
Muller‑Girard et al. 
BMC Ecology and Evolution          (2022) 22:137  
https://doi.org/10.1186/s12862‑022‑02083‑w

RESEARCH

A novel SNP assay reveals increased 
genetic variability and abundance 
following translocations to a remnant Allegheny 
woodrat population
Megan Muller‑Girard1, Gretchen Fowles2, Joseph Duchamp3, Samantha Kouneski4, Cheryl Mollohan5, 
Timothy J. Smyser6, Gregory G. Turner7, Bradford Westrich8 and Jacqueline M. Doyle4* 

Abstract 

Background: Allegheny woodrats (Neotoma magister) are found in metapopulations distributed throughout the 
Interior Highlands and Appalachia. Historically these metapopulations persisted as relatively fluid networks, ena‑
bling gene flow between subpopulations and recolonization of formerly extirpated regions. However, over the past 
45 years, the abundance of Allegheny woodrats has declined throughout the species’ range due to a combination of 
habitat destruction, declining hard mast availability, and roundworm parasitism. In an effort to initiate genetic rescue 
of a small, genetically depauperate subpopulation in New Jersey, woodrats were translocated from a genetically 
robust population in Pennsylvania (PA) in 2015, 2016 and 2017. Herein, we assess the efficacy of these translocations 
to restore genetic diversity within the recipient population.

Results: We designed a novel 134 single nucleotide polymorphism panel, which was used to genotype the six 
woodrats translocated from PA and 82 individuals from the NJ population captured before and after the transloca‑
tion events. These data indicated that a minimum of two translocated individuals successfully produced at least 13 
offspring, who reproduced as well. Further, population‑wide observed heterozygosity rose substantially following 
the first set of translocations, reached levels comparable to that of populations in Indiana and Ohio, and remained 
elevated over the subsequent years. Abundance also increased during the monitoring period, suggesting Pennsylva‑
nia translocations initiated genetic rescue of the New Jersey population.

Conclusions: Our results indicate, encouragingly, that very small numbers of translocated individuals can success‑
fully restore the genetic diversity of a threatened population. Our work also highlights the challenges of managing 
very small populations, such as when translocated individuals have greater reproductive success relative to residents. 
Finally, we note that ongoing work with Allegheny woodrats may broadly shape our understanding of genetic rescue 
within metapopulations and across heterogeneous landscapes.
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Background
Landscape-scale anthropogenic disturbance can cause 
habitat loss and fragmentation, thereby spatially isolat-
ing local wildlife populations and impeding functional 
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connectivity [1–4]. Species that typically structure as 
metapopulations may be particularly threatened by spa-
tial isolation of subpopulations. Local extirpations at 
patches can be common, and persistence of the meta-
population is dependent on ongoing recolonization 
events [5–7]. As such, interrupted dispersal and gene 
flow among habitat sites can decrease population-wide 
genetic variability and fitness, promote extirpation of 
naturally small subpopulations, prevent recolonization 
events and threaten metapopulation persistence [4, 5, 
8, 9]. Allegheny woodrats (Neotoma magister) require 
rock habitats (e.g., cliff faces, talus slopes, boulder fields), 
located primarily in high elevation areas throughout the 
Appalachian Mountains and Interior Highlands [10, 11]. 
These habitat sites are naturally disjunct. As a result, 
woodrats typically form small subpopulations (defined 
by suitable rock habitat) that are connected by disper-
sal within a larger metapopulation [12, 13]. If movement 
amongst habitat patches is interrupted, subpopulations 
become isolated, gene flow is inhibited, genetic diversity 
is lost through drift, inbreeding depression occurs, pop-
ulation numbers decrease, and recolonization of extir-
pated sites declines [14–16].

New Jersey (NJ) is home to a single remnant popula-
tion of Allegheny woodrats, located ~ 240  km from the 
nearest extant population in Pennsylvania. Individuals 
sampled in 2009, 2011, and 2012 and genotyped at 11 
microsatellite loci had relatively low genetic variability, as 
indicated by allelic diversity and observed heterozygosity 
(Additional file 1). In response to conservation concerns 
associated with declining genetic diversity, New Jersey 
DEP Fish and Wildlife introduced six individuals from 
a genetically robust population in Pennsylvania in 2015, 
2016, and 2017 under the assumption that, if translocated 
individuals reproduced, population numbers and genetic 
variability would increase (i.e., genetic rescue; [17–20]). 
However, identifying evidence of reproductive success 
and quantifying genetic variability are dependent on 
identifying a marker panel with suitable statistical power 
[21–23].

Panels of single-nucleotide polymorphisms (SNPs) can 
yield a low probability of identity  (PID) (i.e., the likeli-
hood that two randomly chosen individuals in a popu-
lation will present seemingly identical genotypes; [21]), 
thus aiding accurate reconstruction of familial relation-
ships [24–26], even when populations are inbred [23]. 
Even relatively small SNP panels (e.g., 58–109 markers) 
can ultimately perform as well or better than small suites 
of microsatellites [23, 27–30]. To this end, we sequenced 
the Allegheny woodrat genome and annotated a draft 
genome assembly. We subsequently designed a 134 SNP 
panel incorporating both gene-associated and putatively 
neutral markers. We conducted preliminary analyses to 

explore whether the SNP assay provides greater statistical 
power for individual identification than a commonly used 
panel of microsatellite markers. The SNP loci were then 
used to evaluate changes in genetic diversity following 
translocations to New Jersey’s remnant population and 
identify offspring of translocated individuals.

Results
Nuclear genome sequencing and SNPtype assay 
development
We generated 137.6 gigabases (Gb) of raw sequence data 
from N. magister, including 119.8  Gb from the paired-
end (PE) library and 17.8 Gb from the mate-paired (MP) 
library (Additional File 2). Our draft nuclear genome 
assembly includes 60,789 scaffolds greater than 2000 
basepairs (bp) in length. We used BUSCO v5 to evaluate 
completeness of the genome by identifying mammalia_
odb10 orthologs, finding 77.9% of universal single-copy 
orthologs were complete (77.2% single copy, 0.7% dupli-
cated), 8.7% fragmented and 13.4% missing.

We initially identified 627,421 high-quality SNPs. Of 
these, we selected 192 SNPs to include in a Fluidigm 
SNPtype assay. We subsequently excluded 58 loci for 
reasons outlined in the methods (e.g., data did not clus-
ter into distinct homozygous and heterozygous states). 
Of the remaining 134 loci, at least 128 loci amplified for 
each of the 318 woodrats genotyped (Additional File 3). 
These loci were roughly divided between gene-associated 
(n = 72) and neutral markers (n = 62).

Probability of identity using microsatellite and SNP 
markers
Genotyping 50 woodrats captured in 2017 and 2019 in 
Adams County, Ohio (OH) at 11 microsatellite markers 
resulted in a  PID of 4.0 ×  10–5 and a probability of iden-
tity among siblings (PIDsib) of 9.8 ×  10–3. By contrast, 
134 SNP loci generate values of 5.0 ×  10–27  (PID) and 
3.1 ×  10–14 (PIDsib). If the more conservative data set 
of 70 loci is used, the  PID is 1.9 ×  10–13 and the PIDsib 
is 3.1 ×  10–7 across all 50 individuals. Furthermore, our 
results indicate that a much smaller panel of SNPs might 
be utilized in subsequent studies to achieve a  PID < 0.0001 
(Additional File 4; a PID < 0.0001 is considered low 
enough to distinguish between even closely related indi-
viduals in most natural populations [31–33]). Given these 
results, all other samples were genotyped using just the 
SNP panel. Notably, there was a significant, positive rela-
tionship between the number of heterozygous microsat-
ellite loci per individual and the number of heterozygous 
SNP loci per individual (linear regression:  r2 = 0.32, 
p < 0.0001, Additional File 5).
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Genetic variability and reproductive success 
following translocations to the Palisades population
Parentage analysis revealed that the six woodrats trans-
located from Pennsylvania to New Jersey produced a 
minimum of thirteen offspring (Table  1). The female 
translocated in 2015 produced at least four offspring 
between 2016 and 2019. The male translocated in 2015 
produced at least nine offspring, predominantly in 2016 
(Table  1). The offspring of the 2015 translocated female 
and male produced at least thirteen offspring of their 
own between 2017 and 2019 (Table 1). We found no evi-
dence from trapping and subsequent genotyping that 
the other four translocated individuals reproduced. The 
males translocated in 2016 and 2017 were confirmed 
dead within 11 and 1  weeks of release, respectively. A 
camera captured footage of the female translocated 
in 2016 with a pup. It is unclear whether this pup died 
before reaching adulthood or simply avoided trapping, as 
the location in which it was photographed was outside 
of the regular trapping area. The female translocated in 
2017 also settled outside of the regular trapping area and 
was not detected again.

Of the 82 tissue samples collected from the Palisades 
population, five were collected in 2009, thirteen in 2011, 
nine in 2015, eighteen in 2016, sixteen in 2017, eight in 
2018 and thirteen in 2019. Once a Bonferroni correction 
was applied, a single locus was found to be out of Hardy–
Weinberg equilibrium, and only in 2019 (exhibiting 

evidence of heterozygote excess). STRU CTU RE analysis 
of resident individuals and those translocated to NJ pro-
vided evidence of two genetically distinct clusters when 
the most conservative data set (70 loci) was utilized. The 
population-wide genetic composition changed following 
translocation events in 2015, as illustrated by a shift from 
the blue cluster associated with the resident population 
prior to human-mediated gene flow, to an increase in the 
orange cluster associated with the genetic profiles of the 
PA individuals (Fig. 1). Despite this, all alleles historically 
present at the loci considered in this study were retained 
following translocations (data not shown).

Prior to translocations, observed heterozygosity  (HO) 
and expected heterozygosity  (HE) were substantially 
lower in New Jersey than at sites in Indiana (IN) and 
Ohio (Table  2). However, genetic variability in the New 
Jersey population increased notably in the years follow-
ing translocation (Table 2, Table 3, Fig. 2). For example, 
observed heterozygosity increased from 0.08 ± 0.02 in 
2009 to 0.30 ± 0.02 in 2019 (Table 3, Fig. 2). Average  HO 
and  HE were comparable in Indiana, Ohio and (post-
translocation) New Jersey (Tables 2, 3, Fig. 2).

We identified 20 publications for which a Fluidigm 
SNPtype assay was used to genotype individuals at rela-
tively few loci (38–192 SNPs) and  HO and/or  HE were 
reported (Table 4). Species described were members of 
Actinopterygii, Aves, Bivalvia, and Mammalia and pre-
dominantly considered of “Least concern” by the IUCN. 

Table 1 Offspring of individuals translocated from Pennsylvania in 2015, 2016 and 2017 and their offspring

a Individuals F001, M002, M012, F013, M128 and F129 were translocated from Pennsylvania to New Jersey in 2015, 2016 and 2017
b Individuals F019, M020, F029, M030, F090, M102, F133, and M135 are the  2nd and  3rd generation progeny of translocated individuals for which there is evidence of 
reproduction

ID Year  
translocated/ 
first captured

Sex Offspring identified with paternity analysis

2016 2017 2018 2019

F001a 2015 Female F028, F029, M030 M135

M002 2015 Male F014, M015, F019,  
M020, F022, F023,  
F025

F100 F138

M012 2016 Male

F013 2016 Female

M128 2017 Male

F129 2017 Female

F019b 2016 Female F265 F138

M020 2016 Male F090 F245

F029 2016 Female M102 F134

M030 2016 Male F134, M136

F090 2017 Female M131, M132

M102 2017 Male M261

F133 2018 Female F250

M135 2018 Male M252
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Across studies,  HO and  HE ranged from 0.13 to 0.45 
and 0.14 to 0.42; respectively (Table 4). The vast major-
ity of  HO and  HE estimates for species characterized as 
“Least concern” (all but two) fell between 0.25 and 0.37. 
Median  HO and  HE were 0.32 and 0.31, respectively.

Discussion
Genome sequencing and SNP assay development
The data described herein represent only the second time 
a member of the genus Neotoma has undergone whole-
genome sequencing [34]. Genetic resources for Neotoma 
magister are particularly limited [35], yet even low cover-
age sequencing can be used to generate tools that inform 
management of threatened species. For example, two lanes 
of paired-end sequencing and one lane of mate-paired 
sequencing enabled assembly of the complete mitochon-
drial genome [35] and identification of the 134 SNP loci 
described in this manuscript. Studies have shown that in 
some cases SNP genotyping can better reveal fine-scale 
population structure, provide evidence of differential 
selection amongst populations and estimate genome wide 
heterozygosity than other marker panels [36–44]. Geno-
typing 50 woodrats using both microsatellite and SNP loci 
indicates that our SNP assay provides increased statisti-
cal power for analyses. Furthermore, PIDsib estimates are 
also very low, indicating the panel can be used to distin-
guish between woodrats even when related individuals 

Fig. 1 STRU CTU RE results for 82 woodrats trapped in the Palisades, NJ between 2009 and 2019, as well as six individuals translocated from PA to NJ. 
PA individuals are labeled with the years in which they were released in NJ (i.e., 2015, 2016 and 2017). All individuals are labeled as being sampled 
before translocations occurred (“pre‑translocation”), during translocations or after translocations occurred (“post‑translocation”). STRU CTU RE results 
were CLUMPP‑averaged across 10 runs when K is assumed to be equal to two. Admixture is indicated by a shift from the blue cluster associated 
with the resident population prior to human‑mediated gene flow, to an increase in the orange cluster associated with the genetic profiles of the PA 
individuals

Table 2 Mean observed heterozygosity  (HO) ± SE, mean expected heterozygosity  (HE) ± SE for Allegheny woodrats (Neotoma 
magister) genotyped at 134 SNPs

a Observed and expected heterozygosity were not calculated for the 6 individuals from Pennsylvania
b Summary statistics for individuals captured before (2009, 2011), during years in which translocations also occurred (2015–2017) and after (2018–2019) translocations 
occurred are indicated by “pre‑translocation”, “during translocations” and “post‑translocation”, respectively

Year Females Males HO ± SE HE ± SE

Indiana 82 90 0.27 ± 0.01 0.23 ± 0.01

Ohio 31 27 0.25 ± 0.02 0.23 ± 0.02

Pennsylvaniaa 3 3

New Jersey—pre‑translocationb 9 9 0.08 ± 0.02 0.07 ± 0.01

New Jersey—during translocations 23 20 0.21 ± 0.02 0.18 ± 0.01

New Jersey—post‑translocation 10 11 0.27 ± 0.02 0.24 ± 0.02

Table 3 Mean observed heterozygosity  (HO) ± SE, mean 
expected heterozygosity  (HE) ± SE and mean number of alleles 
(A) for Allegheny woodrats (Neotoma magister) captured in 
2009 (n = 5), 2011 (n = 13), 2015 (n = 9), 2016 (n = 18), 2017 
(n = 16), 2018 (n = 8) and 2019 (n = 13) in the Palisades, NJ and 
genotyped at 134 SNP loci

Year HO ± SE HE ± SE A

2009 0.08 ± 0.02 0.06 ± 0.01 1.2

2011 0.07 ± 0.02 0.07 ± 0.01 1.2

2015 0.07 ± 0.01 0.07 ± 0.01 1.2

2016 0.19 ± 0.02 0.17 ± 0.01 1.6

2017 0.25 ± 0.02 0.21 ± 0.02 1.7

2018 0.26 ± 0.02 0.21 ± 0.02 1.7

2019 0.30 ± 0.02 0.25 ± 0.02 1.7
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Fig. 2 Capture index and mean observed heterozygosity  (HO) ± SE for Allegheny woodrats (Neotoma magister) captured in 2009 (n = 5), 2011 
(n = 13), 2015 (n = 9), 2016 (n = 18), 2017 (n = 16), 2018 (n = 8) and 2019 (n = 13) in the Palisades, NJ and genotyped at 134 SNP loci. Observed 
heterozygosity increased following translocations of six woodrats from Pennsylvania in 2015, 2016 and 2017

Table 4 Metrics of genetic variability, sample size and IUCN status for species genotyped using the Fluidigm® BioMark, HD™ 
Genotyping System

Class Species IUCN status Sample size Number of loci Ho He Citation

Actinopterygii Tripterygion delaisi LC 1599 192 0.45 N/A [94]

Alosa pseudoharengus LC 323 96 0.25 0.25 [95]

5678 92 0.25 0.25 [96]

Alosa aestivalis VU 433 95 0.29 0.29 [95]

2247 95 0.29 0.29 [96]

Oncorhynchus tshawytscha N/A 188 91 0.34 0.34 [97]

8031 96 0.32 N/A [97]

Oncorhynchus mykiss N/A 6165 96 0.41 0.42 [98]

Aves Aquila chrysaetos LC 52 159 0.33 0.34 [24]

344 159 0.34 0.34 [99]

Cyrtonyx montezumae LC 186 169 0.32 0.35 [100]

Falco mexicanus LC 103 143 0.34 0.34 [26]

Bivalvia Crassostrea virginica N/A 560 38 0.28 N/A [101, 
102]

Mammalia Ovis dalli dalli LC 476 188 0.29 0.31 [42]

Macaca fascicularis VU 129 83 0.13 0.14 [103]

Canis lupus LC 40 85 0.31 0.29 [32]

Felis silvestris LC 37 65 0.16 0.35 [32]

96 0.37 0.45 [33]

Ursus arctos LC 70 69 0.28 0.31 [32]

Eschrichtius robustus LC 28 88 0.32 0.31 [25]
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are present in the population [31–33]. Given the spatial 
isolation of many woodrat populations (e.g., the remnant 
NJ Palisades population), the presence of closely related 
individuals should be assumed. Finally, DNA extracted 
from naturally shed feathers, hair and fecal samples and 
subsequent Fluidigm SNP genotyping has been used to 
identify individual golden eagles [24], wolves, wildcats, and 
bears [32, 33]. Given the low  PID estimates associated with 
this assay, we anticipate a similar approach could be used 
to non-invasively monitor Allegheny woodrat populations 
from hair or fecal samples.

Temporal shifts in genetic variability 
following translocations to New Jersey’s remnant 
population
Conservation managers have long worried that transloca-
tions across extended geographic distances would result 
in relatively greater genetic distance amongst introduced 
and resident individuals, increasing the risk of outbreed-
ing depression [45]. Recent studies, however, indicate 
that outbreeding depression rarely has negative impacts 
on the success of translocation programs [19, 46]. Fur-
thermore, factors such as the genetic diversity of trans-
located individuals may be better predictors of fitness 
following introduction to a novel population than genetic 
distance [47]. Despite the relatively great geographic dis-
tance between source and resident populations inher-
ent in this study, successful reproduction by translocated 
individuals clearly drove increases in genetic variability in 
subsequent years. Parentage analysis provides evidence 
that at least two woodrats translocated from Pennsylva-
nia to New Jersey in 2015 went on to reproduce, as did 
their offspring. Increases in  HO and  HE were apparent as 
soon as 2016, making observed levels comparable to those 
among woodrat populations in IN and OH, and persisted 
through the end of the monitoring period in 2019. We 
also compared genetic variability in the NJ population to 
that of other species and determined that observed het-
erozygosity of New Jersey’s woodrats caught before 2015 
was notably lower than any species listed as “Least con-
cern” by the IUCN. Following translocations,  HO and  HE 
for the NJ population fall within the range of estimates 
generated across species. Increased abundance since 2015 
provides additional evidence of potential genetic rescue. 
As such, this study joins relatively few in providing evi-
dence of an increase in population size or growth rate fol-
lowing assisted gene flow (reviewed in [19]).

Management implications
Ongoing research on the conservation of Allegheny 
woodrats may inform best practices in translocating indi-
viduals to very small populations. Management guide-
lines recommend translocating a number of non-resident 

individuals that represent 20% of the recipient population 
to minimize the likelihood of swamping out local adap-
tive genetic variation [17, 20]. Genetic swamping (i.e., 
the rapid increase in frequency of alleles introduced by 
gene flow; [48, 49]) can result in the loss of private alleles 
within the recipient population. This, in turn, can lead 
to a loss of species-wide allelic diversity [49], even as the 
resident population’s genetic diversity increases. Efforts 
to minimize genetic swamping can lead to translocating 
very few individuals when recipient populations have low 
abundance. This study joins others in suggesting that suc-
cessful reproduction by just one to three non-resident 
individuals can promote increased genetic diversity and 
abundance [50–53]. In some cases, however, these few 
immigrants achieve substantially elevated reproductive 
success in comparison to resident individuals, contrib-
uting to inbreeding in subsequent generations (e.g., arc-
tic foxes, [51]; wolves, [54–56]). Even in the absence of 
direct observations of inbreeding, reproductive skew is 
known to decrease effective population size and result 
in the accelerated loss of genetic diversity due to drift 
[57]. Disproportionate reproductive success by translo-
cated individuals may prove to be common in Allegheny 
woodrats if sex ratios are skewed in small populations 
[50], resident individuals prefer to mate with translo-
cated individuals as an inbreeding avoidance mechanism 
[58], or F1 offspring have increased fitness stemming 
from heterosis [59–61]. Both this study and Davis et al., 
[50] document observations of translocated male Alle-
gheny woodrats siring 39 and 35% of young trapped in 
the subsequent season, in their respective populations. 
A few known instances of inbreeding amongst relatives 
followed in subsequent generations (Table  2, [50]) but, 
encouragingly, coincided with stable or increasing pop-
ulation-wide genetic variability and abundance. Conser-
vation managers monitoring small populations might 
consider genotyping individuals, conducting parentage 
analyses, and monitoring genetic diversity on a bi-yearly 
or yearly basis. This would allow for rapid translocation 
of additional individuals to small populations if elevated 
reproductive success seems likely to lead to inbreeding 
events, or, to supplement previous, unsuccessful attempts 
at genetic rescue (i.e., if non-resident survivorship is low). 
It is worth noting that even in the absence of inbreeding, 
truly isolated populations (like that of the Palisades) will 
ultimately require additional human-mediated gene flow 
to counteract loss of genetic diversity due to genetic drift.

There are additional ways in which ongoing studies of 
woodrat translocations have the potential to add depth 
to our understanding of genetic rescue and restoration. 
Studies of genetic rescue have typically considered pop-
ulations as discrete units, uninterrupted by landscape 
features. The natural tendency for woodrats to exist in 
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metapopulations give scientists the opportunity to study 
genetic rescue throughout heterogeneous landscapes 
and, in particular, how alleles introduced at one habitat 
patch have the potential to move amongst sites. Just as 
recent studies have proposed choosing specific indi-
viduals for their ability to reduce inbreeding depression 
in genetically depauperate populations [19, 62], specific 
habitat sites might be targeted for releases if they are 
connected by natural dispersal corridors to other por-
tions of the metapopulation. Indeed, recent work on the 
landscape genetics of Virginia’s Allegheny woodrats sug-
gests that low elevation, rather than anthropogenic barri-
ers such as roads, might prevent translocated individuals 
and/or their offspring from dispersing amongst habitat 
sites [63].

Conclusions
Herein, we describe a novel SNP assay, which provides 
increased statistical power to studies of a species com-
monly found in small and consanguineous populations. 
Our study has important implications for remnant popu-
lations of threatened species that are geographically iso-
lated from the nearest metapopulation. Translocating 
small numbers of individuals to very small populations 
may increase the risk of reproductive skew followed by 
genetic drift and inbreeding, necessitating increased 
monitoring following introductions. Despite this, 
human-mediated gene flow is likely to be integral to the 
persistence of remnant populations. Our results indicate, 
encouragingly, that small numbers of introduced, geneti-
cally variable individuals can successfully reproduce, 
increase population-wide genetic diversity, and facilitate 
increased abundance.

Methods
Genome assembly and annotation
We extracted deoxyribonucleic acid (DNA) from a tail 
clip of a single N. magister individual by pairing com-
mercially available extraction (DNEasy Blood and Tis-
sue, Qiagen, Venlo, the Netherlands) and clean-up (DNA 
clean & Concentrator, Zymo Research, Irvine, Califor-
nia) kits in accord with the manufacturers’ instructions. 
We conducted three lanes of paired-end and one lane of 
mate-paired sequencing using an Illumina HiSeq2500. 
We used Trimmomatic [64] to remove adaptors, dis-
card short reads and trim poor quality bases from 5′ and 
3′ ends of raw sequence reads as described in Schofield 
et al., [35]. We used ABySS 1.9.0 [65] to conduct several 
assemblies with kmer lengths ranging from 40 to 85. PE 
reads were used to generate contigs. MP reads were used 
to infer the order, orientation, and distance between con-
tigs, linking them together in scaffolds. The assembly 
with the greatest N50 value and longest scaffold was used 

for downstream analyses. BUSCO v5 [66], implemented 
by gVolante [67], was used to evaluate completeness of 
the genome.

We used the MAKER 2.28 pipeline [68] to annotate 
all scaffolds greater than 10  kb, following the methods 
described in Doyle et  al. [69] and Doyle et  al. [26]. To 
briefly summarize, we first used Repeat-Masker to iden-
tify and mask stretches of repetitive DNA. Second, we 
downloaded 6762 Mus musculus protein sequences from 
the UniProtKB database (www. unipr ot. org) and used 
the protein2genome setting in MAKER to generate gene 
annotations. These annotations were subsequently used 
to train SNAP [70] and generate ab  initio predictions. 
Third, we aligned protein sequences and 93,400 Mus 
musculus expressed sequence tag (EST) sequences to the 
genome using BLAST and used InterProScan to identify 
putative protein domains. Finally, all ab  initio gene pre-
dictions supported by protein, EST or InterProScan evi-
dence were promoted to gene annotations.

SNP discovery and assay design
We identified SNPs as in Doyle et  al. [26]. Briefly, we 
aligned paired-end reads back to the draft genome 
assembly using BWA 0.7.12 [71] and used Picard 2.3 
(http:// broad insti tute. github. io/ picard) to sort and 
identify duplicate reads. We used the GATK 3.6 pipe-
line [72, 73] to realign reads around indels and identify 
high quality SNPs with a Phred quality score ≥ 30. We 
then selected 95 autosomal nuclear markers associated 
with gene deserts (i.e., “neutral” markers) and 97 auto-
somal nuclear markers associated with protein-coding 
genes. We deliberately chose no more than one SNP of 
each category from a given scaffold to minimize linkage 
disequilibrium. To identify neutral markers, we quanti-
fied the distances between all SNPs and genes using the 
BEDtools suite [74], ultimately choosing markers at the 
95% percentile distance from genes. We used SnpEff 
4.3 [75] to find SNPs associated with non-synonymous 
changes in the exonic regions of genes (i.e., “gene-asso-
ciated” markers). IGV 2.3 [76] was used to confirm that 
at least 60 nucleotides of high-quality flanking sequence 
were present upstream and downstream of the marker, 
that guanine-cytosine (GC) content was less than 65%, 
and that no other variable sites were present within 20 
nucleotides.

DNA extraction and SNP genotyping
We trapped and subsequently genotyped 82 woodrats 
sampled from the Palisades, NJ between 2009 and 2019 
(Tables 2, 3), including 18 and 64 individuals sampled 
before and after translocations began, respectively. 
We followed standard live-trapping protocols [77, 78] 
and collected a 2-mm ear punch from each individual, 

http://www.uniprot.org
http://broadinstitute.github.io/picard
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which was preserved in 70–100% ethanol. For each 
year trapping occurred, we calculated a capture index 
by dividing the number of unique individuals caught 
by the number of trap nights and multiplying by 10 
[79]. Calculating a trap index allows us to control for 
differences in the number of nights trapping occurred 
across years [77]. DNA extractions were performed 
using an ammonium acetate protocol [14] or the Zymo 
Quick-DNA Miniprep Plus Kit. We used the Fluidigm® 
BioMark HD™ Genotyping System to genotype these 
individuals. Additionally, we genotyped the six indi-
viduals translocated from Pennsylvania to New Jersey 
between 2015 and 2017. Finally, we opportunistically 
genotyped 172 and 58 samples collected from Indiana 
and Ohio, respectively (Table  2). These samples were 
collected between 2015 and 2019 as part of long-term 
monitoring studies.

SNP calls were edited using the Fluidigm® Geno-
typing Analysis Software. We excluded markers from 
downstream analysis when data did not cluster into 
distinct homozygous and heterozygous states and if 
minor allele frequencies were less than 0.025. We used 
chi-squared tests implemented by GenAlEx [24, 26] to 
test for departures from Hardy–Weinberg equilibrium. 
Following Bonferroni correction, a single locus was 
found to be consistently out of Hardy–Weinberg equi-
librium across years and was omitted, leaving 134 loci. 
We excluded individuals from analysis if ≥ 7 loci were 
not successfully genotyped, as call rates tend to be 
negatively correlated with genotyping errors [24, 32]. 
Using snpStats [80], we identified a number of mark-
ers in linkage disequilibrium but assumed that in many 
cases this was due to consanguinity, rather than two 
markers being in close proximity along the genome. 
However, to meet the assumptions of Cervus 3.0.7 
[81] and STRU CTU RE 2.3.4 [82, 83], we identified all 
pair-wise comparisons with  r2 > 0.2 and removed one 
marker in each case, creating a reduced dataset of 70 
loci in which all SNPs are in linkage equilibrium.

Probability of identity using microsatellite and SNP 
markers
Previous studies of N. magister utilized relatively small 
panels of 11–22 microsatellite markers (e.g., [15, 63, 
84, 85]). To evaluate the statistical power associated 
with each approach, we genotyped 50 woodrats cap-
tured in 2017 and 2019 in the Adams County, OH at 
both 11 microsatellites and 134 SNP loci (Additional 
File 3 and Additional File 4). We subsequently cal-
culated the probability that two randomly chosen 
individuals in the population would have identical gen-
otypes  (PID), using each marker panel. We additionally 

calculated PIDsib, which represents a conservative 
upper bound for the likelihood that two individuals 
sampled from a population will have the same geno-
type by chance [32, 33]. This estimate is particularly 
useful when substructure is present in the population 
(i.e., related individuals; [32, 33]).

Reproductive success and genetic variability 
following translocations to the Palisades
We used Cervus 3.0.7 [81] to assign individuals sampled 
between 2015 and 2019 to dams and sires. For individu-
als trapped for the first time in each year, all woodrats 
trapped in that same year and in all previous years were 
considered candidate parents. Simulations included 
100,000 replicate cycles. The proportion of candidate 
dams and sires sampled was estimated to be 0.80, based 
on the probability of capture estimated from comparable 
trapping approaches of other woodrat populations [16]. 
The proportion of typed loci was 0.99 and the proportion 
of loci mistyped was set to 0.04 [26]. The minimum confi-
dence level for parentage assignment was 95%.

STRU CTU RE 2.3.4 [82, 83], STRU CTU RE HAR-
VESTER 0.6.94 [86], and Clumpak [87] were used to vis-
ualize admixture in the Palisades, NJ woodrat population 
across time. We utilized the reduced dataset (i.e., with all 
70 loci in linkage equilibrium, see above) for 82 individ-
uals sampled between 2009 and 2019, as well as the six 
individuals translocated from PA. We considered values 
of K = 1–8, running each value 10 times with an initial 
burn-in of 100,000 Markov chain Monte Carlo (MCMC) 
iterations and 1,000,000 subsequent iterations for each 
value. We assumed an admixture ancestry model and 
allowed for correlated allele frequencies [82]. The results 
were interpreted using mean likelihood values of K and 
ΔK [86].

We used GenAlEx [88] to calculate allele frequencies 
and expected and observed heterozygosity in the years 
before (2009, 2011), during (2015–2017) and after trans-
locations (2018, 2019) to the Palisades, NJ population. 
To provide context for our interpretation of temporal 
changes in genetic variability in the Palisades population, 
we (1) used GenAlEx [88] to calculate allele frequencies 
and expected and observed heterozygosity in Indiana, 
New Jersey and Ohio and (2) surveyed the literature for 
estimates of observed and expected heterozygosity gener-
ated using the Fluidigm® BioMark HD™ Genotyping Sys-
tem and relatively small SNP assays (e.g., 96–192 loci). To 
conduct our literature review, we searched for the phrases 
“SNP type assay”, “SNPtype assay”, “Fluidigm SNP assay”, 
“Fluidigm SNP chip” and “Fluidigm Genotyping Analysis 
Software” in Google Scholar. For all studies of non-human 
animals for which observed and/or expected heterozy-
gosity were described, we recorded the number of loci in 
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the assay, sample size, metrics of genetic variability and 
International Union for Conservation of Nature (IUCN) 
status. If average  HO and  HE were not provided, we aver-
aged across per-locus values or population-specific values 
when able. When interpreting these results, an important 
caveat is that we do not have a robust understanding of 
how SNP  HE,  HO and allelic diversity vary with categori-
zations such as body size, conservation status, habitat, 
migratory behavior, taxonomic group and trophic class. In 
contrast, these relationships have been extensively stud-
ied utilizing estimates of genetic variation generated with 
microsatellite loci [89–93].
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