4006 | 0-48
48-92
92-113
113-203 | fill possible old well or pit)
light brown sand Qpt over
red clay
red hardpan | | | | 203-496 | red shale | |-----|------------------|--|---| | 124 | 26-1302 | 0-4
4-11
11-24
24-32
32-53 | fill sandy clay quick sand hardpan probably desiccated hard dry clay desiccated | | | | 53-76 | sandy clay | | | | 76-98
98-133 | clay-gravel matrix | | | | 133-181 | sandy clay
clay-gravel matrix | | | | 181-245 | soft shale | | | | 245-485 | red shale | | 125 | Herpers and | 0-5 | concrete and cinders | | | Barksdale, 1951, | 5-15
15-27 | yellow clay fill or | | | p. 47 | 15-27
27-55 | fine red sand
red quicksand | | | | 55-80 | tough red clay desiccated | | | | 80-125 | soft red clay | | | | 125-190 | red sandy clay | | | | 190-210 | soft red clay | | | | 210-215
215-225 | hardpan
sand and clay | | | | 225-408 | red rock | | | | | | | 133 | 26-5309 | 0-160
160-190 | sand, clay
red shale | | | | | reu shaie | | 136 | 26-13433 | 0-6 | miscellaneous fill | | | | 6-15 | black silty sand, trace organics | | | | 15-45
45-75 | red-brown silty fine sand
red-brown silty clay | | | | 75-85 | red-brown clayey silt | | | | 85-100 | decomposed shale | | 141 | NJGS files | 0-7 | cinder fill | | | Route 25 viaduct | 7-20 | red sandy clay | | | boring 1 | 20-40 | red clayey fine sand | | | | 40-53
53-54 | red-brown stiff clay with gravel decomposed red shale | | | | | | | 142 | 26-3850 | 0-7 | fill | | | | 7-17
17-60 | black muck | | | | 60-74 | red clay
red clay and gravel | | | | 74-495 | red shale | | 143 | 26-3043 | 0-18 | fill | | 1 | 20 00 .0 | 18-57 | red clay | | | | 57-400 | red shale | | 146 | 29-12312 | abbreviated | l log | | | | 0-10 | brown silt, sand, gravel, wood | | | | 10-23 | brown peaty silt and peat | | | | 23-27 | brown-gray silty fine sand, trace peat | | | | 27-37
37-43 | red silt
brown-red fine-to-medium gravel and sand | | | | 43-71 | brown-red clay and silt | | | | 71-76 | red clay and silt with little gravel | | | | 76-80 | red hard silty weathered shale | | 147 | 26-12311 | abbreviated | l log | | | | 0-16 | brown silt, sand, gravel, rubble | | | | 16-23 | brown-black peat | | | | 23-25 | gray fine sand | | | | | | | | | 25-46
46-58
58-65 | brown-red silt and clay
red-brown silt, some clay and gravel
red silty weathered shale | |-----|----------|-------------------------|--| | 148 | 26-6880 | 0-2 | red-brown sandy clayey silt with gravel and brick fragments | | | | 2-12 | red-brown clayey silt and silty clay, some
medium-to-fine sand and gravel | | | | 12-51 | red shale | | 149 | 26-7377 | 0-11 | red-brown coarse-to-fine sand, some gravel and cobbles trace silt | | | | 11-14 | red shale | | 150 | 26-1098 | 0-40
40-250 | earth, clay, dirt
red rock | | 151 | 26-286 | 0-45
45-402 | earth
red rock | | 152 | 26-686 | 0-79 | mixture of hardpan, sand and streaks of clay | | 102 | 20 000 | 79-213 | red rock | | 153 | 26-1659 | 0-25 | loose sand, stone, and clay | | | | 25-230 | red sandstone | | 154 | 26-4452 | 0-5 | fill | | | | 5-28
28-46 | hardpan and clay
fractured shale | | | | 46-201 | red shale and sandstone | | 155 | 26-622 | 0-6 | fill | | | | 6-19 | clay and stone | | | | 19-56
56-70 | sand and gravel
soft red rock | | | | 70-209 | red rock | | 157 | 26-10993 | 0-25 | brown medium-to-fine sand, little coarse-to-fine gravel, trace silt, trace cobbles | | | | 25-30 | red-brown sandstone | | 158 | 26-4513 | 0-10 | overburden | | | | 10-300 | red shale | | 159 | 26-1857 | 0-20 | fill | | | | 20-36
36-425 | red clay red sandstone rock | | | | | | | 160 | 26-453 | 0-12 | boulders and clay | | | | 12-48
48-53 | sand, gravel and boulders
red clay | | | | 53-461 | red rock | | | | 461-480 | gray rock | | | | 480-903 | red rock | | 161 | 26-2187 | 0-4 | fill | | | | 4-10 | sandy clay | | | | 10-25
25-35 | clay matrix
sandy clay | | | | 25-35
35-50 | hardpan | | | | 50-80 | sandy clay and clay matrix | | | | 80-250 | shale | | | | | | | 163 | 26-132 | 0-76 | red earth
red shale | | 164 | 26-720 | 0-3
3-38
38-245
245-260
260-400 | dirt
sand, clay and some boulders
red rock
gray rock
red rock | |-----|----------|---|--| | 166 | 26-81 | 0-95
95-200 | red dirt and some boulders
red shale | | 167 | 26-57 | 0-29
29-42
42-61
61-63
63-71
71-83
83-210
210-230
230-246
246-312
312-322 | reddish clay, sand, boulders fine red sand, some gravel, clay red hardpan with fine sand and broken rock fine red sand coarse gray and brown sand, broken rock red clay, hardpan red shale – red rock streaks, caving hard red rock red shale red shale red shale and rock red and gray shale, lost cuttings | | 169 | 26-4453 | 0-40
40-536 | sand and gravel
red sandstone | | 173 | 26-1171 | 0-82
82-183 | earth, clay, dirt
red rock | | 176 | 26-25771 | abbreviated
0-8
8-18
18-27 | log
silt, stone fill
reddish silt and gravel
shale | | 177 | 26-1984 | 0-18
18-241 | clay and boulders
red rock | | 178 | 26-5955 | 0-8
8-11
11-26 | red-brown coarse-to-fine sand, some coarse-to-fine gravel, some silt, trace cobbles soft red shale red shale and sandstone | | 179 | 26-23969 | 0-10
10-35
35-58
58-64
64-69 | fine-to-coarse sand fill
fine-to-coarse sand and gravel, some silt, trace clay
fine sand and silt
boulder at 58
red shale | | 181 | 26-4624 | 0-100
100-250 | sand, gravel (Qez)
sandstone | | 182 | 26-4309 | 0-50
50-225 | overburden
red shale and red sandstone | | 183 | 26-3615 | 0-18
18-21
21-77
77-84
84-461 | red sand
gravel
fine red sand
sand and gravel
red rock | | 184 | 26-237 | 0-6
6-11
11-54
54-79
79-379 | fill red clay red sandy clay clay, stones and gravel red shale rock | | 185 | 26-55 | 0-7
7-92 | soft red dirt
red dirt and clay | | | | 92-352 | red rock | |-----|----------|----------------|---| | 186 | 26-201 | 0-10 | clay | | | | 10-20 | coarse sand | | | | 20-24 | small gravel | | | | 24-90 | soft red shale | | | | 90-600 | hard red shale | | 187 | 26-6780 | abbreviated |
l log | | | | 0-27 | red-brown silty sand, some gravel | | | | 27-31 | red weathered shale | | | | at 31 | refusal rock)
 | | 190 | 26-1782 | 0-22 | red sand and gravel | | | | 22-420 | red rock | | 191 | 26-117 | 0-17 | red earth | | | | 17-125 | red shale | | 192 | 26-852 | 0-23 | clay, gravel, fine sand | | | | 23-475 | red shale | | 193 | 26-221 | 0-19 | top soil, brown dirt and silt | | | | 19-22 | boulders | | | | 22-400 | shale | | 194 | 26-45 | 0-22 | dirt, gravel, hardpan | | | | 22-151 | red shale | | 195 | 26-697 | 0-29 | red sandy clay | | | | 29-100 | red shale with clay streaks | | | | 100-120 | red sandstone | | | | 120-202 | reddish brown shale | | 197 | 26-696 | 0-7 | cinders and fill | | | | 7-19 | blue clay fill | | | | 19-49 | red clay | | | | 49-50 | sand and gravel | | | | 50-76
76-88 | red soupy sand and clay | | | | 88-89 | reddish brown hardpan
dirty sand and gravel | | | | 89-93 | soupy red clay | | | | 93-203 | clay and red shale | | 200 | 26-912 | 0-3 | cinders and fill | | | | 3-7 | blue gray clay | | | | 7-40 | red clay | | | | 40-41 | red sandstone | | | | 41-322 | red shale and red clay | | | | 322-500 | red rock, clay and shale | | 203 | 26-20060 | abbreviated | • | | | | 0-6 | black sand and cinders (fill) | | | | 6-8 | red-brown clayey sand, some silt (fill) | | | | 8-16 | gray organic clay with peat fibers | | | | 16-20
20-60 | brown fine-to-medium sand, trace clay and silt
red-brown clayey silt to silty clay | | | | 60-104 | red-brown fine-to-medium sand, some silt and gravel | | | | 104-105 | red-brown till | | | | 105-110 | shale | | 206 | 26-137 | 0-115 | earth | | | | 115-603 | red rock | | 208 | 26-7486 | abbreviated | l log | | | | 0-8 | cinder fill | | | | | | | | | 8-16
16-90
90-100 | dark-brown peat and organic silt
brown fine-to-coarse sand, trace silt
red decomposed sandstone, shale and siltstone | |-----|-----------------|-------------------------|--| | 212 | NJGS files | abbreviate | d log | | 212 | Newark Airport | 0-10 | cinder and ash fill | | | boring NA-1-2 | 10-25 | gray peaty organic silt | | | 001111911111111 | 25-41 | red fine-to-very-fine silty sand | | | | 41-110 | red clayey silt | | | | 110-111 | fine red sandy silt | | | | 111-120 | red shale | | 216 | NJGS files | abbreviate | | | | Newark Airport | 0-3 | black peaty organic silt | | | boring NA-4-41 | 3-66 | red fine-to-coarse sand, trace gravel | | | | 66-75 | red silty fine sand | | | | 75-91 | red clayey silt and clayey silt | | | | 91-93 | red silty clay and shale fragments | | | | 93-98 | red shale rock | | 217 | NJGS files | abbreviate | _ | | | Newark Airport | 0-6 | peat | | | boring NA-4-44 | 6-8
8-23 | brown silty fine sand | | | | 23-27 | red very fine sandy silt
red clayey silt | | | | 27-44 | red clayey sint
red silty fine sand, some shale gravel | | | | 44-51 | red clayey silt to silty sand, some shale gravel | | | | 51-56 | red shale rock
| | 218 | NJGS files | abbreviate | d log | | | Newark Airport | 0-7 | peaty organic silt to silty sand | | | boring NA-4-46 | 7-32 | red silty coarse-to-fine sand, some gravel | | | C | 32-37 | red clayey silt | | | | 37-42 | red silty very fine sand | | | | 42-64 | red silty clay, some shale gravel and granite boulders | | | | 64-69 | red shale rock | | 219 | NJGS files | abbreviated log | | | | Newark Airport | 0-7 | garbage and ash fill | | | boring NA-4-50 | 7-10 | peaty organic silt | | | | 10-15 | gray very fine sandy silt | | | | 15-19 | fine red sand | | | | 19-53 | red clayey silt | | | | 53-61 | red shale rock | | 221 | NJGS files | abbreviate | · · | | | Newark Airport | 0-1 | red silty sand and gravel fill | | | boring NA-4-22 | 1-18 | gray peaty organic silt | | | | 18-20
20-40 | gray medium-to-fine silty sand
red clayey silt and shale fragments | | | | 40-43 | highly compressed red silty clay and some shale | | | | 40-43 | fragments | | | | 43-48 | red shale rock | | 222 | NJGS files | abbreviate | d log | | | Newark Airport | 0-16 | gray peaty organic silt to fine sand | | | boring NA-4-21 | 16-41 | red silt, trace red clay and quartz gravel | | | 8 | 41-47 | highly compressed red silty clay and decomposed shall | | | | | fragments | | | | 47-52 | red shale rock | | 223 | NJGS files | abbreviate | d log | | | Newark Airport | 0-24 | gray peaty organic silt | | | | | 4 14 4 | | | boring NA-4-24 | 24-49 | red silty clay | | 224 | NJGS files
Newark Airport
boring NA-4-38 | abbreviated
0-9
9-14
14-29
29-37
37-42 | log peaty organic silt gray silty very fine sand red clayey silt red silty clay and some shale fragments red shale rock | |-----|--|--|---| | 225 | NJGS files
Newark Airport
boring NA-4-35 | abbreviated
0-2
2-9
9-20
20-41
41-44
44-49 | log peaty organic silt gray silty fine sand red fine-sandy silt red silt red silty clay, some decomposed shale fragments red shale rock | | 226 | NJGS files
Newark Airport
boring NA-4-28 | abbreviated
0-1
1-19
19-35
35-38
38-43 | log peat brown to gray silty very-fine-to-fine sand red clayey silt red silty clay, some shale gravel red shale rock | | 232 | 26-26105 | 0-4
4-6
6-20
20-45
45-50 | cinder fill black organic silt red-brown sandy silt and clay red-brown decomposed shale red-brown shale | | 234 | 26-8310 | 0-51
51-600 | sand
red shale | | 235 | 26-6867 | 0-55
55-420 | overburden
red sandstone | | 237 | 26-65 | 0-40
40-49
49-101 | sand and gravel
clay and hardpan
shale | | 240 | 26-23034 | abbreviated
0-5
5-11
11-30 | log
sand and gravel fill
brown, red fine sand and silt, trace clay
red-brown shale | | 241 | NJGS files | 0-4
4-7
7-20
20-21 | reddish brown fine sand
reddish brown medium-to-fine sand with trace clay and
gravel
red shale | | 242 | NJGS files | 0-3
3-13
13-18 | crushed stone, sand, gravel fill
red sand, clay, gravel
shale rock | | 243 | 26-14742 | 0-12
12-15 | dark-brown medium-to-coarse sand, little silt, some
medium gravel
red siltstone | | 244 | 26-6387 | 0-3
3-18 | red clayey silt and gravel
soft red shale | | 245 | 26-14148 | 0-3
3-8
8-18 | sand fill
silty clay, shale
weathered shale | | 246 | 26=19640 | 0-7
7-20 | sand and gravel fill
brown clay-silt | | | | 20-58
58-68
68-70 | brown sandy silt
glacial till, some layers of silty sand
shale bedrock | |-----|------------|--|---| | 247 | 26-18320 | abbreviated
0-8
8-25
25-27 | log sand, silt fill red-brown coarse-to-fine sand with clayey silt and gravel red-brown to gray weathered shale | | 248 | 26-18219 | abbreviated
0-15
15-20
20-23
23-30 | log
red-brown fine-to-coarse sand, trace silt
red-brown coarse-to-fine sand with gravel, trace silt and
clay
red-brown weathered shale
shale | | 251 | NJGS files | 0-3
3-14
14-16 | fine red and brown clay and sand
fine red sand, clay, gravel
soft red shale | | 252 | 26-138 | 0-10
10-255 | earth, clay, soft rock
red shale rock | | 253 | 26-5144 | 0-20
20-235 | clay
shale | | 254 | 26-2363 | 0-33
33-250 | red clay
red rock | | 255 | 26-30364 | 0-5
5-20
20-26 | fillsandy clay and gravels, brick, etc. red-brown silty sand and clay, some gravels and small cobbles throughout weathered red-brown shale | | 256 | 26-8367 | 0-9
9-17 | decomposed red shale, coarse-to-fine angular sand, little medium-to-fine gravel, trace clay red shale | | 257 | 26-3384 | 0-24
24-500 | overburden
hard and soft red rock | | 258 | 26-25592 | 0-8
8-180 | some fill, hard-packed sand and gravel soft to medium red shale | | 259 | 26-20132 | 0-4
4-9
9-20 | fillred-brown clay, trace fine-to-medium gravel reddish brown clay, trace gravel shale rock | | 260 | 26-5807 | 0-15
15-200 | overburden
shale | | 261 | 26-21150 | 0-4
4-13
13-41 | gray clay fill
red-brown silty clay
red shale | | 262 | 26-13124 | 0-14
at 14 | red clayey silt with red shale fragments
decomposed red shale | | 263 | 26-4055 | 0-10
10-290 | hardpan
red shale | | 264 | 26-13121 | 0-4
4-14 | red clayey silt with red shale fragments
decomposed red shale | | 265 | 26-5674 | abbreviated
0-2 | log
fill | | | | 2-14
14-16 | red-brown clayey silt with gravel and sand red shale | |-----|-----------------------|-----------------------------------|--| | 266 | 26-2969 | 0-27
27-360 | clay
shale | | 267 | 26-1282 | 0-40
40-202 | red clay and shale
more solid shale | | 268 | 26-24634 | 0-6
6-30 | fill red shale | | 269 | 26-22909 | 0-8
8-15 | coarse sand red shale | | 270 | 26-27833 | 0-2
2-11
11-14 | fill red, brown silty clay brown shale | | 271 | 26-179 | 0-15
15-255 | earth and clay
red shale rock | | 273 | 26-22736 | abbreviated | log | | | | 0-12
12-13 | silt and clay with some sand, gravel, and rock fragments red and green siltstone and shale | | 274 | 26-9343 | 0-4
4-7
7-9
9-18 | sand, cinder fill
red silty clay, trace coarse-to-fine sand and fine gravel
weathered shale
red shale | | 275 | 26-19987 | 0-4
4-12 | fine-to-coarse sand, gravel, trace silt
decomposed shale | | 276 | 26-23157 | abbreviated
0-12
12-16 | log reddish brown clays and silts, some fine sands red shale | | 277 | 26-562 | 0-5
5-400 | earth and clay
red shale rock | | 278 | 26-13613 | abbreviated
0-22
at 22 | log red clayey silt and fine gravel, trace fine-to-coarse sand red shale bedrock | | 279 | 26-6947 | abbreviated
0-2
2-8
8-55 | log brown to black sand and gravel fill red clayey sandy silt, trace shale fragments red shale and sandstone rock | | 281 | 26-20752 | abbreviated | log | | | | 0-6
6-37 | brown fine-to-medium sand, some fine gravel and silt
brown, red-brown clayey silt with some gravel and trace
sand and boulders | | | | 37-45 | red shale rock | | 282 | 26-1870 | 0-31
31-92 | clay
shale | | 283 | 26-1661 | 0-45
45-264 | clay
red shale | | 284 | 26-10953
boring 73 | abbreviated
0-50
50-56 | log
brown clayey silt, trace sand, little gravel
red shale | | 285 | 26-10953
boring 27 | abbreviated
0-40
40-49
49-65
65-75
75-80 | log brown sand fill brown to brown-red clayey silt, little gravel and sand brown fine sand and silt brown-red clayey silt with gravel and sand red shale | |-----|-----------------------|---|--| | 286 | 26-8211 | 0-10
10-19
19-24
24-50
50-76
76-90 | silty sand meadow mat gray fine sand, little coarse sand and fine gravel, trace silt and clay brown silty clay, little fine sand to fine gravel brown silty clay, little fine sand to coarse gravel red shale | | 287 | 26-10981 | abbreviated
0-4
4-19
19-30
30-44
44-49 | | | 288 | 26-3156 | 0-66
66-467 | red clay and red fine sand
red rock | | 289 | 26-21943 | 0-70
70-550 | overburden
red shale | | 290 | 26-8210 | abbreviated
0-19
19-21
21-47
47-55
55-65 | log brown sand, silt, wood, metalfill red-brown fine-to-coarse sand and silt, little fine gravel red-brown silt, trace clay, little fine -to-coarse sand, trace rock fragments decomposed red shale red shale | | 291 | 26-8216 | 0-24
24-42
42-61
61-80 | filldark-brown silt, metal, concrete, paper, wood
red-brown fine sand, some silt
red-brown silt, little fine-to-coarse sand, trace clay
red shale | | 293 | 26-5473 | 0-8
8-14
14-20
20-24
24-30
30-54
54-64
64-73 | medium-to-fine brown sand miscellaneous fill brown organic silt dark gray silt-clay red-brown fine silty sand red-brown silt, trace sand red-brown silty clay red shale | | 295 | 26-5469 | abbreviated
0-18
18-30
30-32
32-38
38-53
53-56
56-67 | log red-brown sand and gravel wood, metal, sand, gravelrefuse fill gray fine-to-medium sand and organic silty clay red-brown fine sand, trace silt and gravel red-brown silty clay, trace fine sand and gravel red-brown sandy silty clay and gravel red shale | | 298 | 26-30045 |
0-5
5-10
10-20
20-40
40-42
42-45 | gray top soil, trace organics red-gray sand and gravel, trace clay gray clay red-brown clay red decomposed shale red shale | | 299 | 26-5471 | 0-12
12-14
14-17
17-24
24-28
28-73
73-88
88-93
93-103 | miscellaneous refuse gray organic clay and silt gray silty fine sand gray clay and silt gray silty fine sand red-brown silt, trace sand red silty clay, shale fragments red shale, some gray silt and sand red shale | |-----|--|--|--| | 300 | 26-18486 | 0-4
4-10
10-16
16-31
31-70
70-90
90-100 | brown fine sand and gravel red-brown fine sandy silt, trace clay layered red-brown silt and sand gray-green organic silt, trace fine sand layered red-brown sandy silt to silty sand and clay red-brown till red-brown sandy shale | | 301 | 26-5474 | abbreviated
0-9
9-16
16-23
23-27
27-44
44-62
62-72
72-82 | log brown sand fill garbage fill gray clay and silt fine gray sand, trace of silt red fine silty sand red-brown varved silty clay red glacial till red shale | | 302 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 30 | 0-11
11-13
13-19
19-37
37-50
50-61 | water mud gray sand red clay with sand red sandstone | | 303 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 26 | 0-9
9-16
16-28
28-55
55-64 | water
mud
gray sand
red clay
red sandstone | | 304 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 18 | 0-9
9-13
13-19
19-27
27-38
38-47
47-55 | water mud and shells gray sand and gravel gray sand red clay gravel with clay red sandstone | | 305 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 12 | 0-10
10-15
15-29
29-40
40-54
54-64 | water
mud
gray sand
red clay
clay and gravel
gray sandstone | | 306 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 9B | 0-27
27-31
31-37
37-65
65-71
71-81 | water
mud
red clay with gravel
red clay
red sand
gray sandstone | | 307 | NJGS files
Central RR of NJ
Newark Bay bridge | 0-18
18-24
24-28 | water
mud
clay with gravel | | | boring 4A | 28-54
54-59
59-67 | red clay
red sandstone
gray sandstone | |-----|---|---|--| | 308 | NJGS files
Central RR of NJ
Newark Bay bridge
boring 1 | 0-8
8-13
13-15
15-20
20-42
42-54 | water mud sand and mud coarse gray sand red clay with gravel gray sandstone | | 311 | 26-19191 | abbreviated
0-17
17-19 | log green-brown to red medium-to-fine sand and clayey silt, little gravel light-brown siltstone | | 312 | 26-10958 | 0-7
7-9
9-12
12-27 | black silt, trace gravel, trace sand
brown clayey silt, little gravel and coarse sand
red gravel, little silt and sand
red shale | | 313 | 26-14102 | abbreviated
0-27
27-30 | log red-brown very-fine-sand and silt to clayey silt, little gravel red-brown shalehighly weathered | | 314 | 26-21712 | 0-20
20-22 | brown to red-brown medium-to-fine silty sand with gravel shale | | 315 | 26-24201 | abbreviated
0-30
at 30 | log silty clay with little fine-to-coarse sand and fine-to- medium gravel shale | | 316 | NJGS files
Goethals Bridge
boring 24+79.33 | 0-18
18-25
at 25 | brown dirt or soil
red clay and sand
red shale | | 317 | NJGS files
Goethals Bridge
boring 27+42 | 0-23
23-34 | red clay
red shale | | 318 | 26-15643 | 0-35
35-40 | red-brown silty clayey coarse-to-fine sand red shale | | 319 | NJGS files
Goethals Bridge
boring 35+34 | 0-31
31-41
41-51 | red clay
gneiss and shale boulders
red shale | | 320 | NJGS files
Goethals Bridge
boring 40+81 | 0-11
11-22
22-60 | ash and sand
red sand and clay
red shale and sandstone | | 321 | NJGS files
Goethals Bridge
boring 49+96 | 0-9
9-36
36-41
41-45
45-53 | water
silt
sand, gravel
broken shale
red shale | | 322 | 26-30240 | 0-10
10-18
18-24
24-26 | sand, cinder, wood, gravel fill
dark brown peat and dark gray organic silt
reddish brown silt, clay, sand, gravel
reddish brown shale | | 324 | 26-29715 | abbreviated
0-13 | log
black to red-brown gravel, clay, sand fill | | | | 13-17
17- 29
29-32
at 32 | brown-gray meadow mat, little clay, trace silt
brown to gray clay and organics
red-brown fine-to-coarse gravel and clay
red-brown siltstone | |-----|--|--|--| | 325 | 26-20380 | 0-9
9-14
14-23
23-35
35-40 | red silty clay with fine sand and shale
brown and black peat
red silty fine sand trace medium-to-fine gravel
decomposed shale and rock fragments
red shale rock | | 326 | 26-26040 | abbreviated
0-10
10-19
19-20 | d log
dark brown cinders, construction debris
greenish, yellow, red silty clay, little sand, some gravel
red-brown silt and shale | | 327 | 26-29456 | 0-6
6-15
15-44 | brown to black sand and cinder fill
red-brown clayey sand
red-brown shale | | 328 | 26-29444 | abbreviated
0-11
11-19
19-22
at 22 | light gray to reddish brown silty clay and sand, some gravel and pebbles (fill) meadow mat and gray clay reddish brown fine sand shale | | 329 | 26-29443 | 0-7
7-14
14-21
21-49 | red-brown to black silty clay and sand fill
brown silty fine sand
red-brown clay with gravel
red-brown fractured shale | | 332 | 26-20126 | abbreviated
0-12
12-25
25-34
34-40 | brown, black, red-brown gravel, sand, silt, cinders, clay gray-black organic silt red-brown silt, some fine-to-coarse gravel, little fine-to-coarse sand, trace clay red siltstone | | 333 | 26-20122 | abbreviated
0-13
13-26
26-35
35-45 | black, brown, red-brown cinders, sand, gravel, silt, ashes gray organic silt red-brown silt, some fine-to-medium gravel, little fine-to coarse sand red siltstone | | 334 | 26-6308 | 0-10
10-17
17-18 | fillconcrete, sand, gravel, bricks
black organic silt and peat
weathered shale | | 344 | N 26-22-372 | 0-5
5-19
19-28
28-36
36-46
46-50
50-68 | fill fine red sand, some clay red clay with sand and gravel red clay red clayey fine-to-medium sand and gravel red clay, some shale fragments red shale | | 349 | NJGS files
Port Newark
boring 4B | 0-9
9-17
17-56
at 56 | soft meadow muck
sand and clay
red clay
shale | | 350 | NJGS files
Port Newark | 0-10
10-16 | soft meadow muck
sand and clay | | | boring 20B | 16-37
at 37 | red clay
shale | |-----|---|--|--| | 351 | NJGS files
Port Newark
boring 284 | 0-9
9-18
18-28
28-33
33-63
63-72
72-82 | cinders and sand (fill) organic silt sand sandy silt clay till shale | | 352 | NJGS files
Port Newark
boring 363 | 0-39
39-41
41-50
50-62
62-67 | water
organic silt
clay with gravel
clay
shale | | 353 | NJGS files
Port Newark
boring 280 | 0-18
18-29
29-38
38-65
65-79
79-87
87-97 | cinders, silt, clay
sand
silt and clay
clay
sandy silty clay
till
shale | | 357 | NJGS files
Port Newark
boring 223 | 0-5
5-48
48-53
53-77
77-83 | water
silty clay
silt
silty clay
shale | | 358 | Lovegreen, 1974
fig. 17 | 0-9
9-15
15-53
53-55 | gray organic silt
brown sand
reddish brown varved clay and silt
red sandstone | | 359 | Lovegreen, 1974
fig. 17 | 0-15
15-25
25-39 | gray organic silt
reddish brown varved clay and silt
red sandstone | | 360 | Lovegreen, 1974
fig. 17 | 0-9
9-18
18-54
54-59 | fill
gray organic silt
reddish brown varved clay and silt
red sandstone | | 361 | Lovegreen, 1974
fig. 17 | 0-18
18-26
26-60
60-61 | fill
brown sand
reddish brown varved clay and silt
red sandstone | | 362 | Lovegreen, 1974
fig. 17 | 0-14
14-18
18-53
53-55 | gray organic silt
brown sand
reddish brown varved clay and silt
red sandstone | | 363 | Lovegreen, 1974
fig. 17 | 0-8
8-15
15-35
35-38
38-41 | fill
gray organic silt
brown sand
reddish brown varved clay and silt
red sandstone | | 364 | Lovegreen, 1974
fig. 17 | 0-11
11-42
42-45
45-50 | gray organic silt
brown sand
reddish brown varved clay and silt
red sandstone | | 365 | Lovegreen, 1974
fig. 17 | 0-38
38-55
55-65 | gray organic silt
reddish brown varved clay and silt
red sandstone | |-----|---|---|--| | 366 | Lovegreen, 1974
fig. 17 | 0-30
30-47
47-92
92-101 | gray organic silt
gray sand
reddish
brown varved silt and clay
red sandstone | | 367 | Lovegreen, 1974
fig. 17 | 0-8
8-39
39-94
94-110 | fill
gray organic silt
reddish brown varved silt and clay
red sandstone | | 368 | Lovegreen, 1974
fig. 17 | 0-21
21-60
60-70 | gray organic silt
reddish brown varved silt and clay
red sandstone | | 369 | NJGS files
Newark Bay
boring 3025 | abbreviated
0-20
20-27
27-88
88-95
95-105 | log black organic silty clay and peat gray to reddish brown fine sand, trace silt and gravel red-brown varved silty clay red-brown silty clay, some gravel red shale | | 370 | NJGS files
Newark Bay
boring 3136 | abbreviated
0-30
30-43
43-105
105-114 | log brown fine sand fill brown to gray fine sand, little silt, trace gravel red-brown varved clayey silt to silty clay red shale | | 371 | NJGS files
Newark Bay
boring 3023 | abbreviated
0-20
20-40
40-90
90-93
93-113 | log
brown sand to black silty clay fill
gray organic silty clay, trace fine sand, trace shells
red-brown varved silty clay
red-brown clayey silt, trace gravel, trace red shale
red shale | | 372 | NJGS files
Newark Bay
boring 3103 | abbreviated
0-2
2-17
17-30
30-95
95-101
101-106 | water gray organic silty clay gray fine sand, little silt red-brown varved clayey silt red-brown clayey silt, trace red shale fragments red shale | | 373 | NJGS files
Newark Bay
boring 3098 | abbreviated
0-4
4-17
17-30
30-85
85-91
91-101 | water black to dark gray organic silty clay, trace fine sand, trace shells gray fine sand, trace silt and gravel red-brown varved silty clay red-brown clayey silt, trace gravel, little red shale red shale | | 374 | NJGS files
Newark Bay
boring 3042 | abbreviated
0-10
10-30
30-35
35-95
95-105 | water
gray to black organic silty clay, little shells and fine sand
brown coarse-to-fine sand, some gravel
red-brown varved silty clay
red shale | | 375 | NJGS files
Port Newark
boring 262 | 0-7
7-24
24-43
43-61 | water
organic silt and sandy silt
clayey silt
sandy silty clay | | | | 61-70
70-75 | till
shale | |-----|---|--|--| | 376 | NJGS files
Newark Bay
boring 3021 | abbreviated
0-3
3-24
24-95
95-100 | log
water
black, gray organic silty clay, trace fine sand
red-brown varved silty clay
gray sandstone, red shale, seamy | | 377 | NJGS files
Newark Bay
boring 3091 | abbreviated
0-2
2-20
20-25
25-89
89-96 | log water black organic silty clay, trace fine sand brown fine sand, trace silt and gravel red-brown varved silty clay red shale | | 378 | NJGS files
Port Newark
boring 27 | abbreviated
0-21
21-27
27-58
58-63 | log
organic silt
silty sand
silty clay
shale | | 380 | NJGS files
Port Newark
boring 4 | 0-7
7-18
18-22
22-34
34-39
39-54
54-63
63-69 | clayey silt organic silt and peat silty sand silt silty clay sandy silty clay till shale | | 381 | NJGS files
Port Elizabeth
boring 38 | 0-11
11-14
14-20
20-40
40-52
52-57 | organic silt organic sand sandy silt silty clay till shale | | 382 | NJGS files
Port Elizabeth
boring 6 | 0-12
12-20
20-43
43-62
62-72
72-77 | organic silt silty sand sandy silt sandy silty clay till shale | | 383 | NJGS files
Port Elizabeth
boring 20 | 0-18
18-29
29-36
36-49
49-53
53-63
63-72
72-79
79-84 | peat and organic silt sand silty sand silty clay clayey silt sandy silty clay silty clay till shale | | 384 | NJGS files
Port Elizabeth
boring 28 | 0-13
13-23
23-29
29-69
69-71
71-74
74-84 | organic silt silty sand sandy silt sandy silty clay silty clay till shale | | 385 | NJGS files
Port Elizabeth
boring 2 | 0-8
8-18
18-27 | organic silt and peat
silty sand
silty clay | | | | 27-32 | shale | |-----|--|--|---| | 386 | NJGS files | abbreviate | d log | | | Port Elizabeth | 0-15 | organic silt and peat | | | boring 11 | 15-27 | silty sand | | | | 27-33 | sandy silt | | | | 33-71 | silty clay | | | | 71-77 | till | | | | 77-85 | shale | | 207 | NICC #1 | -1-1 | 41 | | 387 | NJGS files
Port Elizabeth | abbreviate | • | | | | 0-9 | organic silt | | | boring 24 | 9-25 | silty sand | | | | 25-33 | sandy silt | | | | 33-60 | silty clay | | | | 60-61 | till | | | | 61-66
 | shale
 | | 388 | NJGS files | 0-13 | organic silt and peat | | | Port Elizabeth | 13-28 | silty sand | | | boring 34 | 28-39 | sandy silt | | | | 39-71 | silty clay | | | | 71-81 | till | | | | 81-101 | shale | | 389 | NJGS files | abbreviate | 2 | | | Port Elizabeth | 0-15 | organic silt and peat | | | boring 16 | 15-25 | silty sand | | | | 25-38 | sandy silt | | | | 38-77 | sandy silty clay | | | | 77-79 | decomposed shale | | | | 79-89 | shale | | 390 | NJGS files | abbreviate | d log | | | | | | | | Port Elizabeth | 0-11 | organic silt, sand, peat | | | Port Elizabeth
boring 32 | 11-23 | silty sand | | | | 11-23
23-35 | silty sand
sandy silt | | | | 11-23
23-35
35-70 | silty sand
sandy silt
silty clay | | | | 11-23
23-35
35-70
70-74 | silty sand
sandy silt
silty clay
till | | | | 11-23
23-35
35-70 | silty sand
sandy silt
silty clay | | 391 | boring 32 NJGS files | 11-23
23-35
35-70
70-74
74-79 | silty sand sandy silt silty clay till shale | | 391 | boring 32 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12 | silty sand sandy silt silty clay till shale d log organic silt and peat | | 391 | boring 32 NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand | | 391 | boring 32 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay | | 391 | boring 32 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand | | 391 | NJGS files Port Elizabeth boring 9 NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale | | | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat | | | NJGS files Port Elizabeth boring 9 NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand, sand silty clay decomposed shale | | | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand, sand silty clay decomposed shale | | | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand, sand silty clay decomposed shale | | | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand, sand silty clay decomposed shale | | | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty slay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale |
 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty sand to sandy silt silty clay decomposed shale d log organic silt and peat | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand silty clay | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth boring 36 | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84
84-95
95-110 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat shale till shale | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth boring 36 | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84
84-95
95-110 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand silty clay till shale | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth boring 36 NJGS files NJGS files NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84
84-95
95-110 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand silty clay till shale d log water | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth boring 36 | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84
84-95
95-110
abbreviate
0-7
7-22 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand silty clay till shale d log water gray organic silty clay, trace fine sand, trace shells | | 392 | NJGS files Port Elizabeth boring 9 NJGS files Port Elizabeth boring 22 NJGS files Port Elizabeth boring 36 NJGS files NJGS files NJGS files | 11-23
23-35
35-70
70-74
74-79
abbreviate
0-12
12-37
37-53
53-54
abbreviate
0-16
16-38
38-76
76-77
77-82
abbreviate
0-11
11-40
40-84
84-95
95-110 | silty sand sandy silt silty clay till shale d log organic silt and peat silty sand, sand silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale d log organic silt and peat silty sand to sandy silt silty clay decomposed shale shale d log organic silt and peat sand, silty sand silty clay till shale d log water | | | | 66-71 | brown and white sandstone, red shale | |-----|--|---|--| | 415 | NJGS files
U. S. Army
Corps of Engineers
boring 181 | 0-7
7-16
16-26
at 26 | water
sand and shells
clay and shale
shale | | 418 | NJGS files
U. S. Army
Corps of Engineers
boring 178 | 0-28
28-32
32-34
34-35
at 35 | water sand (Qm or Qal) hard gravel hard clay and shale shale rock | | 420 | NJGS files
U. S. Army
Corps of Engineers
boring 183 | 0-18
18-32
32-34
34-37
at 37 | water mud, sand, shells sand clay and shale shale | | 423 | NJGS files
U. S. Army
Corps of Engineers
boring 199 | 0-4
4-9
9-12
12-13
at 13 | water
sand
clay
clay and shale
shale rock | | 424 | NJGS files
Bayonne bridge
boring 70 | abbreviated
0-24
24-30 | log
red clay, sand, gravel
trap rock | | 426 | NJGS files
Bayonne bridge
boring 37 | abbreviated
0-8
8-14
14-16
16-19
19-29 | log cinders mud and silt gray fine sand sand and gravel trap rock | | 449 | NJGS files
Newark subway
boring 7A | 0-35
at 35 | sand, gravel
red shale and sandstone | | 452 | N 26-22-232 | foundation 6
0-25
25-39
at 39 | exposure shows glacial sand and gravel very compact, tough red stony clay till red sandstone | | 453 | NJGS files
Stickle bridge
boring 22 | 0-8
8-30
30-37
37-39
39-49 | water no log red silty sand and gravel red clay with fragments of red shale red sandy shale and argillaceous red sandstone | | 454 | NJGS files
Stickle bridge
boring 31 | 0-15
15-37
37-76
76-86 | no log, probably fill over
red clayey sand and gravel
red clayey silty very fine sand
red shale and sandstone | | 455 | 26-10495 | abbreviated
0-66
66-69 | log red hard silt, little fine-to-coarse sand, little gravel, trace clay red weathered shale | | 456 | NJGS files
Newark Bay
boring 3094 | abbreviated
0-95.7
95.7-100.7 | surficial material | | 457 | NJGS files
Newark Bay
boring 3020 | abbreviated
0-87
87-92 | log
surficial material
brown and gray sandstone – top of run
red shale, seamy bottom of run | |-----|---|------------------------------|--| | 458 | NJGS files | abbreviated | log | | | Newark Bay | 0-91 | surficial material | | | boring 3038 | 91-101.3 | gray sandstone | ¹Numbers of the form 26-xxxx are well permit numbers issued by the N. J. Department of Environmental Protection, Bureau of Water Allocation. Numbers of the form N 26-xx-xxx are N. J. Atlas Sheet grid locations of entries in the N. J. Geological Survey permanent note collection. The notation "NJGS files" indicates borings from various construction or dredging projects that are on file at the N. J. Geological Survey but that are not entered into the permanent note collection. The notation "BWA files" followed by a N. J. Atlas Sheet grid location indicates borings with logs in the Bureau of Water Allocation files that do not have well permit numbers. Notations of the form "Lovegreen, 1974" refer to logs provided in the cited publications. ²Depth in feet below ground or water surface. ³Inferred map units and comments by author in parentheses. All descriptions are reproduced as they appear in the original source, except for minor format, spelling, and punctuation changes. Notation "NR" indicates "not reported'. Logs identified as abbreviated have been condensed for brevity. Map units are inferred from the known extent of materials at the surface and from known depositional settings, in addition to the driller's descriptions.