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Figure 1.  Nomenclature of Paleozoic carbonate rock of previous workers, shown in the columns on 
left. This map follows the scheme proposed by Markewicz and Dalton (1977), along with the revised 
ages of the carbonate rocks due to changes in the International Stratigraphic Time Scale (U.S. Geo-
logical Survey, 2010) shown in the column on right. Dashed line indicates the Cambrian-Ordovician 
boundary which has been raised stratigraphically based on the acceptance of a Global Stratotype 
Section and Point for the base of the Ordovician System.

1,000

SEA LEVEL

-1,000

-2,000

FEET

2,000

A

1,000

SEA LEVEL

-1,000

-2,000

FEET

2,000

A’

-3,000 -3,000

3,000 3,000

Ve
rn

on
 V

al
le

y

E
as

t F
au

lt

P
oc

hu
ck

 F
au

lt

La
ke

 P
an

or
am

a 
Fa

ul
t

P
oc

hu
ck

 M
ou

nt
ai

n

W
al

lk
ill

 R
iv

er

R
ou

te
 2

3

C
ro

ok
ed

 S
w

am
p 

Fa
ul

t

Omr

Oj

O_e

Oo

_a
_r

Omb

Omr

Omb

_a

_a _a

_a

Oo
O_e

_r _a

Yu
Yu

_r

_l

_l

_l
_h

O_e

O_e
O_e

_r

O_e
Oo

_r _r
_a

Oo

_a

_l

Yu
_h

_h

Oj

Oj

_h

Ylo

Ylh

Yp Ylb

Ya

Ya

Ya

Ymp

Ym

Yfw

Yff

YffYpYm

_a

_l _l

_h_h

Yu Yu

Ym

Ylh

1,000

SEA LEVEL

-1,000

-2,000

FEET

2,000

B

-3,000

3,000

1,000

SEA LEVEL

-1,000

-2,000

FEET

2,000

B’

-3,000

3,000

W
al

lk
ill

 R
iv

er

Q
ua

rr
y 

Fa
ul

t

P
oc

hu
ck

 F
au

lt

H
am

bu
rg

 F
au

lt

E
as

t F
au

lt

H
am

bu
rg

 M
ou

nt
ai

ns

B
ea

ve
r R

un

C
ro

ok
ed

 S
w

am
p 

Fa
ul

t

?

?

?

Omr

Omb

Oj

Oj

Oo

Oo

O_e

_r

_a

O_e

Oo

O_e

Omb

_r

O_e

_a

Omb OoOw

Oj
Oo

_r

_a
Yu

_l
_h

_l
_h

Yu Ylo

Ylo

Ym

Ym

_l

_h

Yp
Yp

Ylb

Ylb

Ym

Ylb Ylb

_l _l _l

_h
_h_h

_a

Yff
Ybs

Ym

Ybh

Ybh

Ype
Ybs

Ymh
Ymh

Yk

Ybh

Ylo

Ylo

Ylh

Ylb

Ypa

Ymh

Yff

Ylo

Ylo

O_e

                                DESCRIPTION OF MAP UNITS

              Beemerville Intrusive Suite (Drake and Monteverde, 1992)

Lamprophyre dikes (Lower Silurian and Upper Ordovician) – Light-medium- to medium-
dark-gray, fine-grained to aphanitic dikes and small intrusive bodies of mainly alkalic 
composition. Contacts are typically chilled and sharp against enclosing country rock (fig. 
10). Dikes intrude rocks that are Mesoproterozoic through Ordovician in age. 

                                               VALLEY AND RIDGE

                                          Kittatinny Valley Sequence

Ramseyburg Member of the Martinsburg Formation (Upper Ordovician) - (Drake and 
Epstein, 1967) – Interbedded medium- to dark-gray to brownish-gray, fine- to medium-
grained, thin- to thick-bedded, locally quartz-rich, greywacke, sandstone and siltstone and 
medium- to dark-gray, laminated to thin-bedded shale and slate. Unit forms fining-upward 
sequences characterized by basal cross-bedded sandstone to siltstone grading upward 
through planar laminated siltstone into shale or slate. Locally, some of the fining-upward 
cycles may have a lower, medium- to thick-bedded, graded sandstone unit overlain by 
planar laminated sandstone to siltstone beneath the cross-bedded layer. Complete cycles 
may be an inch to several feet thick. Basal scour, sole marks, and soft-sediment distortion 
of beds are common in quartzose and graywacke sandstones. Lower contact with the 
Bushkill Member is placed at base of lowest thick- to very-thick-bedded graywacke, but 
contact locally grades through sequence of dominantly thin-bedded slate and minor thin- to 
medium-bedded discontinuous and lenticular graywacke beds in the Bushkill. Parris and 
Cruikshank (1992) correlated unit with Orthograptus ruedemanni zone to lowest part of 
Climacograptus spiniferus zone of Riva (1969, 1974) indicating an upper Shermanian age 
(Caradocian). Unit is approximately 3,500 feet thick.   

Bushkill Member of Martinsburg Formation (Upper Ordovician) (Drake and Epstein, 
1967) – Medium- to medium-dark-gray-weathering, dark-gray to black, thinly-laminated to 
medium-bedded shale and slate; less abundant medium-gray to brownish-gray-weathering, 
dark-gray to black, laminated to thin-bedded, graywacke siltstone. Unit forms fining-upward 
sequences characterized by either basal cross-bedded siltstone grading upward through 
planar laminated siltstone into slate, or laminated siltstone grading upward into slate. 
Locally, some of the fining-upward cycles may have a lower planar laminated siltstone 
beneath the cross-bedded layer. Complete cycles may be an inch to several feet thick 
and slate comprises the thickest part. Lower contact with the Jacksonburg Limestone 
is gradational, but commonly disrupted by thrust faulting. Parris and Cruikshank (1992) 
showed that regionally, the unit contains graptolites of zones Diplograptus multidens to 
Corynoides americanus (Riva, 1969, 1974), which they correlated with the Climacograptus 
bicornis zone to Climacograptus spiniferus subzone of Orthograptus amplexicaulis (Berry, 
1960, 1971, 1976; Finney, 1986) indicating a lower Shermanian (Caradocian) age. 
Parris and others (2001) described a graptolite and shelly fauna about 30 feet above the 
Jacksonburg Limestone from a site adjacent to the map area and indicated that the basal 
Bushkill correlates with the Corynoides americannus Subzone, slightly younger than the 
Climacograptus bicornis zone (Berry, 1960, 1971, 1976; Finney, 1986). Unit approximately 
1,500 feet thick.

Jacksonburg Limestone (Upper Ordovician) (Spencer and others, 1908, Miller, 
1937) – Medium-dark-gray-weathering, medium- to dark-gray, laminated to thin-bedded, 
argillaceous limestone (cement-rock facies) and minor arenaceous limestone. Grades 
downward into medium-bluish-gray-weathering, dark-gray, very-thin- to medium-bedded, 
commonly fossiliferous, interbedded fine- and medium-grained limestone and pebble-and-
fossil limestone conglomerate (cement-limestone facies). At places, the basal sequence 
contains a thick- to very-thick-bedded dolomite cobble conglomerate that has a limestone 
matrix. Locally, lower contact is conformable on the discontinuous carbonate facies of 
“Sequence at Wantage”.  Elsewhere, it is unconformable on rocks of the Beekmantown 
Group or the clastic facies of “Sequence at Wantage”. Weller (1903), based on extensive 
fossil collections from numerous localities throughout the region, correlated this unit to the 
lower Trenton of New York. Unit contains North American Midcontinent province conodont 
zones Phragmodus undatus to Aphelognathus shatzeri that range from Rocklandian to 
Richmondian ages (Sweet and Bergstrom, 1986). Harris and others (1995, p. 6) indicate 
the Jacksonburg is no older than the Plectodina tenuis zone (Kirkfieldian Stage). Unit is as 
much as 200 feet thick in the quadrangle. 

Sequence at Wantage (Upper Ordovician) (Monteverde and Herman, 1989) – Interbedded, 
very-thin- to medium-bedded limestone, dolomite, siltstone, and argillite. Upper carbonate 
facies is yellowish-brown to olive-gray-weathering, medium- to dark-gray, very-fine- to fine-
grained, laminated to medium-bedded limestone and dolomite. Rounded quartz sand occurs 
locally as floating grains and in very thin lenses. Lower clastic facies contains medium-gray, 
grayish-red to grayish-green, thin- to medium-bedded mudstone, siltstone, and fine-grained 
to pebbly sandstone. Fine-grained beds commonly contain minor disseminated, subangular 
to subrounded, medium-grained quartz sand and pebble-sized chert. Some coarse-grained 
beds are cross-bedded. Unit is restricted to lows on the paleoerosion surface of the Middle 
Ordovician unconformity. North American Midcontinent province conodonts within the 
carbonate facies, identified by Harris and others (1995, p. 6) indicate a Rocklandian or 
Kirkfieldian age. Unit may be as much as 150 feet thick in the quadrangle.

                Kittatinny Supergroup (Lower Ordovician and Cambrian)

Beekmantown Group – Ontelaunee and Epler Formations and Rickenbach 
                       Dolomite (Lower Ordovician and Upper Cambrian)

Ontelaunee Formation (Lower Ordovician) (Hobson, 1957) – Upper beds, locally preserved, 
are light- to medium-gray to yellowish-gray-weathering, light- to medium-gray, aphanitic to 
medium grained, thin- to thick-bedded, locally laminated, dolomite, slightly fetid. Medium- 
to dark-gray, fine-grained, medium-bedded, sparsely fossiliferous limestone lenses occur 
locally. Lower beds are medium- to dark-gray, medium- to coarse-grained, medium- to thick-
bedded dolomite, strongly fetid, and weather to a mottled surface. Contains pods and lenses 
of white, dark-gray to black chert. Cauliflower-textured black chert beds of varied thickness 
occur locally. Lower contact gradational and placed at top of laminated to thin-bedded 
dolomite of the Epler Formation.  Contains conodonts high in the Rossodus manitouensis 
zone to Oepikodus communis zone of the North American Midcontinent province as used by 
Sweet and Bergstrom (1986).  Unit correlates to Beekmantown Group, upper part of Drake 
and others (1996) (fig. 1). Thickness ranges from 0 to 400 feet in map area. 

Epler Formation (Lower Ordovican and Upper Cambrian) (Hobson, 1957) – Upper part is 
light-olive- to dark-gray, fine- to medium-grained, thin- to thick-bedded, locally laminated 
dolomite.  Middle part is olive-gray, light-brown, or dark-yellowish-orange-weathering, dark-
gray, aphanitic to fine-grained, laminated to medium-bedded dolomite and light-gray to 
light-bluish-gray-weathering, medium- to dark-gray, fine-grained, thin-to medium-bedded 
limestone, that is characterized by mottling and reticulate dolomite and light-olive-gray 
to grayish-orange-weathering, medium-gray dolomitic shale laminae surrounding the 
limestone lenses.  Limestone grades laterally and down section into medium-gray, fine-
grained dolomite.  Lower part is medium-light- to dark-gray, aphanitic to medium-grained, 
laminated to medium-bedded dolomite. Contains white and dark-gray chert lenses. Lower 
contact with the Rickenbach is placed at the transition from a massive, finely laminated, 
very-fine-`grained, dark gray dolomite to the underlying massive light gray, medium to 
coarse grained pitted dolomite. Contains conodonts of Cordylodus lindstomi to Rossodus 
manitouensis zones of the North American Midcontinent province as used by Sweet and 
Bergstrom (1986).  The Cambrian-Ordovician boundary, based on the final acceptance of 
the Global Stratotype Section and Point base (GSSP) for the Ordovician, at Green Point, 
Newfoundland (Cooper and others, 2001), now occurs within the lower third of the Epler, 
at the top of the Cordylodus lindstromi zone, within the fauna B as used in Karlins and 
Repetski (1989). Unit correlates to Beekmantown Group, lower part of Drake and others 
(1996) (fig. 1). Unit is approximately 420 feet thick in map area.

Rickenbach Dolomite (Upper Cambrian) (Hobson, 1957) – Upper part is medium- to dark-
gray, fine- to coarse-grained, medium- to thick-bedded dolomite, locally fetid, and weathers 
to a mottled surface. Contains pods and lenses of dark-gray to black chert near the upper 
contact and a distinctive thinly interbedded sequence of medium-grained dolomite with 
up to seven thin convex upward black chert layers occurs about 50 to 75 feet below the 
contact. Lower part is medium- to dark-gray, fine- to medium-grained, thin- to medium-
bedded dolomite.  Floating quartz sand grains and quartz-sand stringers occur in the basal 
part of unit.  Lenses of light-gray, coarse- to very-coarse-grained dolomite locally occur 
throughout the unit.  Lower contact with the Allentown is placed at top of distinctive medium-
gray quartzite.  Contains conodonts of Cordylodus proavus to Cordylodus lindstomi zones 
of North American Midcontinent province, as used by Sweet and Bergstrom (1986). Unit 
correlates to Beekmantown Group, lower part of Drake and others (1996) (fig. 1). Unit may 
be as much as 300 ft. thick in the quadrangle. 

Allentown Dolomite (Upper Cambrian) (Wherry, 1909) – Upper sequence is light- to 
medium-gray-weathering, medium-light- to medium-dark-gray, fine- to medium-grained, 
locally coarse-grained, medium- to very-thick-bedded dolomite; local shaly dolomite near 
the bottom. Floating quartz sand and two sequences of medium-light- to very-light-gray, 
medium-grained, thin-bedded quartzite and discontinuous dark-gray chert lenses occur 
directly below upper contact. Lower sequence is medium- to very-light-gray weathering, 
light- to medium-dark-gray, fine- to medium-grained, thin- to medium-bedded dolomite 
and shaly dolomite. Weathered exposures characterized by alternating light- and dark-
gray beds. Ripple marks, oolites, algal stromatolites, cross-beds, edgewise conglomerate, 
mud cracks, and paleosol zones occur throughout but are more abundant in the lower 
sequence (fig. 11). Unit grades down into the Leithsville Formation. Howell (1945) describes 
Trempealeauian (Late Cambrian) faunas, in the upper part of the formation, from Newton 
and Blairstown, New Jersey. At Carpentersville the lower part contains a trilobite fauna of 
Dresbachian (early Late Cambrian) age (Weller, 1903; Howell, 1945). Unit is approximately 
1,800 ft. thick in map area.

Leithsville Formation  (Middle and Lower Cambrian) (Wherry, 1909) – Upper sequence, 
seldom exposed, is mottled, light- to medium-dark-gray-weathering, medium- to medium-
dark-gray, fine- to medium-grained, medium- to thick-bedded dolomite, locally pitted and 
friable. Middle sequence is grayish-orange to light- to dark-gray to grayish-red to light-
greenish- to dark-greenish-gray-weathering, aphanitic to fine-grained, thin- to medium-
bedded dolomite, argillaceous dolomite, dolomitic shale, quartz sandstone, siltstone and 
shale (fig. 12). Lower sequence is light- to medium-gray-weathering, medium-gray, fine- to 
medium-grained, thin- to medium-bedded dolomite. Quartz-sand lenses occur near lower 
gradational contact with Hardyston Quartzite. Archaeocyathids of Early Cambrian age 
were found in the formation nearby in Franklin, New Jersey, suggesting an intraformational 
disconformity between Middle and Early Cambrian time (Palmer and Rozanov, 1967; 
McMenamin and others, 2000).  Unit also contains Hyolithellus micans (Offield, 1967; 
Markewicz, 1968). Howell (1945) identified as a Dresbachian (early Late Cambrian) fauna 
in the shaly member of the Leithsville Formation at Peapack, New Jersey. Thickness is 
approximately 600 feet in map area. 

Hardyston Quartzite (Lower Cambrian) (Wolff and Brooks, 1898) – Medium- to light-gray, 
fine- to coarse-grained, medium- to thick-bedded quartzite, arkosic sandstone and dolomitic 
sandstone. Unconformably overlies Neoproterozoic and Mesoproterozoic rocks (fig. 13). 
Elsewhere, contains Scolithus linearis(?) and fragments of the trilobite Olenellus thompsoni 
of Early Cambrian age (Nason, 1891; Weller, 1903). Thickness in map area ranges from 5 
to 100 feet but rarely exceeds 20 feet. 

                                         NEW JERSEY HIGHLANDS

Chestnut Hill Formation (Neoproterozoic) – Interbedded sequence of reddish-brown, gray, 
or buff, medium-grained, thin-bedded quartz-pebble conglomerate, ferruginous sandstone, 
chloritic siltstone, quartzite, and phyllite. Thickness in the map area ranges from 20 to 50 
feet. 

Mount Eve Granite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-white 
or light-pinkish-gray, medium- to coarse-grained, massive, unfoliated granite composed 
principally of microcline microperthite, quartz, oligoclase, hornblende, and biotite. Locally 
contains xenoliths of foliated country rock. Unit includes bodies of pegmatite too small to be 
shown on the map. 

                           Vernon Supersuite (Volkert and Drake, 1998)

                       Byram Intrusive Suite (Drake and others, 1991b)

Hornblende granite (Mesoproterozoic) – Pinkish-gray to buff-weathering, pinkish-white 
or light-pinkish-gray, medium- to coarse-grained, foliated granite and sparse granite 
gneiss composed principally of microcline microperthite, quartz, oligoclase, hornblende, 
and magnetite. Some variants are quartz syenite or quartz monzonite. Locally contains 
clinopyroxene where in contact with rocks of the Lake Hopatcong Intrusive Suite. Unit 
includes small bodies of pegmatite too small to be shown on the map. 

Microperthite alaskite (Mesoproterozoic) – Buff or pale-pinkish-white-weathering, pinkish-
gray to light-grayish-tan, or pinkish-white, medium- to coarse-grained, foliated granite 
composed of microcline microperthite, quartz, and oligoclase, Locally contains hornblende 
and magnetite. 

Hornblende monzonite (Mesoproterozoic) – Tan to buff-weathering, pinkish-gray or 
greenish-gray, medium- to coarse-grained, foliated monzonite and, less commonly, quartz 
monzonite composed of microcline microperthite, oligoclase, hornblende, and magnetite. 
Locally contains quartz. Sparse to moderate amounts of clinopyroxene may be present 
where in contact with rocks of the Lake Hopatcong Intrusive Suite. 

                 Lake Hopatcong Intrusive Suite (Drake and Volkert, 1991)      

Pyroxene granite (Mesoproterozoic) – Light-gray to buff or white-weathering, greenish-
gray, medium- to coarse-grained, massive, foliated granite composed of mesoperthite 
to microantiperthite, quartz, oligoclase, and clinopyroxene. Commonly contains titanite, 
magnetite, apatite, and pyrite. Sparse to moderate amounts of hornblende may be present 
where in contact with rocks of the Byram Intrusive Suite. Unit includes small bodies of 
pegmatite too small to be shown on the map. 

Pyroxene alaskite (Mesoproterozoic) – Light-gray or tan-weathering, greenish-buff to light-
pinkish-gray, medium- to coarse-grained, massive, foliated granite composed of mesoperthite 
to microantiperthite, oligoclase, and quartz. Commonly contains clinopyroxene, titanite and 
magnetite. 

Pyroxene monzonite (Mesoproterozoic) – Gray to buff or tan-weathering, greenish-
gray, medium- to coarse-grained, massive, foliated rock composed of mesoperthite to 
microantiperthite, oligoclase, clinopyroxene, titanite and magnetite. May contain sparse to 
moderate amounts of hornblende where in contact with rocks of the Byram Intrusive Suite. 

                                   Back-Arc Basin Supracrustal Rocks

Potassic feldspar gneiss (Mesoproterozoic) – Light-gray- or pinkish-buff-weathering, 
pinkish-white or light-pinkish-gray, medium-grained and locally coarse-grained, foliated 
gneiss composed of quartz, microcline microperthite, and oligoclase. Commonly contains 
biotite, garnet, sillimanite, and magnetite. 

Microcline gneiss (Mesoproterozoic) – Pale pinkish-white-weathering, tan to pinkish-
white, fine- to medium-grained, layered and foliated rock composed of quartz, microcline 
microperthite, oligoclase, and biotite. Common accessory minerals include garnet, magnetite 
and sillimanite. Locally contains conformable clots and lenses of partial melt. Well exposed 
on Pochuck Mountain, where unit is intercalated with amphibolite. 

Hornblende-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray to buff-weathering, 
light-pinkish-white to pinkish-gray, medium-grained, massive to moderately well layered and 
foliated gneiss containing microcline, quartz, oligoclase, hornblende, and magnetite. Locally 
contains garnet and biotite. 

Clinopyroxene-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray- or pinkish-buff- 
weathering, white, pale-pinkish-white, or light-gray, medium-grained and locally coarse-
grained, foliated gneiss composed of quartz, microcline, oligoclase, clinopyroxene, and 
trace amounts of epidote, biotite, titanite, and magnetite. 

Pyroxene gneiss (Mesoproterozoic) – White- or tan-weathering, greenish-gray, medium-
grained, layered and foliated gneiss containing oligoclase, clinopyroxene, and titanite. Locally 
contains quartz, epidote, scapolite, or calcite. Mafic variants (Yap) containing abundant 
hornblende, clinopyroxene, and titanite are interlayered with quartz-poor pyroxene gneiss. 
Unit is spatially associated with amphibolite and marble. 

Pyroxene-epidote gneiss (Mesoproterozoic) – Light greenish-gray to greenish-pink-
weathering, pale pinkish-white to light-gray to light-greenish-gray, medium-grained, layered 
and foliated gneiss composed of quartz, oligoclase, pyroxene, epidote, microcline, titanite, 
and magnetite. Locally contains scapolite and trace amounts of calcite. Unit grades into 
clinopyroxene-quartz-feldspar gneiss with a decrease in epidote. 

Franklin Marble and Wildcat Marble (Mesoproterozoic) – White- to light-gray-weathering, 
white or grayish-white, coarse-crystalline, calcitic to locally dolomitic marble with accessory 
graphite, phlogopite, amphibole, clinopyroxene and chondrodite. Separated by New Jersey 
Zinc Company geologists (Hague and others, 1956) into a lower Franklin marble layer 
(Yff) and an upper Wildcat marble layer (Yfw), separated by gneiss. Locally contains relict 
karst features in the form of bedrock pinnacles, solution caves, and paleo-solution breccia. 
Franklin Marble layer is host rock for Zn-Fe-Mn deposits at the Franklin and Sterling Hill 
mines to the south, in the Franklin quadrangle. 

                                               Magmatic Arc Rocks

           Losee Metamorphic Suite (Drake, 1984; Volkert and Drake, 1999)

Quartz-oligoclase gneiss (Mesoproterozoic) – White-weathering, light-greenish-gray, 
medium- to coarse-grained, foliated gneiss composed of oligoclase or andesine, quartz, 
and varied amounts of hornblende, biotite and clinopyroxene. Locally intercalated with 
amphibolite. 

Biotite-quartz-oligoclase gneiss (Mesoproterozoic) – White- or light-gray-weathering, 
medium-gray or greenish-gray, medium- to coarse-grained, layered and foliated gneiss 
composed of oligoclase or andesine, quartz, biotite, and local garnet. Some outcrops 
contain hornblende. 

Hornblende-quartz-oligoclase gneiss (Mesoproterozoic) – Unit consists of two main 
variants. At Hamburg Mountain, unit is white weathering, light-greenish-gray, medium- to 
coarse-grained, foliated gneiss containing oligoclase or andesine, quartz, hornblende, and 
magnetite. This variant is spatially associated with quartz-oligoclase gneiss. At Pochuck 
Mountain, unit is gray-weathering, greenish-gray, medium-grained, well-layered gneiss 
containing oligoclase or andesine, quartz, hornblende, biotite, and magnetite. This variant 
is interlayered with biotite-quartz-plagioclase gneiss and amphibolite. Both variants contain 
local clinopyroxene. 

Hypersthene-quartz-plagioclase gneiss (Mesoproterozoic) – Gray or tan-weathering, 
greenish-gray to greenish-brown, medium-grained, greasy-lustered, foliated gneiss 
composed of andesine or oligoclase, quartz, clinopyroxene, hornblende, and orthopyroxene. 
Commonly intercalated with amphibolite and mafic-rich quartz-plagioclase gneiss. 

                                                      Other Rocks

Amphibolite (Mesoproterozoic) – Grayish-black, fine- to medium-grained, foliated rock 
composed of hornblende, andesine and local clinopyroxene. Most amphibolite is interpreted 
to be metavolcanic, and amphibolite east of Glenwood Lake contains relict pillow structures 
(Hague and others, 1956; Volkert and others, 1986). Some amphibolite layers within 
metasedimentary rocks may be metasedimentary in origin. Unit is associated with rocks of 
the Losee Suite and with supracrustal rocks; both types are shown undivided on the map. 
Unit is exposed throughout Pochuck Mountain. 

Hornblende-pyroxene skarn (Mesoproterozoic) – Greenish-black, medium- to coarse-
grained, poorly foliated rock composed mainly of hornblende and clinopyroxene. Grades 
into massive, dark-green, nearly monomineralic clinopyroxene skarn, with both rock types 
spatially associated with quartz-poor pyroxene gneiss. Unit occurs as a single body on 
Pochuck Mountain.  

Mesoproterozoic rocks, undifferentiated – Shown in cross section only.

Omr

Omb

Oj

Ow

Oo

O_e

_r

_a

_l

Zch

Ygm

Ybh

Yba

Ybs

Ypg

Ypa

Ylo

Ylb

Ylh

Yh

Yk

Ym

Ymh

Ymp

Yp/Yap

Ype

Yff/Yfw

Ya

Ysk

Yu

_h

SOl

Yps

105 15 20

10 51520

15

20

10

5

5

10

15

20

N

%

N = 781
Circle = 23%

Figure 2. Rose diagram of bedding strikes in the Paleozoic rocks.  N is the num-
ber of surfaces analyzed on this and subsequent figures.
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Figure 3. Rose diagram bedding dips in the Paleozoic rocks.
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Figure 4. Rose diagram of cleavage strikes in the Paleozoic rocks.
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Figure 5. Rose diagram of cleavage dips in the Paleozoic rocks.
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Figure 6. Rose diagram of foliation strikes in the Proterozoic rocks.
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Figure 7. Rose diagram of joint strikes in the Paleozoic rocks.
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Figure 8. Rose diagram of joint dips in the Paleozoic rocks.
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Figure 9. Rose diagram of joint strikes in the Proterozoic rocks.

Figure 11. Stromatolites on a glacially polished bedding plane surface in the Allentown Dolomite. 
The near horizontal lines (grooves) which parallel the hammerhead are glacial striae. (Donald 
Monteverde)

Figure 10. Cross cutting relationships between a Lamprophyre dike striking N30oW and dipping 90o 
cutting microcline gneiss and fault related breccia veins striking N70oE and dipping 70oS.  Notice the 
sharp contact between the dike and the country rock. (Richard Volkert)
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Figure 13. Angluar unconformity at hammerhead between Hardyston Quartzite (top right) and bio-
tite-quartz-oligoclase gneiss (lower left). (Richard Volkert)

Map Area

Figure 14. Pink-granite pegmatite cutting folded foliation of biotite-quartz-oligoclase gneiss at the 
Hamburg Quarry. (Richard Volkert)
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Mesoproterozoic rocks undivided

Figure 12.  Cross section, based on five New Jersey Zinc (NJZ) Company borings, showing an open 
fold in the Hardyston Quartzite and Leithsville Formation. Note the green siltstone maker bed of NJZ 
is the middle sequence of the Leithsville.  Revised from New Jersey Zinc Company drawings (1953) 
on file at the New Jersey Geological and Water Survey.
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Contact - Dotted where concealed.  Queried where uncertain.

Fault - Dotted where concealed.  Queried where uncertain.  

Normal fault - U, upthrown side; D, downthrown side

Reverse fault - U, upthrown side; D, downthrown side

Inclined thrust fault - teeth on upper plate

Brittle deformation zone

FOLDS

Folds in Proterozoic rocks showing trace of axial surface, direction and dip of limbs, and direction 
of plunge.  Dotted where concealed.

Antiform

Synform

Overturned antiform

Overturned synform

Minor asymmetric fold

Folds in Paleozoic rocks showing trace of axial surface, direction and dip of limbs, and direction of 
plunge.  Folds in bedding and/or cleavage.  Dotted where concealed.

Anticline

Syncline

Gently inclined to recumbent anticline

Gently inclined to recumbent syncline

PLANAR FEATURES

Strike and dip of crystallization foliation

Inclined

Vertical

Strike and dip of beds 

Inclined

Vertical

Overturned

Strike and dip of cleavage in Paleozoic rocks

Strike and dip of parallel bedding and slaty cleavage

LINEAR FEATURES

Bearing and plunge of intersection of bedding and cleavage in Paleozoic rocks

Bearing and plunge of mineral lineation in mesoproterozoic rocks

OTHER FEATURES

Abandoned mine - Fe, magnetite; H, hematite; L, limonite and brown hematite

Active rock quarry

Bore hole and Figure 12

Figures 10, 11, 13, 14

Form line showing foliation in Mesoroterozoic rocks. Shown in cross section only.
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INTRODUCTION 
 

The Hamburg quadrangle is located in 
northeastern Sussex County, where it spans the border 
between the New Jersey Highlands and the Kittatinny 
Valley segment of the Appalachian Valley and Ridge 
physiographic provinces. Mesoproterozoic rocks of 
the Highlands underlie the eastern part of the 
quadrangle, and lower Paleozoic rocks of the Valley 
and Ridge underlie the western part. All geologic age 
designations conform to U.S. Geological Survey 
Geologic Names Committee (2010) Fact Sheet 2010-
3059. 

  
This map provides detailed geologic information 

on the distribution and lithologic character of the 
various bedrock types and the structures that affect 
them. It provides a geologic framework for geologic 
and environmental investigations, as well as for the 
hydrogeologic characterization of the Cambrian 
through Ordovician carbonate rocks that constitute 
the most productive bedrock aquifer in the map area. 
Additionally, new interpretations of bedrock geologic 
relationships have rendered some previous work 
obsolete. Therefore, the interpretations presented here 
supersede those shown on previous bedrock geologic 
maps of the quadrangle. 

   
Previous work on the bedrock geology of the 

quadrangle includes that of Bayley and others (1914), 
Hague and others (1956), Buddington and Baker 
(1961), and Drake and others (1996). In addition to 
the previous bedrock mapping, Stanford and others 
(1998) mapped the surficial deposits of the 
quadrangle.                         

 
STRATIGRAPHY 

 
Paleozoic rocks 

 
The youngest Paleozoic rocks in the quadrangle 

include lamprophyre dikes and related rocks of Lower 
Silurian to Upper Ordovician age of the Beemerville 
Intrusive Suite (Drake and Monteverde, 1992) that 
intrude rocks ranging from Upper Ordovician through 
Mesoproterozoic age mainly in the southern half of 
the map, from McAfee south to Hardistonville. Dikes 
strike predominantly northwest. Biotite from 
nepheline syenite at Beemerville yields an Rb-Sr and 
K-Ar cooling age of 435 ± 20 Ma (Zartman and 
others, 1967). Eby (2004) obtained a titanite fission-
track age from nepheline syenite at Beemerville of 
420 ± 6 Ma. Biotite in a minette dike from the 
adjacent Branchville quadrangle, collected by the 
New Jersey Geological Survey and analyzed by the 

U.S. Geological Survey (Charles Milton, written 
communication, 1972), yields a K-Ar cooling age of 
422 ± 14 Ma. More recently, titanite from nepheline 
syenite at Beemerville yields a Thermal Ionization 
Mass Spectrometry (TIMS) U-Pb crystallization age 
of 447 ± 2 Ma (Ratcliffe and others, 2012).  

 
 Cambrian and Ordovician rocks of the 

Kittatinny Valley sequence crop out in lowland areas 
mainly west of Pochuck Mountain and are preserved 
along faults north and west of Hamburg Mountain. 
These rocks previously were considered part of the 
Lehigh Valley sequence of MacLachlan (1979), but 
were later reassigned to the Kittatinny Valley 
sequence by Drake and others (1996). They consist of 
the Hardyston Quartzite; the Kittatinny Supergroup 
(fig. 1 on map), which includes the Leithsville 
Formation, Allentown Dolomite, and Beekmantown 
Group; the Sequence at Wantage; the Jacksonburg 
Limestone; and the Martinsburg Formation. These 
sedimentary rocks record the formation of the eastern 
Laurentian passive margin and the approaching 
Taconic orogenic events.  Hardyston sandstone marks 
the beginning of a major marine transgression along 
the entire eastern Laurentian margin.  Conditions of 
the margin evolved to allow deposition of shallow 
water carbonate rocks of the Kittatinny Supergroup.  
Dominated by dolomite these units were originally 
deposited as limestones.  Few limestone beds remain 
and can only be found in the Beekmantown Group 
sediments.  The secondary dolomitization locally still 
preserves some of the original sedimentology, such as 
oolites and cross beds.  The approaching Taconic 
orogenic event is first noted by uplift and erosion of 
the Kittatinny Supergroup as the peripheral bulge of 
the approaching foreland basin arrives.  The margin 
subsequently resubmerged as evidenced by deposition 
of the Sequence at Wantage and Jacksonburg 
Limestone.  The foreland basin continued to deepen 
allowing the flysch deposition of the Martinsburg 
Formation.   

 
The Taconic collisional event caused cessation of 

sedimentation as the region was uplifted and de-
formed.  Folding and minor faulting of the sedimen-
tary rocks in the mapped region mark the Taconian 
event.  Subsequent deformation of the younger Alle-
ghanian orogenic event left a much stronger defor-
mational impact on the geology of the mapped area as 
evidenced by more intense folding and thrust faulting.   
 

Neoproterozoic rocks 
 
Unmetamorphosed coarse- to fine-grained clastic 

rocks, and less abundant felsic volcanic rocks, of the 
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Chestnut Hill Formation of Neoproterozoic age 
(Drake, 1984; Gates and Volkert, 2004) are sparsely 
preserved throughout the New Jersey Highlands. In 
the map area they crop out at two places near 
McAfee, where they host small deposits of hematite, 
and at a single location on Pochuck Mountain, east of 
Wallkill Lake. At McAfee the Chestnut Hill For-
mation unconformably overlies Mesoproterozoic 
Franklin Marble and is unconformably overlain by 
the Lower Cambrian Hardyston Quartzite. On Po-
chuck Mountain the Chestnut Hill unconformably 
overlies Mesoproterozoic gneiss. Rocks of the Chest-
nut Hill Formation were formed from alluvial, fluvial, 
and lacustrine sediments, and volcanic rocks depos-
ited in a series of small sub-basins along the eastern 
Laurentia rifted margin, in the present-day Highlands 
(Volkert and others, 2010a). 

 
Mesoproterozoic rocks 

 
Mesoproterozoic rocks in the map area consist of 

an assemblage of granites, gneisses, and marble. Most 
Mesoproterozoic rocks were metamorphosed to gran-
ulite facies during the Ottawan orogeny at 1045 to 
1024 Ma (Volkert and others, 2010b). Temperature 
estimates for this high grade metamorphism are con-
strained from regional calcite-graphite geothermome-
try to 769oC (Peck and others, 2006). 

  
The oldest Mesoproterozoic rocks in the area are 

calc-alkalic rocks of the Losee Metamorphic Suite 
that formed in a continental-margin magmatic arc, 
and a thick assemblage of supracrustal metavolcanic 
and metasedimentary rocks that formed in a back arc 
basin inboard of the Losee arc (Volkert, 2004). The 
Losee Metamorphic Suite includes plutonic rocks that 
are tonalite gneiss and diorite gneiss, and a layered 
sequence of metamorphosed volcanic rocks formed 
from dacite, andesite, rhyolite, and basalt protoliths 
(Volkert and Drake, 1999). Rocks of the Losee 
Metamorphic Suite yield sensitive high-resolution ion 
microprobe (SHRIMP) U-Pb zircon ages of 1282 ± 7 
to 1248 ± 12 Ma (Volkert and others, 2010b).  

 
Rocks of the Losee Metamorphic Suite are 

spatially and temporally associated with supracrustal 
rocks that include a bimodal suite of felsic and mafic 
metavolcanic rocks that are rhyolite gneiss and 
amphibolite, respectively, and metasedimentary rocks 
that include quartzofeldspathic gneisses, calc-silicate 
rocks, and marble. Metavolcanic rocks are most 
abundant in the area of Pochuck Mountain. 
Supracrustal rhyolite gneiss yields U-Pb (SHRIMP) 
zircon ages of 1299 ± 8 to 1251 ± 6 Ma (Volkert and 

others, 2010b) that overlap ages of rocks of the Losee 
Suite. 

  
Granite and related rocks of the Byram and Lake 

Hopatcong Intrusive Suites intrude rocks of the Losee 
Metamorphic Suite and supracrustal rocks. Plutonic 
variants of both granite suites are abundantly exposed 
on Hamburg Mountain, near Vernon, which is desig-
nated as the type section of the Vernon Supersuite 
(Volkert and Drake, 1998). Byram and Lake 
Hopatcong rocks form a complete differentiation se-
ries that includes monzonite, quartz monzonite, gran-
ite, and alaskite, all of which have a distinctive A-
type geochemical composition (Volkert and others, 
2000). Granites of both suites yield similar U-Pb 
(SHRIMP) zircon ages of 1188 ± 6 to 1182 ± 11 Ma 
(Volkert and others, 2010b).  

 
The youngest Mesoproterozoic rocks in the area 

are post-orogenic potassic granites and granite 
pegmatites that are undeformed, contain xenoliths of 
foliated gneiss, and intrude other Mesoproterozoic 
rocks in the map area as tabular to irregular bodies 
that are discordant to metamorphic foliation. The 
most abundant of these is the Mount Eve Granite that 
forms two prominent intrusive bodies known as 
Mount Adam and Mount Eve directly north of the 
map area, as well as more than 30 smaller bodies in 
adjacent areas. In the Hamburg quadrangle, Mount 
Eve Granite is confined to the northern part of 
Pochuck Mountain, whereas pegmatites are more 
widespread. Mount Eve Granite has an A-type 
geochemical composition that is similar to that of the 
Byram and Lake Hopatcong rocks (Gorring and 
others, 2004) and compositions that range from 
granite to syenogranite (Drake and others, 1991a). 

 
Mount Eve Granite from Mount Adam yields a 

zircon U-Pb age of 1020 ± 4 Ma (Drake and others, 
1991a), and from Mt. Eve a zircon U-Pb age of 1019 
± 4 Ma (Volkert and others, 2010b). Small bodies of 
granite north of the map area yield a zircon U-Pb age 
of 1004 ± 3 Ma, and pegmatites from elsewhere in the 
Highlands yield zircon U-Pb ages of 990 to 986 ± 4 
Ma (Volkert and others, 2005). 
 

STRUCTURE 
 

Paleozoic bedding and cleavage 
 
Bedding in the Paleozoic formations is fairly 

uniform and strikes northeast at an average of 
N.36oE. (fig. 2 on map). Most beds are upright and 
dip northwest and less commonly southeast (fig. 3 on 
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map), and locally are overturned steeply southeast. 
Beds range in dip from 3o to 90o and average 44o. 

  
Cleavage develops in finer grained sedimentary 

rocks or where localized faulting is present. Average 
strike of cleavage is N.39oE. (fig. 4 on map), and dips 
range from 10o to 90o and average 56o. Generally 
cleavage is southeast dipping (fig. 5 on map) but 
some vertical to northwest dips occur. Locally a 
crenulation cleavage or second spaced cleavage has 
been observed in some units in the map area.  

 
Proterozoic foliation 

 
Crystallization foliation in the Mesoproterozoic 

rocks is formed by the parallel alignment of 
constituent mineral grains and it defines the trend of 
the bedrock units. Foliations strike mainly northeast 
at an average of N.25oE. (fig. 6 on map). They dip 
southeast, and locally northwest, at 11o to 90o and 
average 59o.   

 
Joints 

 
Joints are a common feature in Paleozoic and 

Mesoproterozoic rocks. They are characteristically 
planar, moderately well formed, and moderately to 
steeply dipping. Surfaces are typically unmineralized, 
except near faults, and are smooth and, less 
commonly, slightly irregular. Joints are variably 
spaced from a foot to tens of feet. Those developed in 
massive rocks, such as Mesoproterozoic granite or 
Paleozoic carbonate and quartzite, tend to be more 
widely spaced, irregularly formed and discontinuous 
than joints in Mesoproterozoic layered gneisses and 
fine-grained Paleozoic rocks. Joints formed near 
faults are spaced 2 feet or less. 

   
In the Paleozoic rocks, northwest-trending cross 

joints are the most common. They strike an average 
of N.56oW. (fig. 7 on map), and dip mainly northeast 
at an average of 69o (fig. 8 on map).  The dominant 
joint trend in Mesoproterozoic rocks strikes 
northwest at an average of N.64oW. (fig. 9 on map), 
and dips southwest, and less commonly, northeast. A 
subordinate set strikes about N.15oE. and dips 
southeast, and less commonly, northwest. The dip of 
all joints ranges from 31o to 90o and averages 75o. 

 
ECONOMIC RESOURCES 

 
Mesoproterozoic rocks in the quadrangle host 

economic deposits of magnetite that were mined 
mainly during the early 19th century at the Copperas 
or Green and Bird mines. Descriptions of these mines 

are given in Bayley (1910). Limonite and brown 
hematite deposits were mined at the Pochuck and 
Edsall mines in the 19th century (Bayley, 1910), most 
likely from Mesoproterozoic rocks as well, although 
descriptions of the host rocks are ambiguous and no 
dump material is available for inspection. Earthy 
hematite was mined during the 19th century from 
Neoproterozoic rocks of the Chestnut Hill Formation 
at the Cedar Hill and Simpson mines. Detailed 
descriptions of these mines are given in Bayley 
(1910) and Volkert and others (2010a). 

 
Mesoproterozoic marble was quarried mainly 

during the 19th and early 20th centuries at numerous 
locations from McAfee south to Hardistonville. 
Rocks of the Losee Metamorphic Suite are presently 
being quarried north of Hamburg. Paleozoic dolomite 
is currently commercially quarried from a single 
location near the edge of the map at Beaver Run. 
Numerous small farm quarries in the dolomite were 
encountered during mapping of the quadrangle. 

 
Deposits of sand and gravel of glaciogenic origin 

were mined from numerous locations throughout the 
map area.  
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