FINAL

Appendix C – Design For the Feasibility Study of Rebuild by Design Meadowlands Flood Protection Project

May 2021

Boroughs of Little Ferry, Moonachie, Carlstadt, and Teterboro and the Township of South Hackensack, Bergen County, New Jersey

Prepared by AECOM for the State of New Jersey Department of Environmental Protection

This Page has been Intentionally Left Blank.

Table of Contents

1.0	Introd	uction	C-1
2.0	Projec	t Purpose	C-2
3.0	Projec	t History	C-2
4.0	Propo	sed Project Alternatives	C-3
5.0	Geote	chnical Analysis	C-3
6.0	Struct	ural Analysis	C-4
7.0	Surge	Barrier and Pump Station Design	C-6
7.1	Gen	eral	C-6
7.2	Cod	es and Standards	C-6
7.3	Gen	eral Design Load Parameters	C-7
7.	3.1	Load Combinations	C-7
7.	3.2	Hydraulic Stages	C-8
7.4	Load	d Cases	C-8
7.	4.1	Dead Loads	C-8
7.	4.2	Live Loads	C-8
7.	4.3	Soil Pressures (S)	C-8
7.	4.4	Hydrostatic Loads (H)	C-9
7.	4.5	Uplift Loads (U)	C-9
7.	4.6	Wind Loads (W)	C-9
7.	4.7	Impact Loads (I)	C-9
7.	4.8	Access Bridge	C-10
7.	4.9	Settlement Loads (ST)	C-10
7.5	Con	crete Design Criteria	C-10
7.6	Stee	el Design Criteria	C-10
7.7	Pile	Foundation Design Criteria	C-10

List of Figures

Figure C-1: RBDM Project Area	C-′	1
-------------------------------	-----	---

List of Tables

Table C-1: Inland Flood Wall Stability Criteria Load Case I2: Water to Top of Wall	C-5
Table C-1: Strength Load Combinations and Strength Design Parameters	C-7

Table C-1: Hyd	raulic Stages and Desing Water Surface	Elevations	. C-8
Table C-4: Unit	Weights		. C-8
Acronyms	and Abbreviations		
AASHTO	American Association of State Highway	and Transportation Officials	
ACI	American Concrete InstituteAISC	American Institute of Steel Construction, Inc	
ASD	Allowable Strength Design		
ASCE	American Society of Civil Engineers		
ASTM	American Society for Testing and Mater	ials	
AWI	American Welding Society		
CDBG-DR	Community Development Block Grant –	Disaster Recovery	
CFR	Code of Federal Regulations		
cfs	Cubic feet per second		
DM	Design Manual		
EIS	Environmental Impact Statement		
EM	Engineer Manual		
ETL	Engineer Technical Letter		
FEMA	Federal Emergency Management Agen	су	
HEC-HMS	Hydrologic Engineering Center - Hydrologic	ogic Modeling System	
HUD	US Department of Housing and Urban I	Development	
ICC	International Code Council		
LOP	Line of Protection		
LRFD	Load and Resistance Factor Design		
NAVD 88	North American Vertical Datum of 1988		
NAVFAC	Naval Facilities Engineering Command		
NJDCA	New Jersey Department of Community	Affairs	
NJDEP	New Jersey Department of Environment	tal Protection	
NAVD 88	North American Vertical Datum of 1988		
pcf	Per cubic foot		
RBDM	Rebuild by Design Meadowlands		
RBD	Rebuild by Design		
UNS	Unified Numbering System		
USACE	United States Army Corps of Engineers		

1.0 Introduction

This Design Appendix presents the supporting technical information used in the feasibility analysis of the Rebuild by Design Meadowlands (RBDM) Flood Protection Project (the Proposed Project). This appendix (Appendix C) provides the geotechnical and structural detailed analyses for the line of protection (LOP) and the design of the surge barrier and pump station near the Paterson Plank Road Bridge over Berry's Creek.

A general location map of the RBDM Project Area is provided in **Figure C-1**, (i.e., the Phase 1 Pilot Area).

Figure C-1: RBDM Project Area

2.0 Project Purpose

The Proposed Project includes the construction of flood risk reduction measures designed to address the impacts of coastal and systemic inland flooding on the quality of the physical, natural, cultural, and socioeconomic environment due to both storm hazards and sea level rise within the Project Area. The purpose of the Proposed Project is to reduce flood risks and increase the resiliency of the communities and ecosystems in the Project Area, thereby protecting infrastructure, facilities, residences, businesses, and ecological resources from the more frequent and intense flood events anticipated to occur in the future.

3.0 Project History

The Hurricane Sandy Rebuilding Task Force created the Rebuild by Design (RBD) competition in the summer of 2013 to develop ideas to improve the physical, ecological, and economic resilience of regions affected by Hurricane Sandy. The competition had two goals: (1) to promote innovation by developing flexible solutions that would increase regional resilience; and (2) to implement proposals with both public and private funding dedicated to the RBD effort. In order to realize the RBD initiative, the US Department of Housing and Urban Development (HUD) set aside Community Development Block Grant – Disaster Recovery (CDBG-DR) funds allocated through the Federal Sandy Supplemental legislation to develop and incentivize implementation of RBD projects.

HUD engaged multi-disciplinary teams composed of architects, designers, planners, and engineers. HUD charged these teams with proposing regional- and community-based projects that would promote resilience in various Hurricane Sandy-affected areas. The teams included experts from around the world. The teams' proposals, developed with and by the communities where the projects were focused, were submitted to HUD. HUD selected six "winning" projects of which two were in New Jersey: one focused on the Hudson River region (RBD Hudson) and the other focused on the Meadowlands region (RBD Meadowlands (RBDM)). The winning project for the Meadowlands Region included three Pilot Areas (Figure C-1). The "Phase 1 Pilot Area" was specifically identified and selected by HUD through the RBD competition. There are currently no plans to advance the Phase 2 and Phase 3 Pilot Areas of RBDM.

On October 16, 2014, HUD issued Federal Register Notice FR-5696-N-11 (effective October 21, 2014). This Notice allocated \$881,909,000 of third round CDBG-DR funds to New Jersey. Of that total, HUD designated \$380 million for the two RBD projects in New Jersey: \$230 million to RBD Hudson and \$150 million to RBDM, Phase 1 Pilot Area.

The Phase 1 Pilot Area is now referred to as the RBDM Flood Protection Project Area (**Figure C-1**). The Project Area, as defined in the award-winning RBD design, includes the Boroughs of Little Ferry, Moonachie, Carlstadt, and Teterboro, and the Township of South Hackensack, all in Bergen County, New Jersey. The Project Area has the following approximate boundaries: the Hackensack River to the east; Paterson Plank Road (State Route 120) and the southern boundary of Borough of Carlstadt to the south; State Route 17 to the west; and Interstate 80 (I-80) and the northern boundary of the Borough of Little Ferry to the north.

The State of New Jersey Department of Environmental Protection (NJDEP), on behalf of the State of New Jersey through its Department of Community Affairs (NJDCA), as the recipient of HUD grant funds and as the "Responsible Entity," intends to prepare an Environmental Impact Statement (EIS) and Feasibility Study for the RBDM Flood Protection Project (the Proposed Project).

The Feasibility Study evaluates the alternatives for implementing the Proposed Project in the Project Area. The RBD award-winning concept takes a multi-faceted approach to address flooding from coastal storm

surges and heavy rainfall events.

4.0 Proposed Project Alternatives

Three alternatives were proposed to reduce the flood risk within the Project Area. The alternatives vary by the type of infrastructure that is proposed. Alternative 1 includes various infrastructure-based solutions intended to provide protection against coastal storm surges. Alternative 2 includes various grey and green infrastructure-based solutions, as well as new parks and improved open spaces, intended to improve stormwater management in key locations throughout the Project Area. Alternative 3 would consist of a hybrid of coastal flood protection and stormwater drainage improvements.

- Alternative 1, the Structural Flood Reduction Alternative, to the extent practical, would evaluate a Federal Emergency Management Agency (FEMA) certifiable level of flood protection to a portion of the Project Area. Under Alternative 1, a LOP would be constructed using of a range of grey infrastructure, including floodwalls, levees, berms, a tide gate and eight closure gates, and a surge barrier and pump station, designed to provide flood protection up to an elevation of 7.0 feet (North American Vertical Datum of 1988 (NAVD 88)). In addition to flood reduction infrastructure, this alternative would integrate open space features and green infrastructure into the design.
- Alternative 2, the Storm Water Drainage Improvement Alternative, would improve stormwater management through the installation of 41 green infrastructure systems (bioswales, storage/tree trenches, and rain gardens) along roadways, five new parks, improvements to five existing open spaces/public amenities, three new pump stations, two new force mains, and dredging of the lower reach of East Riser Ditch.
- Alternative 3, the Hybrid Alternative, would combine components of Alternatives 1 and 2 to provide an integrated, hybrid solution that employs a combination of appropriate levees, berms, drainage structures, pump stations, and/or floodgates, coupled with local drainage improvement projects, to achieve the maximum amount of flood protection within the boundaries of the Project Area. However, due to funding and construction constraints associated with a project of this magnitude, the Alternative 3 features would be separated into two stages: a *Build Plan*, which includes all features to be constructed as part of the Proposed Project, and a *Future Plan*, which includes the remaining features that could be constructed over time by others as funding sources become available and construction feasibility permits. The Alternative 3 *Build Plan* would consist of all of the Alternative 2 components, with the exceptions of two new parks and a pump station force main in Losen Slote. Additionally, the proposed improvements proposed for one of the parks under Alternative 2 would be altered under the Alternative 3 *Build Plan*. The Alternative 3 *Future Plan* would consist of all of the remaining features from Alternative 2, as well as all of the features from Alternative 1.

5.0 Geotechnical Analysis

For the geotechnical analysis, the following flood protection alternatives were analyzed: earth levees, double sheet pile walls, flood walls (T, I, and L-sections), cantilever sheet pile walls, and an anchored sheet pile wall. In addition, deep foundation alternatives were analyzed for the proposed East Riser Ditch pump station and forebay.

Based on historical soil borings, the Project Area along the proposed line of protection was divided into seven Soil Areas. The boring data indicated a soft organic clay/peat layer in Soil Areas 4 to 7 compared to Soil Areas 1 to 3, where this layer was not encountered. The geotechnical analyses were performed for

various flood heights for each flood protection alternative. The flood elevation was assumed to be +8 feet (referenced to the North American Vertical Datum of 1988, or NAVD88).Based on the results of the geotechnical analyses, the levee alternative is feasible for flood height of 2 feet, 4 feet, 6 feet, and 8 feet for Soil Areas 1 to 3 and for flood height 2 feet and 4 feet for Soil Areas 4 to 7. Levees with 6 feet and 8 feet flood height for soil areas 4 to 7 will require sheet piles on both the riverside and the landside.

A double sheet pile wall is a feasible alternative to 6 feet and 8-feet high levees with sheet piles for Soil Areas 4 to 7. A double sheet pile wall structure consists of two steel sheet piles with their tops connected by struts and the space between the sheet piles filled with sand, thereby forming a wall.

The floodwall alternative was considered for all Soil Areas. T-walls, without deep foundations, are recommended from a seepage standpoint for all flood heights for Soil Areas 1 to 3. I-Walls, without deep foundations, are recommended for 2 feet and 5 feet flood height within Soil Areas 4 to 7. T-Walls and L-Walls on deep foundations are recommended for 6-feet and 8-feet flood height within Soil Areas 4 to 7. A combination of sheet piles with either driven battered steel piles or battered micro piles is recommended as the deep foundation alternatives to T- and L- walls in Soil Areas 4 to 7.

The cantilever sheet pile wall alternative is feasible for flood heights of 6 feet and 8 feet for the Soil Areas 1 to 3. The cantilever wall with 15 feet flood height in Soil Area 2 is only feasible when flood overtopping criteria is not governing the design. In the event flood overtops the walls beyond the design basis, additional deflection at the top of the sheet piles is expected, but will remain within serviceability limits. The anchored sheet pile alternative is recommended for a 15-foot flood height in Soil Area 2, where the bedrock is higher than elevation -27 feet.

At locations where dense soils are encountered, sheet piles will be installed in a pre-augured trench that will be fully grouted post sheet pile installation. The grouting will be performed by tremie pipes that attach to the sheet piles on both sides that pressure non-shrink grout will be injected through or a slurry method will be used to form a trench 2 feet wide filled with concrete/grout around the sheet piles.

Due to the presence of the organic clay/peat layer in Soil Area 6, deep foundations are the only feasible option. A proposed deep foundation option (a group of H-Piles with 212 HP 16×141 steel piles with lengths of 65 feet and a center-to-center spacing of 6 feet) for the pump station is adequate in terms of the axial capacity of a single pile. In addition, a proposed deep foundation option (40 HP 16×141 steel piles with lengths of 75 feet and a center-to-center spacing of 9 feet) is also adequate for the forebay of East Riser Ditch pump station in Soil Area 6.

Considering that the exit gradient and flow rate for the I-wall and T-wall alternatives with much shorter sheet piles were within acceptable limits, seepage is not a concern for double sheet pile walls, cantilever sheet pile walls, and anchored sheet pile wall. However, it is highly recommended to perform global stability analyses for each flood protection alternative and a pile group analysis for each foundation system using the computer program GROUP as part of the design phase of the project.

The above recommendations are based on preliminary analyses. In addition, flood overtopping and corrosion were not considered in our recommendations. The feasibility of these alternatives may change when more accurate subsurface information along the flood protection line is obtained and additional analysis is performed during the design phase.

6.0 Structural Analysis

The structural protection measures evaluated in the RBDM project includes Concrete Floodwall (T-wall) and Walkway. These structures are subdivided based on their forms of foundation, widths, and locations.

Structural analyses included designs of shallow foundation concrete floodwall (T-wall), cantilever walkway

and its relevant sections, and fluvial park elevated walkway. The top elevation of each section is designed to be 8 feet (NAVD 88), including 1 foot of freeboard. Microsoft Excel Spreadsheet and hand calculations were used for calculating equations and SAP 2000 was used for structural modeling. The analysis of the cross sections not covered in Subappendix C2 (Structural Subappendix) could be found in Subappendix C1 (Geotechnical Subappendix), such as the single and double sheet pile wall and cantilever sheet pile walkway.

Subappendix C2 covers concrete structures such as a slab and columns of cantilever walkway, which are proposed along the line of protection, while Subappendix C3 covers hydraulic concrete structures such as a surge barrier at Berry's Creek. Because two subappendices cover different types of concrete structures at different locations, different design criteria were used. The only hydraulic concrete structure Subappendix C2 covers is the shallow foundation concrete floodwall (T-wall), and only stability check was performed with service load combination in this phase of design. Reinforced concrete design for the shallow foundation concrete floodwall (T-wall), and only stability check was performed with Subappendix C3. The design criteria used in the next phase of design with the same load combination with Subappendix C3. The design criteria used in designs of the shallow foundation concrete floodwall (T-wall), cantilever walkway and its relevant sections, and fluvial park elevated walkway could be found in Subappendix C2.

Nine shallow foundation concrete floodwall sections were designed at heights from 2 feet to 10 feet with an increment of one foot. Every section has been checked for its sliding and overturning stability and soil bearing capacity in accordance with COE EM 1110-2-2502 with service load combination. The load case I2 was used, which is an inland flood wall case of water to top of wall. The stability criteria used in the design of the shallow foundation concrete flood wall is listed in **Table C-1**.

Criteria	Minimum Required
Sliding Factor of Safety	1.33
Minimum Base Area in Compression in Soil Foundation (Overturning Criteria)	75%
Bearing Capacity Safety Factor	2.0

Table C-1: Inland Flood Wall Stability Criteria Load Case I2: Water to Top of Wall

The smallest actual sliding safety factor was 1.40 for 9 feet to 10 feet high floodwalls, and all of the floodwalls sections had 100 percent minimum base area in compression. The smallest actual bearing capacity safety factor was 2.01 for 1 foot to 2 feet high floodwalls.

Sliding and overturning stability has been checked for the retaining wall on the protected side of the 25feet wide cantilever walkway. The minimum required safety factor for both sliding and overturning stability is 1.5 while the analyses showed a safety factor of 2.51 for sliding and 3.49 for overturning.

Structural members of cantilever walkway section near the existing pump station were designed and their design efficiencies were summarized. The analysis showed a design efficiency of 95.44 percent for the walkway slab, 14.04 percent for the column at the flood side of the walkway, 2.13 percent bearing efficiency, and 3.48 percent axial compression efficiency for the wall at the protected side of the walkway.

Concrete frame of the elevated walkway section at Fluvial Park was designed and a design efficiency of each member was summarized. The analysis showed a design efficiency of 61.82 percent for the center beams, 43.11 percent for the girder, 4.83 percent for the column, and 58.02 percent bending efficiency and 92.79 percent torsion efficiency for the side beams. See Sheet S-409 for required foundation dimensions.

7.0 Surge Barrier and Pump Station Design

7.1 General

A Recon Study of Berry's Creek Option 1, surge barrier (floodgate) and pump station, was prepared to a level needed to develop a cost estimate for comparison purposes. Drawings of gates and pump stations with similar load conditions along with a stability analyses were used for preparing the Recon Plans. The stability analysis consisted of a pile foundation design and only load cases that typically govern design were considered. A more detailed design would be required if a future re-evaluation led to the selection of the Surge Barrier option.

The water stage of elevation 7.0 feet (NAVD 88) was used as the design stage for the Alternative 1, Berry's Creek Option 1 system. This stage does not meet the 1 percent storm event criteria mandated for FEMA Certification. Elevation 7.0 feet (NAVD 88) was selected largely for economic reasons. In holding elevation 7.0 feet (NAVD 88), the Patterson Plank Road (Route 120) embankment and adjacent higher natural ground would provide a shorter line of protection, thus reducing the overall cost of the Proposed Project. The floodgate and pump stations were considered critical structures and were designed adding 3 feet of freeboard above the system design stage. This adjustment in elevation satisfied the 2.6 feet future sea level rise and complies with the 3 feet increase over the Base Flood Elevation as specified in 33 Coed of Federal Regulations (CFR) 65.10. The floodgate width of 100 feet (two 50 feet gates) matched the existing width of Berry's Creek channel immediately south of the Patterson Plank Road Bridge. The 1,000 cubic feet per second (cfs) pump capacity was estimated based on Hydrologic Engineering Center -Hydrologic Modeling System (HEC-HMS) modeling of Berry's Creek drainage area under the design events (10-year fluvial along with a 2-year tide). A detailed drainage study is required if this option is advanced. The pumps are only used when the floodgates are closed. The pumps prevent the protected side stage from increasing due to impounded water. There are no navigation demands. Approach guide walls and fenders were not required.

7.2 Codes and Standards

The following is a list of general United States Army Corps of Engineers (USACE) references and industry codes and standards which are applicable to structural design. Local codes will govern in case of conflicting requirements. All of the general codes and standards listed below apply to design elements such as the pump station, operations/ control buildings and bridge, but are not necessarily limited to, the following:

- American Association of State Highway and Transportation Officials (AASHTO), Load and Resistance Factor Design (LRFD) 3rd Edition, 2004 with Interim Revisions excluding Section 6 of 2006
- American Concrete Institute (ACI) 318-14, Building Code Requirements for Structural Concrete
- ACI 350--06, Concrete Sanitary Engineering Structures
- American Institute of Steel Construction, Inc. (AISC), Manual of Steel Construction, 14th Edition
- American Society of Civil Engineers (ASCE) 7-10, Minimum Design Loads for Buildings and Other Structures
- International Code Council (ICC), International Building Code New Jersey Edition: 2015
- American Society for Testing and Materials (ASTM)
- American Welding Society (AWS) D1.1-10, Structural Welding Code, or latest edition

- AWS D1.6-10, Stainless Steel Welding Code, or latest edition
- USACE Engineer Manual (EM) 1110-2-2000 Standard Practice for Concrete for Civil Works
 Structures
- USACE EM 1110-2-2102, Water Stops and Other Preformed Joint Material for civil Works
 Structures
- USACE EM 1110-2-2104, Strength Design for Reinforced Concrete Hydraulic Structures
- USACE EM 1110-2-2100, Stability Analysis of Concrete Structures
- USACE EM 1110-2-2502, Retaining and Flood Walls
- USACE EM 1110-2-2906, Design of Pile Foundations
- USACE EM 1110-2-3104, Structural and Architectural Design of Pumping Stations
- USACE Engineer Technical Letter (ETL) 1110-2-584, Design of Hydraulic Steel Structures
- 44 CFR 65.10, FEMA Levee Mapping and Certification

7.3 General Design Load Parameters

7.3.1 Load Combinations

Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in USACE EM1110-2-2104 or ASCE 7-10. Load combinations per EM 1110-2-2104 will be applicable to Berry's Creek and are listed in **Table C-1**.

Load Combinations		Strength Design U=Rf*Hf*(D+L+…)									
		Reduction Factor (Rf)	Hydraulic Factor (Hf)	Dead (D)	Live (L)	Hydro- Static (H)	Uplift (U)	Wind (W)	Soil (S)	Settle- ment (ST)	Impact (I)
		-		Const	ructio	n	-	-	-		
Construction Condition	A1	0.86	1.3	1.7	-	-	-	1.7	-	1.7	-
				Oper	ation						
Normal Operation Condition	B1	1	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7
Start-up Condition	B2	1	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7
High Head Condition	В3	1	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7
Reverse Head	B4	0.86	1.3	1.7	1.7	1.7	1.7		1.7	-	1.7
Hurricane											
Storm Surge Condition	C1	0.75	1.3	1.7	1.7	1.7	1.7	1.7	1.7	-	1.7
Maintenance											
Maintenance Conditions	D1	0.86	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7

7.3.2 Hydraulic Stages

Water and ground surface elevations for the structural analysis are shown in Table C-1.

	Flood Side	Protected Side		
Stage	(elevation in feet NAVD 88)	(elevation in feet NAVD 88)		
Normal	1.0	1.0		
Maximum Direct Water*	7.0	0.0		
Maximum Reverse Water	0.0	5.0		

Table C-1: Hydraulic Stages and Desing Water Surface Elevations

* Stages do not meet the 100-year levels required for FEMA Certification

7.4 Load Cases

7.4.1 Dead Loads

Dead loads shall be determined in accordance with applicable engineering manuals and ASCE 7-10, and shall include the self-weight of all permanent construction components including foundations, slabs, walls, roofs, actual weights of equipment, overburden pressures, and all permanent non-removable stationary construction. Typical unit weights (in per cubic foot (pcf)) are shown in **Table C-4**.

Table	C-4:	Unit	Weights
-------	------	------	---------

ltem	Weight [pcf]
Water (Fresh)	62.4
Semi-compacted Fill	110
Fully Compacted Granular Fill, wet	120
Fully Compacted Granular Fill, Effective	58
Fully Compacted Clay Fill, wet	110
Fully Compacted Clay Fill, Effective	48
Riprap	130
Silt	94
Reinforced Concrete (Normal weight)	150
Steel	490

7.4.2 Live Loads

Live loads for building structures shall be determined in accordance with applicable engineering manuals and ASCE 7-10. Additional details are provided in **Subappendix C3**.

7.4.3 Soil Pressures (S)

Structures are designed for lateral and vertical soil pressures. Lateral pressures are determined using the at-rest coefficients, K₀ obtained from the Geotechnical Report:

- Lateral Soils at-rest Pressure Coefficients:
 - \circ K0 = 0.8 for Clay; and
 - \circ K0 = 0.48 for Granular Material.

Per Naval Facilities Engineering Command (NAVFAC) Design Manual (DM) 7.2, the following coefficients

of friction are recommended:

- Mass Concrete on Rock: tan(35) = 0.70;
- Mass Concrete on Medium Clays: tan(18) = 0.32; and
- Mass Concrete on Medium Sands: tan(26) = 0.48.

Per the values of K_0 provided above, Active and Passive Earth Pressure Coefficients have been determined as follows:

- Clays:
 - K₀=0.8, the corresponding friction angle is Ø =11.54° (K₀=1-sin(Ø))
 - Assume level backfill, and use Rankine Theory
 - K_a=tan²(45-Ø/2) = tan²(45-11.54/2) = 0.667
 - o $K_p = \tan^2(45 + \emptyset/2) = \tan^2(45 + 11.54/2) = 1.500$
- Granular Material:
 - K₀=0.48, the corresponding friction angle is \emptyset =31.6° (K₀=1-sin(\emptyset))
 - o Assume level backfill, and use Rankine Theory
 - o $K_a = tan^2(45-\emptyset/2) = tan^2(45-31.6/2) = 0.316$
 - o $K_p = \tan^2(45 + \emptyset/2) = \tan^2(45 + 31.6/2) = 3.170.$

7.4.4 Hydrostatic Loads (H)

Hydrostatic loads for which structures will be designed refer to the vertical and horizontal loads induced by a static water head and buoyant pressures, excluding uplift pressures. Dynamic Wave Load is neglected in this RECON Design but must be considered in advanced design. The inland location would preclude a wind driven wave.

7.4.5 Uplift Loads (U)

Uplift loads for which structures will be designed are defined by two uplift conditions: Uplift Condition A assumes the sheet pile cutoff wall is fully effective, and Uplift Condition B, assumes the sheet pile cutoff wall is ineffective (pressure assumed to be vary linearly across the base). The dewatered construction case may govern; however, a reduced load factor should be considered for the short-term loading.

7.4.6 Wind Loads (W)

Structures are designed for wind loads established by ASCE No. 7, "Minimum Design Loads for Buildings and Other Structures."

7.4.7 Impact Loads (I)

For elements supporting reciprocating or rotating equipment and cranes proper allowance, or as determined by analysis, shall be made for impact in addition to other loads. The following minimum impact loads shall be used:

- Traveling cranes and hoists: 25 percent of the lifted loads;
- Rotating equipment: 20 percent of the total machine weight;
- Reciprocating equipment: 50 percent of the total machine weight (consideration will be given to

the deflection of beams supporting reciprocating and rotating machines); and

• The use of isolators can be considered in reducing the effects of machinery impact (the reduction shall be based on manufacturers' recommendations).

7.4.8 Access Bridge

Access bridge shall be designed per AASHTO for highway truck railing loadings.

7.4.9 Settlement Loads (ST)

Structures are designed for forces generated by settlement (downdrag) in coordination with the Geotechnical Design. Downdrag forces are applied to sustained load cases (i.e., construction). The downdrag force exerted by settling soil adjacent to the pump station and floodgate is applied to the perimeter of the structure. Downdrag forces are also included in the structural check of the piles. Downdrag loads are obtained from the geotechnical engineer on a case-by-case basis as applicable. How downdrag forces on piles are computed is explained in the geotechnical report.

7.5 Concrete Design Criteria

Concrete Structures permanently exposed to water and the splash zone shall be designed in accordance with EM 1110-2-2104 or the ACI 350R Concrete Sanitary Engineering Structures and will comply with the ACI 318 latest edition strength design method, unless otherwise required. Concrete structures not exposed to water, nor harsh environment shall be designed in accordance with ACI-318-14. Typical design materials are as follows unless otherwise noted:

- Structural concrete: 5,000 psi @ 28 days with a maximum water/cement ratio = 0.40; and
- Steel reinforcement: 60,000 psi (ASTM A615).

7.6 Steel Design Criteria

Steel design shall utilize the ETL 1110-2-584 and the AISC Steel Construction Manual, 15th edition. Either Allowable Strength Design (ASD) or LRFD design methods are permissible. Typical design materials are as follows unless otherwise noted:

- Structural steel rolled shapes: ASTM 572, Grade 50 or ASTM A992, Grade 50
- Plates: ASTM A36, Grade 36
- Bolts and nuts: ASTM A325, min. ³/₄" or ASTM A490
- Anchor Bolts: ASTM F1554, (3/4" diameter or greater)
- Corrosion stainless steel: ASTM A240 (freshwater) or ASTM A316 (saltwater)
- Sheet Piles: ASTM A572, Grade 50
- Stainless Steel Embedded Anchors: ASTM A276, Type 316 or Unified Numbering System (UNS) S21800

7.7 Pile Foundation Design Criteria

All forces applied to the primary concrete structures are resisted by the pile foundation. The pump station and floodgate are supported independently and are not designed to transmit load to any adjoining structure. Pile designs are based on a soil structure interactive analysis, with the pile supports input as springs in accordance with EM 1110-2-2906. Group effects will be applied as required.

C-10 | Final Feasibility Study Report

Subappendix C1: Geotechnical Analysis

This Page has been Intentionally Left Blank.

Table of Contents

1.0	Introduction	C1-1
1.0 2.0 3.0	Introduction Generalized Subsurface Profiles 2.1 Soil Area 1 2.2 Soil Area 2 2.3 Soil Area 3 2.4 Soil Area 4 2.5 Soil Area 5 2.6 Soil Area 6 2.7 Soil Area 7 Earth Levee	C1-1 C1-2 C1-5 C1-6 C1-7 C1-8 C1-9 C1-10 C1-10 C1-12 C1-13
	 3.1 Slope Stability and Seepage Analysis	C1-13 C1-18 C1-19
4.0	Double Sheet Pile Wall	C1-20
5.0	Flood Wall 5.1 Soil Areas 1 to 3 5.1.1 Bearing Capacity. 5.1.2 Consolidation Settlement. 5.1.3 Seepage Analysis 5.2 Soil Areas 4 to 7 5.2.1 I-wall 5.2.2 T-wall 5.2.3 L-wall 5.2.4 Pile Axial Capacity	C1-22 C1-22 C1-22 C1-25 C1-25 C1-25 C1-26 C1-26 C1-26 C1-27 C1-30 C1-32
6.0	Cantilever Sheet Pile Wall	C1-35
7.0	Anchored Sheet Pile Wall	C1-38
8.0	Foundation Systems8.1Pile Foundation for Pump Station8.2Pile Foundation for Forebay	C1-40 C1-40 C1-40
9.0	Conclusions and Recommendations	C1-41
10.0	0 References	

List of Figures

Figure C1-1: Map Showing Proposed Line of Flood Protection with Existing Boring Location and	
Bedrock Contours	C1-3
Figure C1-2: Generalized Subsurface Profile at Section 1 – 1'	C1-5
Figure C1-3: Generalized Subsurface Profile at Section 2 – 2'	C1-6
Figure C1-4: Generalized Subsurface Profile at Section 3 – 3'	C1-7
Figure C1-5: Generalized Subsurface Profile at Section G – G'	C1-8
Figure C1-6: Generalized Subsurface Profile at Section 4 – 4'	C1-9

Figure C1-7: Generalized Subsurface Profile at Section 5 – 5'	C1-10
Figure C1-8: Generalized Subsurface Profile at Section 6 – 6'	C1-11
Figure C1-9: Generalized Subsurface Profile at Section 7 – 7'	C1-12
Figure C1-10: Cross-Section of Levees for Soil Areas 1 to 3	C1-15
Figure C1-11: Cross-Section of Levees for Soil Areas 4 to 7	C1-16
Figure C1-12: Cross-section of 6 ft Double Sheet Pile Wall for Soil Areas 4 to 7	C1-21
Figure C1-23: Cross-section of 8 ft Double Sheet Pile Wall for Soil Areas 4 to 7	C1-21
Figure C1-14: Cross-Section of 2 ft Flood Wall for Soil Areas 1 to 3	C1-22
Figure C1-25: Cross-Section of 2 ft Flood Wall for Soil Areas 1 to 3	C1-23
Figure C1-36: Cross-Section of 6 ft Flood Wall for Soil Areas 1 to 3	C1-23
Figure C1-47: Cross-Section of 8 ft Flood Wall for Soil Areas 1 to 3	C1-24
Figure C1-58: Variation of Allowable Bearing Capacities with Base Width of Flood Walls for Soil	
Areas 1 to 3	C1-24
Figure C1-69: Cross-section of 6 feet T-wall for Soil Areas 4 to 7	C1-28
Figure C1-7: Cross-section of 8 feet T-wall for Soil Areas 4 to 7	C1-29
Figure C1-21: Cross-section of 6 feet L-wall for Soil Areas 4 to 7	C1-31
Figure C1-22: Cross-section of 8 feet L-wall for Soil Areas 4 to 7	C1-32
Figure C1-23: Cross-section of 6 feet Cantilever Sheet Pile Wall for Soil Areas 1 to 3	C1-36
Figure C1-24: Cross-section of 8 feet Cantilever Sheet Pile Wall for Soil Areas 1 to 3	C1-37
Figure C1-25: Cross-section of 15 feet Cantilever Sheet Pile Wall for Soil Area 2	C1-37
Figure C1C1-26: Cross-section of 15 feet Anchored Sheet Pile Wall for Soil Area 2	C1-39

List of Tables

Table C1-1: Representative Stratification and Recommended Material Properties for Soil Area 1C1-5
Table C1-2: Representative Stratification and Recommended Material Properties for Soil Area 2 C1-6
Table C1-3: Representative Stratification and Recommended Material Properties for Soil Area 3 C1-8
Table C1-4: Representative Stratification and Recommended Material Properties for Soil Area 4 C1-9
Table C1-5: Representative Stratification and Recommended Material Properties for Soil Area 5C1-10
Table C1-6: Representative Stratification and Recommended Material Properties for Soil Area 6C1-12
Table C1-7: Representative Stratification and Recommended Material Properties for Soil Area 7C1-13
Table C1-8: Properties of Levee Materials and Subsurface SoilsC1-14
Table C1-9: Results of the Slope Stability Analysis for Levees
Table C1-10: Results of the Steady State Seepage Analysis for Levees
Table C1-11: Results of the Consolidation Settlement Analysis for Levees
Table C1-12: Results of the Sheet Pile Analysis for 7.2 and 9.8 feet Levees in Soil Areas 4 to 7C1-19
Table C1-13: Results of the Double Sheet Pile Wall Analysis for Soil Areas 4 to 7
Table C1-14: Results of the Primary Consolidation Settlement Analysis for
T-walls in Soil Areas 1 to 3C1-25
Table C1-15: Results of the Steady State Seepage Analysis for T-walls in Soil Areas 1 to 3 C1-25
Table C1-16: Results of the Sheet Pile Analysis for I-walls in Soil Areas 4 to 7C1-26

Subappendix C1

DEPARTMENT OF ENVIRONMENTAL PROTECTI	on 🔇
--------------------------------------	------

Table C1-17: Results of the Steady State Seepage Analysis for I-walls in Soil Areas 4 to 7	.C1-27
Table C1-18: Required Minimum Sheet Pile Lengths for T-walls in Soil Areas 4 to 7	.C1-27
Table C1-19: Results of the Steady State Seepage Analysis for T-walls in Soil Areas 4 to 7	.C1-28
Table C1-20: Results of the Pile Group Analysis for the Driven Battered Steel Piles and Battered Micropiles for T-walls in Soil Areas 4 to 7	C1-30
Table C1-21: Results of the Analysis for L-walls in Soil Areas 4 to 7	.C1-31
Table C1-22: Summary of Axial Capacities of Battered Friction Piles in Soil Areas 4, 6 and 7	.C1-33
Table C1-23: Summary of Axial Capacities of Battered Steel End Bearing Piles on Rock in Soil Area 5	C1-33
Table C1-24: Summary of Axial Capacities of Battered Micropiles with 11.875 inch OD Casing and1 - #10 Rebar for Soil Areas 4 to 7	C1-34
Table C1-25: Results of the Cantilever Sheet Pile Wall Analysis for Soil Areas 1 to 3	.C1-35
Table C1-26: Results of the Cantilever Sheet Pile Wall Analysis for Soil Area 2	.C1-36
Table C1-27: Results of the Anchored Sheet Pile Wall Analysis for Soil Areas 1 to 3	C1-38

Attachments

Attachment C1-A Attachment C1-B Attachment C1-C Attachment C1-D Attachment C1-E Attachment C1-F Attachment C1-G Attachment C1-H Attachment C1-I Attachment C1-J Attachment C1-K Attachment C1-L Attachment C1-M Attachment C1-N Attachment C1-O Attachment C1-P Attachment C1-Q Attachment C1-R Attachment C1-S Attachment C1-T Attachment C1-U Attachment C1-V Attachment C1-W Attachment C1-X Attachment C1-Y

Acronyms and Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
EM	Engineer Manual
FOS	Factor of safety
HP	H-Pile
Lidar	Light Detection and Ranging
LOP	Line of protection
NAVD 88	North American Vertical Datum of 1988
SPT	Standard penetration test
USACE	US Army Corps of Engineers

1.0 Introduction

This subappendix presents the findings of the feasibility assessment for Rebuild by Design Meadowlands Flood Protection Project (the Proposed Project) in Bergen County, New Jersey. The following five flood protection alternatives were considered: (1) earth levee; (2) double sheet pile wall; (3) flood wall (T-, I- and L-wall); (4) cantilever sheet pile wall; and (5) anchored sheet pile wall. The feasibility of deep foundation alternative for the pump station and Forebay were also assessed.

The Project Area along the proposed line of protection (LOP) was divided into seven Soil Areas based on the subsurface conditions and the bedrock elevations. Based on the existing borings, no organic soil layer was identified in Soil Areas 1 to 3, while an organic clay or peat layer was found in Soil Areas 4 to 7.

The flood protection alternatives were analyzed for flood heights of 2 feet, 4 feet, 6 feet and 8 feet. The flood elevation was assumed to be +8 feet (referenced to the North American Vertical Datum of 1988 [NAVD 88]), and groundwater table elevation was assumed to be +1 feet (NAVD 88). The earth levee alternative was considered for all Soil Areas. The 6 feet and 8 feet levees in Soil Areas 4 to 7 will require a significantly large volume of existing soils to be replaced by structural fill; therefore, levees with sheet piles on both landside and riverside were considered for these cases. In addition, a double sheet pile wall was considered for the 6 feet and 8 feet flood height for Soil Areas 4 to 7.

The flood wall alternative was considered for all Soil Areas. T-walls on shallow foundations are recommended for all flood heights for Soil Areas 1 to 3. I-walls are recommended for 2 and 4 feet flood height for Soil Areas 4 to 7. T-walls and L-walls on deep foundations are recommended for 6 feet and 8 feet flood height for Soil Areas 4 to 7. A combination of sheet piles with either driven battered steel piles or battered micropiles is recommended as the deep foundation alternatives for the T-walls and L-walls in Soil Areas 4 to 7. In addition, the cantilever sheet pile wall alternative for flood heights of 6 feet and 8 feet was considered for Soil Areas 1 to 3 and 15 feet flood height was considered for Soil Area 2, where top of bedrock is elevation -27 or lower. The cantilever wall with 15 feet flood height in Soil Area 2 is only feasible, if there is no overtopping from the flood and the water in the backfill is drained due to presence of drainage pipe in the fill layer. As an additional alternative, an anchored sheet pile wall is recommended for the 15 feet flood height in Soil Area 2, where the bedrock elevation is higher than -27 feet.

Due to the presence of the organic clay/peat layer in Soil Area 6, driven piles or micropiles are recommended as deep foundation alternative for the proposed pump station and forebay. The proposed pile groups for the pump station and forebay are adequate based on the estimated total axial capacities using a group reduction factor and axial capacity of a single H-pile (HP) 16×141 steel pile.

2.0 Generalized Subsurface Profiles

Figure C1-1 presents the location of existing soil borings and the contours of bedrock elevation below the sea level on the project area map. The existing soil borings include borings with standard penetration test (SPT) N-values from the New Jersey Department of Transportation Soil Borings Database and borings without SPT N-values from Joseph S. Ward, Inc. (NJDOT 2016; USACE 1962; Scott 1993; The Louis Berger Group 2010; USACE 2010). The bedrock elevation contours are from the New Jersey Department of Transportation's Soil Borings Database (NJDOT 2016).

Based on the subsurface conditions and the bedrock elevations, the project area along the proposed line of flood protection (LOP) was divided into seven soil areas. In order to characterize the subsurface conditions at each soil area, soil profiles were prepared using the boring logs and results of geophysical investigations from Earthworks LLC (2007). All boring logs used in this study are included as **Attachment C1-A**. Ground surface elevations were estimated from the ground elevation (NAVD 88) contour maps based on the Light Detection and Ranging (LiDAR) survey data obtained from State of New Jersey. Likewise, bedrock elevations were estimated from the bedrock elevation contours where no data were available from the boring logs (Ward 1962).

A representative stratification and set of material properties were assigned to each Soil Area after carefully examining the soil profiles. No organic soil layer was identified in Soil Areas 1 to 3, while an organic clay or peat layer was found in Soil Areas 4 to 7. The material properties were carefully selected based on engineering judgement, material descriptions and the limited SPT N-values available from the existing boring logs and results of laboratory tests performed on similar soils from a nearby project site (AECOM 2016).

Figure C1-1: Map Showing Proposed Line of Flood Protection with Existing Boring Location and Bedrock Contours

This Page has been Intentionally Left Blank.

2.1 Soil Area 1

Soil profile represented by Section 1-1', shown in **Figure C1-2**, was used to prepare the representative stratification and recommended material properties for Soil Area 1, which are presented in **Table C1-1**. The properties materials were selected based on historical boring with SPT N-values and correlations with shear strength.

Figure C1-2: Generalized Subsurface Profile at Section 1 – 1' Table C1-1: Representative Stratification and Recommended Material Properties for Soil Area 1

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ (degree)		Cohesion, c (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)
1	Ground Surface Elevation	0	Fill	110	32		0	1.0 × 10 ⁻³ to 1.0 × 10 ⁻⁴
2	0	40	Clay	110	Short term	0	1,000	2.01 × 10 ⁻⁴ to
2	0	-40	and silt	t	Long term	25	100	2.01 × 10 ⁻⁵
3	-40	-55	Glacial till	130	36		0	5.02 × 10 ⁻⁴ to 5.02 × 10 ⁻⁵
4	-40 to -60	N/A	Bedroc k	N/A	N/A	N/A	N/A	N/A

N/A = not applicable.

2.2 Soil Area 2

Soil profile represented by Section 2-2', shown in **Figure C1-3**: , was used to prepare the representative stratification and recommended material properties for Soil Area 2, which are presented in **Table C1-2**. As shown in **Figure C1-3**: , Section 2-2' is located significantly inland from the riverbank and the LOP. Thus, the top fill layer was ignored in the stratification for Soil Area 2. The properties material were selected based on historical borings classification, engineering judgment, and existing laboratory test performed on similar soils from a nearby project site.

Figure (C1-3:	Generalized	Subsurface	Profile	at Section	2 –	2'
<u> </u>							

able C1-2: Representativ	e Stratification and Recomme	ended Material Properties for Soil Area
--------------------------	------------------------------	---

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ (degree)		Cohesion , c (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)
4	Ground	10	Clav	110	Short term	0	500	1.0 × 10 ⁻⁴ to 1.0
1	Elevation	-10	Clay	110	Long term	22	50	× 10 ⁻⁵
2	-10	-35	Glacial till	130	36		0	5.02 × 10 ⁻⁴ to 5.02 × 10 ⁻⁵
3	-15 to -40	N/A	Bedroc k	N/A	N/A	N/A	N/A	N/A

N/A = not applicable.

2.3 Soil Area 3

Soil profile represented by Section 3-3', shown in **Figure C1-4**:, was used to prepare the representative stratification and recommended material properties for Soil Area 3, which are presented in **Table C1-3**. As shown in **Figure C1-4**:, Section 3-3' is located significantly inland from the riverbank and the LOP. Thus, the top fill layer was ignored in the stratification for Soil Area 3. The properties material were selected based on historical borings classification, engineering judgment and existing laboratory test performed on similar soils from a nearby project site. **Figure C1-5**: presents soil profile at Section G-G' obtained from the US Army Corps of Engineers (USACE) (Earthworks, 2007). As shown in **Figure C1-5**: , a portion of Section G-G' is located in Soil Area 3 and in general, shows similar stratification as Section 3-3'.

Figure C1-4: Generalized Subsurface Profile at Section 3 – 3'

Figure C1-5: Generalized Subsurface Profile at Section G – G'

Table C1-3: Representative Stratification and Recommended Material Properties for Soil Area 3

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ (degree)		Friction Angle, φ (degree) ,		Cohesion , c (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)
	Ground	70	Clay	110	Short term	0	500	2.01 × 10 ⁻⁴ to		
1	Elevation	-70	and silt	110	Long term	25	0	2.01 × 10 ⁻⁵		
2	-45 to -70	N/A	Bedrock	N/A	N/A	N/A	N/A	N/A		

N/A = not applicable.

2.4 Soil Area 4

Soil profile represented by Section 4-4', shown in **Figure C1-6**: , was used to prepare the representative stratification and recommended material properties for Soil Area 4, which are presented in

Table C1-4: . As shown in **Figure C1-6**: , Section 4-4' is located significantly inland from the riverbank and the LOP. Thus, the top fill layer was ignored in the stratification for Soil Area 4. The properties material were selected based on historical borings classification, engineering judgment and existing laboratory test performed on similar soils from a nearby project site.

As shown in **Figure C1-5**: , a portion of Section G-G' is located in Soil Area 4 and in general, shows similar stratification as Section 4-4'.

Figure C1-6: Generalized Subsurface Profile at Section 4 – 4'

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ (degree)		Cohesion, c (lb/ft³)	k=Hydraulic Conductivity kh=kv (cm/sec)	
1	Ground	10	Organi c clay 8	Organi c clay 85	95	Short term	0	200	1.0 × 10 ⁻⁴ to
I	Elevation	-12			c clay	00	Long term 2	20	0
	10	65	Clay	110	Short term	0	300	1.0 × 10 ⁻⁴ to	
2	-12	-05	Clay	110	Long term	22	0	1.0 × 10⁻⁵	
3	-65	-70	Glacial till	130	36		0	5.02 × 10 ⁻⁴ to 5.02 × 10 ⁻⁵	
4	-60 to -75	N/A	Bedroc k	N/A	N/A	N/A	N/A	N/A	

N/A = not applicable.

2.5 Soil Area 5

Soil profile represented by Section 5-5', shown in **Figure C1-7**: , was used to prepare the representative stratification and recommended material properties for Soil Area 5, which are presented in **Table C1-5**. The properties material were selected based on historical borings classification, engineering judgment and existing laboratory test performed on similar soils from a nearby project site.

As shown in **Figure C1-5**: , a portion of Section G-G' is located in Soil Area 5 and in general, shows similar stratification as Section 5-5'.

Figure C1-7: Generalized Subsurface Profile at Section 5 – 5'

Stratum No.	Top Elevatio n (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ (degree)		Cohesion , c (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)
1	Ground Surface Elevation	0	Peat	65	0		200	1.0 × 10 ⁻³ to 1.0 × 10 ⁻⁴
2	0	-40	Clayey silt	110	Short term	0	300	2.01 × 10 ⁻⁴ to
2					Long term	22	0	2.01 × 10 ⁻⁵
3	-20 to -45	N/A	Bedroc k	N/A	N/A	N/A	N/A	N/A

Table C1-5: Representative Stratification and Recommende	d Material Properties for Soil Area 5
--	---------------------------------------

N/A = not applicable.

2.6 Soil Area 6

Soil profile represented by Section 6-6', shown in **Figure C1-8**: , was used to prepare the representative stratification and recommended material properties for Soil Area 6, which are presented

in **Table C1-6**. The properties materials were selected based on historical boring with SPT N-values, engineering judgment and correlations with shear strength.

5				5 D-	-14						3			
	/+C		Organic	T I	Fill (Sar	nd) 13	569		FUL		Fill Woo	der i		
0	Bog	RGANIC	ATTER	-3	2	FILL	Fill (Sa	nd)			Sand	ap)		0
5	Gray Ekpy				15	SAND	Organic	Silt	ORGANIC	MATTER	Deccy Sand	Vegetable		
o	Brown Clay			-19	Some Si	ilt	Silt Some - (Hay	SAND		Clay	and		
5	H			-Push	L <u>.</u>		1	T						
				-Push	Clay &	\$ilt	Silt &	Clay			Clay &	Sand		
20				Push	3		H		CLAY					
25				Push										
50				Clay &	silt		Some	lav						
	Gray Clay			-Push				Juy			Clay			
	CLAY			-Push	1		1				_		1	
40				-Push			LAY	ļ			Class			
15		·····	i	Push	1	1	1				Ciay		·	
50					<u> </u>		<u>.</u>					<u> </u>		
5				Push	į		ļ							
	Red Clay			Push	Silt		1				Clay &	Sand		
50				Push	1	1	1							
5	Clay & Gravel			Buch		+						+		
70				Clay &	Silt		ļ							
,5	Clay & Gravel &	Sand		Push	<u> </u>		<u> </u>							
5	Rock			-Push	1									
,0				100/2'		Turana						1		
5				⊐ Sand S Silt Gr	ome avel		+							
		<u> </u>												
	ROCK	\sim			-	GLA								
5					1	1	1							
0							POCK	 	++					
5		i			i	i	ROCK	i		i				

Figure C1-8: Generalized Subsurface Profile at Section 6 – 6'

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Ar φ (degre	ngle, e)	Cohesion , c (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)	
1	Ground Surface Elevation	7	Organic clay	85	Short term	0	200	1.0 × 10 ⁻⁴ to 1.0 × 10 ⁻⁵	
I		-7		00	Long term	20	0		
2	-7	-75	Clay	110	Short term	0	300	1.0 × 10 ⁻⁴ to 1.0 × 10 ⁻⁵	
					Long term	22	0		
3	-75	-85	Glacial till	130	36		0	5.02 × 10 ⁻⁴ to 5.02 × 10 ⁻⁵	
4	-75 to - 100	N/A	Bedroc k	N/A	N/A	N/A	N/A	N/A	

Table C1-6: Representative Stratification and Recommended Material Properties for Soil Area 6

N/A = not applicable.

2.7 Soil Area 7

Soil profile at Section 7-7', shown in **Figure C1-9**: , was used to prepare the representative stratification and recommended material properties for Soil Area 7, which are presented in **Table C1-7**: . The properties material were selected based on historical borings classification, engineering judgment and existing laboratory test performed on similar soils from a nearby project site.

Figure C1-9: Generalized Subsurface Profile at Section 7 – 7'

Stratum No.	Top Elevation (ft)	Bottom Elevation (ft)	Mat- erial	Unit Weight, γ (lb/ft³)	Friction Angle, φ' (degree)		Cohesion, c' (lb/ft²)	k=Hydraulic Conductivity kh=kv (cm/sec)
1	Ground Surface Elevation	A	Organic	85	Short term	0	200	1.0 × 10 ⁻⁴ to 1.0
I		-4	clay		Long term	20	0	× 10 ⁻⁵
2	-4	-140	Clay	110	Short term	0	300	1.0 × 10 ⁻⁴ to 1.0
					Long term	22	0	× 10 ⁻⁵
3	-140	-245	Glacial till	130	36		0	5.02 × 10 ⁻⁴ to 5.02 × 10 ⁻⁵
4	- 230 to - 260	N/A	Bedrock	N/A	N/A	N/A	N/A	N/A

Table C1-7: Representative Stratification and Recommended Material Properties for Soil Area 7

N/A = not applicable.

3.0 Earth Levee

The earth levee alternative was considered for all Soil Areas. Prior to the construction of levees, the upper soil must be inspected down to 6 feet depth by excavating trenches. If the existing material is not suitable for construction, it must be replaced by proper structural fill. Slope stability, seepage, and settlement analysis were performed for the levees.

3.1 Slope Stability and Seepage Analysis

The slope stability and seepage analyses were performed following the guidelines in USACE, *Design and Construction of Levees*, Engineer Manual (EM) 1110-2-1913 (USACE 2000). The analyses were performed for levees with 2.2 feet, 4.4 feet, 6.6 feet and 8.8 feet height (2 feet, 4 feet, 6 feet and 8 feet plus settlement) in Soil Areas 1 to 3, and levees with 2.6 feet, 4.9 feet, 7.2 feet and 9.8 feet height (2 feet, 4 feet, 6 feet and 8 feet plus settlement) in Soil Areas 1 to 3, and levees with 2.6 feet, 4.9 feet, 7.2 feet and 9.8 feet height (2 feet, 4 feet, 6 feet and 8 feet plus settlement) in Soil Areas 4 to 7 (see **Section 3.2** for settlement estimates).

Construction of levees with 7.2 feet (6 feet plus settlement) and 9.8 feet (8 feet plus settlement) height in Soil Areas 4 to 7 will require an excessive volume of existing soils to be replaced by structural fill due to the presence of soft/organic material at these Soil Areas based on the historical data. In order to avoid this problem, installation of sheet piles on both sides of the levees is recommended. Details of sheet pile analyses for lateral load for the 7.2 feet and 9.8 feet levees are presented in **Section 3.3**.

Cross-sections of the levees in Soil Areas 1 to 3 and Soil Areas 4 to 7 are presented in **Figures C1-10** and **C1-11**, respectively. Underlying soils properties were selected based on material description, engineering judgement, SPT N –values from historical boring logs and results of laboratory tests performed on similar soils from a nearby project site. A summary of properties of the proposed levee materials and underlying soils used in the stability and seepage analyses is presented in **Table C1-8**.

Material	Unit Weight, γ (lb/ft ³)	Friction Angle, φ (deg.)		Cohesion, c (lb/ft ²)	Hydraulic Conductivity, k kh=kv(cm/sec)						
Soil Areas 1 to 7											
	400	Short Term 15 200		0.04 40.5							
Levee Fill	120	Long Term	25	50	2.01 × 10-3						
Structural Fill	Structural Fill 120 N/A		32	0	5.02 × 10 ⁻⁴						
Drain 120		N/A 32 0		0	1.0 × 10 ⁻²						
Soil Areas 1 to 3											
Clay and Silt	110	Short Term	0	500	2.01×10^{-4}						
Ciay and Silt	110	Long Term	25	0	2.01 × 10 *						
		Soil Area	as 4 to 7								
Organia Clay	95	Short Term	0	200	1.0 × 10-4						
Organic Clay	60	Long Term	20	0	1.0 × 10 *						
Clay	110	Short Term	0	300	1.0 × 10-4						
Clay	110	Long Term	22	0	1.0 × 10 ⁻⁴						

Table C1-8: Properties of Levee Materials and Subsurface Soils

2.2 FT (2 FT + 0.2 FT SETTLEMENT) LEVEE SECTION FOR SOIL AREAS 1 TO 3

6.6 FT (6 FT + 0.6 FT SETTLEMENT) LEVEE SECTION FOR SOIL AREAS 1 TO 3

Figure C1-10: Cross-Section of Levees for Soil Areas 1 to 3

2.6 FT (2 FT + 0.6 FT SETTLEMENT) LEVEE SECTION FOR SOIL AREAS 4 TO 7

9.8 FT (8 FT + 1.8 FT SETTLEMENT) LEVEE SECTION FOR SOIL AREAS 4 TO 7

Figure C1-11: Cross-Section of Levees for Soil Areas 4 to 7
The analyses were performed using the commercially available software GeoStudio 2007 SEEP/W© and SLOPE/W© by Geoslope International, Ltd. Based on the requirements in the USACE guidance for the design and construction of levees, the following four loading cases were considered in the analyses (USACE, 2000):

- Case I: End of Construction;
- Case II: Steady Seepage from Full Flood Stage, fully developed phreatic surface;
- Case III: Rapid Drawdown from Full Flood Stage; and,
- Case IV: Seismic Loading, no flood conditions.

Spencer's procedure for the method of slices was used to determine the minimum factor of safety (FOS) values and the controlling/critical slip surface associated with the FOS values for all four loading cases.

For Case I stability analysis, groundwater was modeled at elevation +1.0 feet (NAVD 88). Considering that Case I is a short-term scenario, undrained strength parameters were used for cohesive soil layers.

Case II was analyzed at flood level elevation of +8.0 feet (NAVD 88) to estimate the conditions at a full flood stage. Seepage analysis was performed for this case to estimate flow and exit gradient characteristics and to develop the phreatic surface for use in the stability analyses.

Case III was performed to estimate the conditions when the water level adjacent to the riverside slope lowers rapidly. This case generally has a greater influence on soils with lower permeability since the dissipation of pore pressure is slower in these materials. For this case, the phreatic surface was conservatively modeled as in Case II while keeping the flood level lowered along the riverside slope to the toe.

Case IV utilizes the pseudo-static slope stability analysis. The piezometric line was modeled the same as in Case I. It is standard practice to consider the pseudo-static coefficient as 2/3 of PGA/g. Accordingly, a pseudo-static coefficient of 0.16 (2/3×0.25g/g) was estimated based on the national ground motion maps from the American Association of State Highway and Transportation Officials (AASHTO) (2014), *LRFD Bridge Design Specifications* for approximate return period of 1,000 years and used in the analysis(AASHTO 2014).

A summary of the calculated FOS and the corresponding required minimum FOS values are listed in **Table C1-9**, which indicates that the calculated FOS values fulfil the minimum requirements. The details of all stability and seepage analysis results from GeoStudio are included as **Attachment C1-B**.

		Required	Calc	ulated Fa	ctor of S	afety
Soil Areas	Analysis Case	Minimum Factor of Safety	2.2 ft Levee	4.4 ft Levee	6.6 ft Levee	8.8 ft Levee
	Case I: End of Construction	1.3	4.1	3.2	2.8	2.0
1 to 3	Case II: Steady State - Full Flood Stage	1.4	2.1	1.7	1.6	1.5
	Case III: Rapid Drawdown	1.2	2.3	1.6	1.4	1.2
	Case IV: Seismic Load	1.0	1.8	1.5	1.2	1.0
			2.6 ft Levee	4.9 ft Levee	7.2 ft Levee	9.8 ft Levee *
	Case I: End of Construction	1.3	3.1	1.8	1.8	1.4
4 to 7	Case II: Steady State - Full Flood Stage	1.4	1.4	1.4	1.7	1.5
	Case III: Rapid Drawdown	1.2	1.5	1.5	1.5	1.3
	Case IV: Seismic Load	1.0	1.5	1.3	1.0	1.0

Table C1-9: Results of the Slope Stability Analysis for Levees

*Without considering sheet piles (factor of safety will increase if sheet piles are considered)

The maximum exit gradient and flow rate for the steady state seepage at full flood stage, are presented in **Table C1-10**. The estimated maximum exit gradients are lower than the allowable critical gradients, typically 0.5 to 0.8, according to the USACE guidance for the design and construction of levees (USACE 2000).

 Table C1-10: Results of the Steady State Seepage Analysis for Levees

Soil Areas	Criteria	2.2 ft Levee	4.4 ft Levee	6.6 ft Levee	8.8 ft Levee
1 to 2	Maximum Exit Gradient	0.06	0.12	0.16	0.20
1 to 3	Flow Rate (gal/day/ft)	8.7	15.5	20.4	26.5
		2.6 ft Levee	4.9 ft Levee	7.2 ft Levee*	9.8 ft Levee*
1 to 7	Maximum Exit Gradient	0.04	0.08	0.11	0.12
4 10 7	Flow Rate (gal/day/ft)	4.8	9.3	12.7	14.3

*Without considering sheet piles (exit gradient and flow rate will decrease if sheet piles are considered)

3.2 Consolidation Settlement

The primary and secondary consolidation settlement of the cohesive (clayey) soil layers below the structural fill were calculated according to the general guidelines in the USACE guidance for the design and construction of levees (USACE 2000). Details of the primary and secondary consolidation settlement calculations for levees are provided in **Attachment C1-C**. A summary of the settlement estimates is presented in **Table C1-11**.

In the settlement analysis, the compressible soil layers were divided into sub-layers of 2 feet thicknesses for obtaining better accuracy of calculations. Increase in vertical stresses at the mid depth of each sub-layer due to the weight of levee was calculated using the elastic stress distribution methods outlined in the *Principles of Geotechnical Engineering* (Das 2006).

		Settlement (ft=feet)					
Soil Areas	Criteria	2.2 ft Levee	4.4 ft Levee	6.6 ft Levee	8.8 ft Levee		
	Primary Consolidation	0.083	0.250	0.50	0.583		
1 to 3	Secondary Consolidation	0.166	0.166	0.166	0.166		
	Total	0.25	0.416	0.666	0.750		
		2.6 ft Levee	4.9 ft Levee	7.2 ft Levee	9.8 ft Levee		
	Primary Consolidation	0.416	0.750	1.00	1.66		
4 to 7	Secondary Consolidation	0.166	0.166	0.166	0.166		
	Total	0.583	0.916	1.166	1.833		

The primary consolidation parameters (e.g., initial void ratio and compression index for the clay and silt layer and the clay layer) were assumed from the results of consolidation tests performed on similar soils from a nearby sites (AECOM 2016). The primary consolidation parameters for the organic clay layer were assumed from the results of consolidation test performed on organic soil from a nearby site reported in the USACE General Design Memorandum (1995), Passaic River Flood Damage Reduction (USACE 1995). All three clayey soil layers were assumed to be normally consolidated.

Secondary consolidation parameters for the organic clay, clay and silt, and clay layers were assumed from the results of consolidation tests performed on similar soils from the nearby sites (AECOM 2016). Secondary consolidation settlement was calculated for a 50-year period after the construction of the levees.

3.3 Sheet Pile Analysis

Lateral loads on the sheet piles for the 7.2 and 9.8 feet levees in Soil Areas 4 to 7 were analyzed using the commercially available software Shoring Suite V8 by CivilTech Software. Wedge analysis (Culmann) method was used to estimate the active and passive earth pressures acting on the sheet piles. For each levee, the horizontal line force acting on the sheet pile was determined from the critical slice information from the slope stability analysis described in **Section 3.1**. Output from Shoring Suite is included as **Attachment C1-D**. A summary of the results of the sheet pile analysis are presented in **Table C1-12**.

Levee Height (ft)	Sheet Pile Type	Required Minimum Pile Length (ft)	Required Minimum Section Modulus (in³/ft)	Pile Section Modulus (in ³ /ft)	Pile Top Deflection (in)
7.2	AZ17	33	27.0	31.0	1.46
9.8	AZ19	36	34.0	36.1	2.23

4.0 Double Sheet Pile Wall

As an alternative to the levee or floodwall with sheet piles for 6 and 8 feet flood height in Soil Areas 4 to 7, a double sheet pile wall was considered. A double sheet pile wall structure consists of two steel sheet piles with tops connected by struts and the space between the sheet piles filled with sand. No surcharge load was considered for the design; therefore, there will be not vehicle access to the top of wall. Cross-sections of the 6 feet and 8 feet double sheet pile walls with maximum 10 feet spacing are presented in **Figures C1-12** and **C1-13**, respectively.

The double sheet pile walls were analyzed using the commercially available software PYWall by Ensoft, Inc. Long-term (drained) soil properties of the organic clay and clay layers were conservatively (higher active pressure on wall) used for the analysis. The following four loading cases were considered: 1) no flood condition; 2) full flood stage; 3) rapid drawdown from full flood stage; and 4) seismic loading.

A summary of the results of the PYWall analysis is presented in **Table C1-13**. The analysis indicates that minimum section sizes of AZ19 and AZ26 are required for 6 feet and 8 feet double sheet pile walls, respectively. Plots of lateral defection, bending moment and shear force with depths of sheet piles are included as **Attachment C1-E**. As shown in **Attachment C1-E**, lateral deflection at the bottom of the sheet piles is almost zero for all cases. Output from PYWall analysis for 8 feet double sheet pile wall in Soil Area 4 is included as **Attachment C1-F**.

Considering that the exit gradient and flow rate for the I-wall and T-wall alternatives with much shorter sheet piles (see **Sections 5.2.2** and **5.2.3**) were within acceptable limits, seepage is not a likely concern for the double sheet pile walls.

Analysis Case	Wall Height (ft)	Sheet Pile Section	Sheet Pile Length	Allowable Moment Capacity (kip-	Maximum Deflection (in)	Maximum Moment (kip-in)
No Flood Condition					0.03	265
Full Flood Stage	c	AZ19	30	3,996	0.28	312
Rapid Drawdown	0				0.03	124
Seismic Load					0.40	345
No Flood Condition					0.08	428
Full Flood Stage		1700	26 35	5,558	0.52	648
Rapid Drawdown	ð	AZ20			0.04	200
Seismic Load					0.77	620

Table C1-13: Results of the Double Sheet Pile Wall Analysis for Soil Areas 4 to 7

Figure C1-12: Cross-section of 6 ft Double Sheet Pile Wall for Soil Areas 4 to 7

5.0 Flood Wall

The floodwall alternative was considered for all Soil Areas. For Soil Areas 1 to 3 the shallow foundations were considered due to present of suitable material based on the historical borings. However, the upper 6 feet of soil must be inspected prior to construction. For Soil Areas 4-7 deep foundations were considered due to the presence of unsuitable material such as organics and peats. Therefore, a floodwall with deep foundation system is required for these areas.

5.1 Soil Areas 1 to 3

T-walls on shallow foundations were considered for all wall heights for Soil Areas 1 to 3. Prior to the construction of the T-walls on shallow foundations, the upper soil layer must be inspected down to 6 feet depth by excavating trenches. If the existing material is not suitable for construction, it must be replaced by proper structural fill. Bearing capacity, consolidation settlement and seepage analysis were performed for the T-walls. Further analysis for sliding, overturning and global stability of the T-walls is performed in the structural calculations.

5.1.1 Bearing Capacity

Bearing capacities were calculated following guidelines in the USACE, Retaining the Flood Walls, EM 1110-2-250 (USACE 1989). A factor of safety of 3 was used to calculate the allowable bearing capacities. For all cases, the depth from the soil surface to the base of floodwall was assumed to be 3.5 feet or 4 feet. Cross sections of the T-walls are presented in **Figures C1-14** to **C1-17**.

Details of bearing capacity calculations for floodwalls are included as **Attachment C1-G**. A plot of allowable bearing capacities versus base width is presented in **Figure C1-18**. As shown in **Figure C1-18**, bearing capacities vary from 1.0 vary from 1.0 to 1.2 kip per feet squared in Soil Area 1, and from 0.5 to 0.6 kip per feet squared in Soil Areas 2 and 3.

Figure C1-14: Cross-Section of 2 ft Flood Wall for Soil Areas 1 to 3

Figure C1-25: Cross-Section of 2 ft Flood Wall for Soil Areas 1 to 3

Figure C1-36: Cross-Section of 6 ft Flood Wall for Soil Areas 1 to 3

Figure C1-47: Cross-Section of 8 ft Flood Wall for Soil Areas 1 to 3

Figure C1-58: Variation of Allowable Bearing Capacities with Base Width of Flood Walls for Soil Areas 1 to 3

5.1.2 Consolidation Settlement

The primary and secondary consolidation settlement of the cohesive (clayey) soil layers below the Twalls were calculated following the guidelines in USACE, Settlement Analysis, EM 1110-1-1904 (USACE 1990). The elevations of wall top and groundwater table were assumed +8 feet and +1feet, respectively. Based on the generalized subsurface profiles described in **Section 2.0**, thickness of the clayey layer in Soil Area 3 is 70 , which is greater than 40 feet in Soil Area 1 and 10 feet in Soil Area 2. Therefore, Soil Area 3 was conservatively selected for the settlement calculations. Details of the primary consolidation settlement calculations for flood walls are provided in **Attachment C1-H**.

The primary consolidation parameters (e.g., the initial void ratio and compression index) for the clay and silt layer were assumed from the results of consolidation tests on similar soils from a nearby site (AECOM 2016). The compressible soil layers were divided into sub-layers of 2 feet thicknesses for obtaining better accuracy of calculations. Stress distribution below the footing for uniform strip load was calculated using the method outlined in Naval Facilities Engineering Command, *Soil Mechanics Design Manual*, DM 7.01 (NAVFAC 1986). A summary of the settlement estimates are presented in **Table C1-14**.

Wall Height (ft)	Base Width of Wall (ft)	Settlement (in)
2	2.5	1.1
4	4.0	1.7
6	8.0	2.6
8	12.0	3.0

Table C1-14: Results of the Primary Consolidation Settlement Analysis forT-walls in Soil Areas 1 to 3

5.1.3 Seepage Analysis

Steady state seepage analysis at full flood stage was performed for T-walls with 2, 4, 6 and 8 ft flood height in Soil Areas 1 to 3 using GeoStudio SEEP/W© and following the guidelines in the USACE guidance on designs for retaining and flood walls (USACE, 1995). As indicated in **Section 2.0**, hydraulic conductivity of the top layer in Soil Area 3 is higher than the top layers in Soil Areas 2 and 3. Thus, Soil Area 3 was conservatively selected for the seepage analysis. Results of the seepage analysis are included as **Attachment C1-I**. The maximum exit gradient and flow rate for the T-walls at full flood stage are presented in **Table C1-15**. The estimated maximum exit gradients are lower than the allowable critical gradients, typically 0.5 to 0.8 (USACE 1989).

Flood Height (ft) Maximum Exit Gradient		Flow Rate (gal/day/ft)
2	0.12	8
4	0.23	19
6	0.25	23
8	0.28	27

5.2 Soil Areas 4 to 7

I-walls were considered for 2 and 4 feet flood height for Soil Areas 4 to 7. T- and L-walls with sheet piles and driven battered steel piles or battered micropiles were considered for 6 and 8 feet flood height for Soil Areas 4 to 7.

5.2.1 I-wall

Lateral load and seepage analysis were performed for the I-walls.

5.2.1.1 Sheet Pile Analysis

I-walls were analyzed using PYWall. Long-term (drained) soil properties of the organic clay and clay layers were conservatively (higher active pressure on wall) used for the analysis. Since I-walls can have a maximum free height of 5 feet, only 2 and 5 feet high I-walls were considered (USACE 1989). A summary of I-wall analysis results for Soil Areas 4 to 7 are presented in **Table C1-16**: .

Considering a maximum allowable lateral deflection of 1 in at the top and approximately zero inches of deflection at the tip of the wall, AZ12 is recommended for the sheet piles. A minimum sheet pile length of the free height of the wall plus 10 feet is recommended. Plots of lateral defection, bending moment and shear force with depths of sheet piles are included as **Attachment C1-J**. Output from PYWall analysis for the 2 feet I-wall in Soil Area 4 is provided in **Attachment C1-K**.

		Allowable	2 ft Wall			5 ft Wall			
Soil Area	Sheet Pile Section	Moment Capacity (kip-in)	Sheet Pile Length (ft)	Maximum Deflection (in)	Maximu m Moment (kip-in)	Sheet Pile Length (ft)	Maximum Deflection (in)	Maximum Moment (kip-in)	
4	AZ12	1,934	14	0.039	33	20	0.25	256	
5	AZ12	1,934	14	0.035	32.5	20	0.22	248	
6	AZ12	1,934	14	0.036	34	20	0.24	264	
7	AZ12	1,934	14	0.038	34	20	0.24	256	

Table C1-16: Results of the Sheet Pile Analysis for I-walls in Soil Areas 4 to 7

5.2.1.2 Seepage Analysis

Steady state seepage analysis at full flood stage was performed for 2 and 4 feet I-walls in Soil Areas 4 to 7 using GeoStudio SEEP/W© and following the guidelines in USACE guidance on retaining and flood walls (USACE 1989). Results of the seepage analysis are in **Attachment C1-L**.

The maximum exit gradient and flow rate for the I-walls at full flood stage are presented in **Table C1-17**. The estimated maximum exit gradients are lower than the allowable critical gradients, typically 0.5 to 0.8 (USACE 1989).

Parameter	Soil Area	2 ft I-wall	4 ft I-wall
	4	0.07	0.11
Mervinerum Exit Credient	5	0.05	0.10
Maximum Exil Gradieni	6	0.07	0.11
	7	0.07	0.12
	4	2.7	4.8
Flow Data (rol/dov/ft)	5	2.8	5.2
Flow Rate (gai/day/it)	6	2.6	4.8
	7	2.6	5.1

Table C1-17: Results of the Stead	v State Seenage Analy	sis for I-walls in Soil Areas 4 to 7
	y Olale Ocepage Analy.	

5.2.2 T-wall

Seepage and pile load analysis were performed for the T-walls with sheet piles and deep foundations. Unlike the I-walls, sheet piles in T-walls were used only for seepage control. Thus, no load analysis for the sheet piles is necessary.

5.2.2.1 Seepage Analysis

Steady state seepage analysis at full flood stage was performed for 6 and 8 feet T-walls in Soil Areas 4 to 7 following the same procedure used for I-walls. Cross sections of the 6 and 8 feet T-walls are presented in **Figures C1-19** and **C1-20**, respectively.

The seepage analysis results are provided as **Attachment C1-M**. The required minimum sheet pile lengths for T-walls based on the seepage analysis are presented in **Table C1-18**. To avoid any possible drivability issues, a minimum section size of AZ12 is recommended for the sheet piles.

Soil Aroo	Sheet Pile	Sheet Pile Length (ft)		
Soli Alea	Section	6-ft Wall	8-ft Wall	
4	AZ12	12	10	
5	AZ12	10	10	
6	AZ12	10	10	
7	AZ12	10	10	

 Table C1-18: Required Minimum Sheet Pile Lengths for T-walls in Soil Areas 4 to 7

The maximum exit gradient and flow rate for the T-walls with sheet piles at full flood stage are presented in **Table C1-19**. The estimated maximum exit gradients are lower than the allowable critical gradients of 0.5 to 0.8 (USACE 1989).

Table C1-19: Results of the Steady State Seepage Analysis for T-walls in Soil Areas 4 to 7

Doromotor	Soil Aroo	T-wall			
Farameter	Soli Area	6 ft I-wall	8 ft I-wall		
	4	0.12	0.18		
Maximum Exit Cradiant	5	0.19	0.18		
Maximum Exit Gradient	6	0.13	0.18		
	7	0.13	0.18		
	4	6.1	8.8		
Flow Data (gal/day/ft)	5	9.6	13.4		
Flow Rate (gal/day/it)	6	6.6	8.8		
	7	6.6	8.8		

Figure C1-69: Cross-section of 6 feet T-wall for Soil Areas 4 to 7

Figure C1-7: Cross-section of 8 feet T-wall for Soil Areas 4 to 7

5.2.2.2 Pile Group Analysis

Pile group analyses were performed for the driven battered steel piles and the battered micropiles for 6 and 8 feet T-walls in Soil Areas 4 to 7 using the commercially available software GROUP v2016 by Ensoft, Inc. A batter slope corresponding to three vertical units to one horizontal unit (3V:1H) was used for both the driven piles and the micropiles. Pile spacing was assumed to be 10 feet in the longitudinal direction of the T-walls. A 6 feet by 10 feet and an 8 feet by 10 feet pile cap with 2 batter piles (one on the landside and another on the riverside of the T-wall) were considered for the 6 and 8 feet T-walls, respectively. Pile size and length were selected based on the results of the pile axial capacity analysis (see **Section 5.2.4**).

The vertical loads on the pile cap consisted of weight of the concrete wall, weight of the compacted soil, water weight and buoyancy. The lateral load consisted of horizontal water pressure from the flood side. Moment was caused by water pressure from the flood side and buoyancy. Horizontal water pressure from the landside was conservatively ignored in the lateral load and moment calculation. The results from the GROUP analysis for T-walls are presented in **Table C1-20**. Output from GROUP analysis for the 8 feet T-wall in Soil Areas 4 to 7 is included as **Attachment C1-N**.

Pile Type	Flood Height (ft)	Pile Length (ft)	Pile No.	Compression (kip)	Tension (kip)	Moment (kip-in)	Shear (kip- in)	Deflection (in)	
		50	1*	22	-	870	9	0.16	
HP 14 × 0	50	2*	-	1.1	882	9	0.16		
Pile 8	60	1	31	-	1,455	14	0.30		
		2	-	6	1,468	14	0.31		
	6	20	1	21	-	834	10	0.32	
11.875 in 0	30	2	-	0.6	853	10	0.34		
Micropile 8	05	1	30	-	1,417	14	0.61		
	0	- 55	2	-	5	1,436	14	0.63	
11.875 in OD Micropile	6 8	30 35	2 1 2 1 2	- 21 - 30 -	6 - 0.6 - 5	1,468 834 853 1,417 1,436	14 10 10 14 14	0.31 0.32 0.34 0.61 0.63	

Table C1-20: Results of the Pile Group Analysis for the Driven Battered Steel Piles and Battered Micropiles for T-walls in Soil Areas 4 to 7

*Piles No. 1 and 2 are on the riverside and landside of the T-wall, respectively.

5.2.3 L-wall

L-walls with sheet piles supported by driven battered (5V:2H) steel piles or battered (5V:2H) micropiles for 6 and 8 ft flood height were analyzed using PYWall. Cross sections of the 6 and 8 ft L-walls are presented in **Figures C1-21** and **C1-22**, respectively.

Long-term (drained) soil properties of the organic clay and clay layers were conservatively (higher active pressure on wall) used for the analysis. The supporting piles were modeled as lateral springs in PYWall to estimate the compression in piles.

A summary of the results of the L-wall analysis are presented in

Table C1-21. Size and length of the supporting piles were selected based on the results of the pile axial capacity analysis (see **Section 5.2.4**). Plots of lateral defection, bending moment and shear force with depths of sheet piles are provided as **Attachment C1-O**. As shown in **Attachment C1-O**, lateral deflection at the bottom of the sheet piles is approximately zero for all cases. Output from PYWall analysis for 6 feet L-wall is shown in **Attachment C1-P**.

Considering a maximum lateral deflection of 1 in at the top and approximately zero deflection at the tip of the wall, AZ14 section with minimum sheet pile length of 30 and 35 feet are recommended for the 6 and 8 feet walls, respectively. Seepage analysis for L-walls is not necessary considering that the exit gradient and flow rate for the I- and T-wall alternatives with much shorter sheet piles are within acceptable limits.

Flood Height (ft)	Sheet Pile Section	Sheet Pile Lengt h (ft)	Allowable Moment Capacity of Sheet Pile (kip-in)	Supporting Batter (5V:2H) Pile Type	Supporting Pile Length (ft)	Compressio n in Supporting Pile (kip)	Maximum Deflection in Sheet Pile (in)	Maximum Moment in Sheet Pile (kip-in)
6		2 4 9 2	HP14×73 Steel Pile	50	26	0.10	306	
6 AZ14 30	30	3,183	11.875 in OD	40	25	0.10	306	
0	0 4744 05		3,183	HP16×141 Steel Pile	67	45	0.22	578
8 AZ14	35	11.875 in OD		55	43	0.24	577	

Table C1-21: Results of the Analysis for L-walls in Soil Areas 4 to 7

Figure C1-21: Cross-section of 6 feet L-wall for Soil Areas 4 to 7

Figure C1-22: Cross-section of 8 feet L-wall for Soil Areas 4 to 7

5.2.4 Pile Axial Capacity

Axial capacity analyses were performed for driven friction piles and end bearing piles on rock, and micropiles. As mentioned in **Sections 5.2.2** and **5.2.3**, the required minimum lengths of driven piles for T- and L-walls in Soil Areas 4 to 7 vary from 50 to 67 feet. Thus, friction piles will be applicable in Soil Areas 4, 6 and 7, where the average depth to bedrock is greater than the required minimum pile lengths. However, the average depth to bedrock in Soil Area 5 is approximately 45 feet and hence, friction piles are not feasible. Instead, end bearing pile on rock will likely be applicable for Soil Area 5.

For all piles, the estimated structural capacities of the steel piles are significantly higher than the geotechnical capacities. Thus, the geotechnical capacities will govern for all cases.

5.2.4.1 Friction Piles

The geotechnical compression and tension capacities of battered HP14×73 and HP16×141 steel friction piles in Soil Areas 4, 6 and 7 were estimated using APILE according to the procedures outlined in the USACE, *Design of Pile Foundations*, EM 1110-2-2906 (USACE 1991). Soil Area 4 was conservatively (greater thickness of clayey layer than other Soil Areas) selected as the representative subsurface profile for the analysis.

Any skin friction from the organic clay layer was ignored. Self-weight of the pile was considered in the tension capacity estimate. A minimum factor of safety of 2.0 for compression and 3.0 for tension were used, assuming that the compression capacity will be verified by pile load test. Plots of the ultimate axial compression and tension capacities versus length of friction piles are provided as **Attachment C1-Q**. An APILE output file is provided in **Attachment C1-R**. The compression and tension capacities of various lengths of friction piles are presented in **Table C1-22**.

Pile Type	Pile Length (ft)	Skin Friction (kip)	End Bearin g (kip)	Ultimate Compression Capacity (kip)	Allowable Compression Capacity (kip)	Self- Weigh t (kip)	Ultimate Tension Capacit y (kip)	Allowable Tension Capacity (kip)
HP14×7 3	50	47	4	51	26	3	50	17
HP14×7 3	60	61	4	65	32	4	65	22
HP16×1 41	67	85	5	90	45	5	90	31

Table C1-22: Summary	of Δxial Ca	nacities of Battered	l Friction Piles in	Soil Areas 4 6	and 7
	y UI ANIAI Ca	pacifies of Dattered		1 JUII Aleas 4, 0	

5.2.4.2 End Bearing Piles on Rock

The geotechnical compression capacity of battered HP14×73 and HP16×141 steel end bearing piles on rock in Soil Area 5 was estimated according to the method outlined in Braja M. Das (2007), *Principles of Foundation Engineering* (Das 2006). For the compression capacity estimates, full contact between the pile tip and bedrock was assumed and skin friction was ignored. The geotechnical tension capacity of the end bearing pile was estimated using the same procedure used for the friction pile.

The unconfined compression strength (q_u) and the drained friction angle (φ') of rock were obtained from the results of a laboratory unconfined compression test performed on a sample of similar bedrock (siltstone/shale) from a nearby site reported in the AECOM Geotechnical Report (2007), *Route 120 SB Flyover over Route 3 and South Service Road Roadways and Structures* (AECOM 2006). A minimum factor of safety of 2.0 for compression and 3.0 for tension were used, assuming that the compression capacity will be verified by a pile load test.

Details of the compression capacity calculation are provided in **Attachment C1-S**. Allowable compression capacity of 200 kip for the end bearing pile on rock is recommended. The compression and tension capacities of the end bearing piles in Soil Area 5 are presented in **Table C1-23**.

Pile Type	Pile Length (ft)	Ultimate Compression Capacity (kip)	Allowable Compression Capacity (kip)	Skin Friction (kip)	Self- Weigh t (kip)	Ultimate Tension Capacity (kip)	Allowable Tension Capacity (kip)
HP14×73	44	400	200	48	3	51	17
HP16×14 1	44	400	200	48	3	51	17

Table C1-23: Summary of Axial Capacities of Battered Steel End Bearing Piles on Rock in Soil
Area 5

5.2.4.3 Micropiles

The compression and tension capacities of battered micropiles in Soil Areas 4 to 7 were estimated based on the methods and specifications outlined in the 2015 International Building Code, New Jersey Edition (International Code Council, 2015).

Piles were assumed to have an 11.875 inch outside diameter (OD) steel casing and one #10 reinforcing bar. The minimum length of steel casing is assumed 15 feet, matching the average thickness of the organic clay layer in Soil Areas 4 to 7. Bond zone diameter of the micropile was assumed to be 11.5 inches. An allowable grout-to-soil bond strength of 5 and 3 psi were assumed for compression and tension, respectively.

Details of the micropile axial capacity calculations are provided in **Attachment C1-T**. The allowable compression and tension capacities are presented in **Table C1-24**.

Table C1-24: Summary of Axial Capacities of Battered Micropiles with 11.875 inch OD Casing and 1 - #10 Rebar for Soil Areas 4 to 7

Wall Type	Cased Length (ft)	Batter Slope	Bond Length (ft)	Total Length (ft)	Allowable Compression Capacity (kip)	Allowable Tensile Capacity (kip)
Timell	15	2) (-111	15	30	32	19
I-wall 15	3111	20	35	44	26	
	45	51 (01)	25	40	54	32
L-wall 15	5V:2H	40	55	86	44	

6.0 Cantilever Sheet Pile Wall

Cantilever sheet pile wall was considered as an additional alternative for 6 feet and 8 feet flood heights for Soil Areas 1 to 3 and 15 feet flood height in Soil Area 2, where the bedrock elevation is at -27.0 feet (NAVD 88) or lower. Cross sections of the 6 feet, 8 feet, and 15 feet cantilever sheet pile walls are presented in **Figures C1-23** to **C1-25**, respectively.

The cantilever sheet pile walls were analyzed using the commercially available software PYWall by Ensoft, Inc. For these analyses it was assumed that no overtopping from the flood and the water in the backfill is drained due to presence of drainage pipe in the fill layer. Therefore, analyses were performed for two cases - 1) no flood/drained condition, and 2) no flood and seismic loading, with assumed water levels at flood and backfill side at elevation 0.00 feet. Long-term (drained) soil properties of the clay layer were conservatively (higher active pressure on wall) used for the analysis. In addition, a 250 pound per square foot (psf) surcharge load was applied on the backfill side to account for vehicular traffic. For the 15 feet cantilever sheet pile wall, the grouted portion was considered in the analyses with assuming 24 inch thick, covering entire width of the sheet piles.

A summary of the results of the PYWall analyses is presented in **Tables C1-25** and **C1-26**. Plots of lateral defection, bending moment and shear force with respect to depth of sheet piles are provided in **Attachment C1-U**. As shown in **Attachment C1-U**, lateral deflection at the bottom of the sheet piles is almost zero for all cases. Output from PYWall analysis for 15 feet cantilever sheet pile walls in Soil Area 2 is provided in **Attachment C1-V**.

Considering that the exit gradient and flow rate for the I-wall and T-wall alternatives with much shorter sheet piles (see **Sections 5.2.2** and **5.2.3**) were within acceptable limits, seepage is not a concern for the cantilever sheet pile walls.

The grouting will be performed by pre auguring procedure and tremie pipes will be attached to the sheet piles on both sides that pressure non shrink grout will be injected through. Or a slurry method will be used to form a trench 2 feet wide filled with concrete/grout around the sheet piles.

Analysis Case	Wall height (ft)	Sheet Pile Section	Sheet Pile Length (ft)	Allowable Moment Capacity (kip-	Maximum Deflection (in)	Maximum Moment (kip-in)
No Flood or Drained	6	AZ12	37	1,934	0.41	400
No Flood and Seismic	6	AZ12	37	1,934	0.44	440
No Flood or Drained	8	AZ12	39	1,934	1.1	900
No Flood and Seismic	8	AZ12	39	1,934	1.2	1020

Table C1-25: Results of the Cantilever Sheet Pile V	Wall Analysis for Soil Areas 1 to 3
---	-------------------------------------

Analysis Case	Grouted	Sheet Pile Section	Sheet Pile Length (ft)	Allowable Moment Capacity (kip- in)	Maximum Deflection (in)	Maximum Moment (kip-in)
No Flood or Drained	No	AZ25	35	4,028	1.78	3333
No Flood and Seismic	No	AZ25	35	4,028	2.2	3700
No Flood or Drained	Yes	AZ25	35	4,028	0.79	3320
No Flood and Seismic	Yes	AZ25	35	4,028	0.96	3920

Figure C1-23: Cross-section of 6 feet Cantilever Sheet Pile Wall for Soil Areas 1 to 3

Figure C1-24: Cross-section of 8 feet Cantilever Sheet Pile Wall for Soil Areas 1 to 3

-EL. -31.00'

Figure C1-25: Cross-section of 15 feet Cantilever Sheet Pile Wall for Soil Area 2

7.0 Anchored Sheet Pile Wall

Anchored sheet pile wall was considered as an alternative to 15 feet flood height in Soil Area 2, where the bedrock is higher than elevation -27.0 feet (NAVD 88). A cross section of the 15 feet anchored sheet pile wall is presented in **Figure C1C1-26**.

The anchored sheet pile wall structure consists of a steel sheet pile wall supported by 25 foot long grouted steel anchors, located 5 feet below the top of the wall spaced at 10 feet intervals. This wall was analyzed using the commercially available software PYWall by Ensoft, Inc. It was assumed that no flood overtopping occurs and water in the backfill is drained due to the presence of drainage pipes in the fill layer. Therefore, analyses were performed for two cases - 1) no flood/drained condition, and 2) no flood and seismic loading, with water levels at flood and backfill side at elevation 0.00 feet. Long-term (drained) soil properties of the clay layer were conservatively (higher active pressure on wall) used for the analysis. In addition, 250 psf surcharge load was applied on the backfill side to account for vehicular traffic.

A summary of the results of the PYWall analysis is presented in **Table C1-27**. Plots of lateral defection, bending moment and shear force with depths of sheet piles are provided in **Attachment C1-W**. As shown in **Attachment C1-W**, lateral deflection at the bottom of the sheet piles is almost zero for all cases. Output from PYWall analysis is provided in **Attachment C1-X**.

Considering that the exit gradient and flow rate for the I-wall and T-wall alternatives with much shorter sheet piles (see **Sections 5.2.2** and **5.2.3**) were within acceptable limits, seepage is not a concern for the anchored sheet pile wall.

Analysis Case	Sheet Pile Section	Sheet Pile Length (ft)	Allowable Moment Capacity (kip-	Maximum Deflection (in)	Maximum Moment (kip-in)
No Flood or Drained	AZ25	40	4,028	0.13	410
No Flood and Seismic	AZ25	40	4,028	0.15	400

Table C1-27: Results of the Anchored Sheet Pile Wall Analysis for Soil Areas 1 to 3

Figure C1C1-26: Cross-section of 15 feet Anchored Sheet Pile Wall for Soil Area 2

8.0 Foundation Systems

A deep foundation alternative (such as driven piles and micropiles) was considered for the East River Ditch pump station and forebay in Soil Area 6. The details of the proposed deep foundation system are discussed in the following sections.

8.1 Pile Foundation for Pump Station

A conceptual design of a deep foundation system for the proposed pump station in Soil Area 6 was performed by HDR based on the results of pile capacity analyses presented in the Geotechnical Engineering Memorandum dated February, 2017 (Geotechnical Engineering Memo 2017). The total axial load on the pile cap was estimated as the weight of the pump station plus an additional 15 percent axial load to account for any lateral forces on the pile cap due to the pumping operation. The weight of the pump station was determined based on the sum of weights of the following: the screw pump, water in the screw pump, the building, the concrete intake, the concrete pump base slab, and the discharge channel/spillway.

The conceptual deep foundation layout consists of 212 HP 16×141 steel piles with lengths of 65 feet and a center-to-center spacing of 6 feet. As recommended in the 2017 Geotechnical Memorandum [18], the allowable compression capacity of a single HP 16×141 pile is 45 kips. Since the spacing to diameter ratio is 4.5 (6 feet / 16 inch), a group reduction factor of 0.85 was applied to the single pile capacity. Therefore, the total allowable capacity of the 212 piles is 8,109 kip (0.85×212×45), which is greater than the estimated load of 8,100 kip. Assuming the total axial load will be uniformly distributed on the pile cap, the pile capacities are adequate. However, we recommend that a pile group analysis be performed using the computer program GROUP for the design phase of the project to verify the uniform loading assumption. Note that, any potential lateral load and/or moment on the pile cap will cause uneven distribution of axial loads on the piles.

8.2 Pile Foundation for Forebay

A conceptual design of the pile foundation system for the forebay in Soil Area 6 was also performed by HDR based on the results of pile capacity analyses presented in the 2017 Geotechnical Memorandum. The conceptual pile layout consists of 40 HP 16×141 steel piles bearing on rock with lengths of 75 feet and a center-to-center spacing of 9 feet. The pile capacities are adequate with respect to the estimated axial load. However, we recommend a pile group analysis using the computer program GROUP as part of the design phase of the project. Details of the conceptual design calculations by HDR are included in **Attachment C1-Y**.

9.0 Conclusions and Recommendations

Following are the conclusions and recommendations based on the findings of this feasibility study level geotechnical analysis:

- The levee alternative is feasible for flood height of 2 feet, 4 feet, 6 feet and 8 feet for Soil Areas 1 to 3 where no organic soil was identified in the soil profiles.
- The levee alternative is feasible for flood height of 2 and 4 feet for Soil Areas 4 to 7 where peat or organic clay was identified in the soil profiles. Levees with 6 and 8 feet flood height for Soil Areas 4 to 7 will require installing sheet piles on both the riverside and landside of the levee.
- A more reasonable alternative to 6 and 8 feet levees with sheet piles for Soil Areas 4 to 7 may be a double sheet pile wall.
- T-walls supported on shallow foundation are feasible from seepage standpoint for all flood heights in Soil Areas 1 to 3. Further analysis for calculating the factor of safety for bearing capacity, sliding and overturning of the T-walls is expected to be performed by the Marine Engineering Group of AECOM during the design phase.
- I-walls are feasible for 2 feet and 5 feet flood heights for Soil Areas 4 to 7.
- T- and L-walls with sheet piles and pile foundations are recommended for 6 and 8 feet flood heights for Soil Areas 4 to 7.
- Cantilever sheet pile walls are feasible for 6 and 8 feet flood heights for Soil Areas 1 to 3 and for 15 feet flood height for Soil Area 2, where bedrock is at elevation -27 feet or lower. Drained back fill conditions were assumed for the 15 feet cantilever sheet pile wall.
- Anchored sheet pile walls are feasible for 15 feet flood height for Soil Area 2, where bedrock elevation is higher than -27 feet. Drained back fill conditions were assumed for anchored sheet pile wall.
- Considering that the exit gradient and flow rate for the I-wall and T-wall alternatives with much shorter sheet piles were within acceptable limits, seepage is not a concern for double sheet pile walls, cantilever sheet pile walls, and anchored sheet pile wall.
- Analysis for global stability of the I-, T- and L-walls for full flood and reverse flood conditions in all soil areas must be performed as part of the design phase of this project.
- The upper soil must be inspected down to 6 feet depth by excavating trenches prior to the construction of levees and T-walls on shallow foundations. If the existing material is not suitable for construction, it must be replaced by proper structural fill.
- For the cantilever sheet pile wall and anchored sheet pile wall alternatives, the grouting will be performed by pre auguring procedure and tremie pipes will be attached to the sheet piles on both sides that pressure non shrink grout will be injected through or a slurry method will be used to form a trench 2 feet wide filled with concrete/grout around the sheet piles.
- The driven pile deep foundation alternative for the proposed East River Ditch pump station and forebay is adequate based on the capacity of a single pile. However, it is recommended that a pile group analysis be performed for each group of piles using the computer program GROUP as part of the design phase of the project.

It should be noted that this feasibility study level geotechnical analysis is based on limited subsurface soil information from borings near the project site. For example, most of the existing boring logs used in this study do not have SPT blow count data. A more comprehensive geotechnical evaluation of the flood protection measures will require extensive geotechnical investigations along the line of protection including soil borings with SPTs, field permeability tests, cone penetration tests, laboratory testing on soil and rock samples collected from the borings including sieve analysis, Atterberg limits, consolidation and triaxial tests. Also note that transient seepage analysis was not performed as the flood stage condition data were not available at the time of this Feasibility Study.

10.0 References

- NJDOT. New Jersey Department of Transportation Soil Borings Database. October 2016. https://njgin.state.nj.us/DOT_GDMS.
- Joseph S. Ward, Inc. Foundation Reconnaissance Investigation, Hackensack Meadows, New Jersey. New York District: United States Army Corps of Engineer, Joseph S. Ward, Inc., Caldwell, NJ, 1962.
- Stanford D., Scott. Surficial Geologic Map of the Weehawken and Central Park Quadrangles, Bergen, Hudson, and Passaic Counties. Open-File Map OFM 13, Scale 1:24,000, New Jersey Geological Survey, 1993.
- The Louis Berger Group, Inc. Revised Geotechnical Investigation Report for Kane Wetland Mitigation Bank. United States Army Corps of Engineer, New York District, The Louis Berger Group, Inc., Morristown, NJ., 2010.
- Earthworks, LLC. Geophysical Investigation as part of the Design of the Hackensack River Enhancement Project. Sandy Hook, CT: United States Army Corps of Engineer, New York District, Earthworks LLC, 2007.
- AECOM. USPS Network Distribution Center, New Jersey Site Repairs. Clifton, NJ: 2016.
- USACE. Engineering and Design: Design and Construction of Levees. EM 1110-2-1913, Washington, DC: USACE, 2000.
- AASHTO. LRFD Bridge Design Specifications. Seventh Edition, Washington, DC: AASHTO, 2014.
- Das, B. M. "Principles of Geotechnical Engineering." 686. Ontario, Canada: Nelson, 2006.
- USACE. Passaic River Flood Damage Reduction Project . General Design Memorandum, New York District: USACE, 1995.
- USACE. Engineering and Design: Retaining and Flood Walls. EM 1110-2-2502, Washington, DC: USACE, 1989.
- USACE. Engineering and Design: Settlement Analysis. EM 1110-1-1904, Washington, DC: USACE, 1990.
- NAVFAC. Soil Mechanics Design Manual. DM 7.01, Alexandria, VA: NAVFAC, 1986.
- USACE. Engineering and Design: Design of Pile Foundations. EM 1110-2-2906, Washington, DC.: USACE, 1991.
- Das, B. M. "Principles of Foundation Engineering, Sixth Edition." 750. Stamford, CT: Cengage Learinig, 2006.
- AECOM. Route 120 SB Flyover over Route 3 and South Service Road Roadways and Structures. Geotechnical Report, Iselin, NJ: AECOM , 2007.
- International Code Council, Inc. International Building Code, New Jersey Edition. 2015.

Geotechnical Engineering Memorandum Dated February 3rd, 2017 Feasibility Assessment of Earth Levee, Double Sheet Pila Wall And Flood Wall, New Meadowlands Flood Protection Bergen County, New Jersey SUB-APPENDICES

Soil Boring Logs Used to Prepare Generalized Subsurface Profiles for Soil Areas 1 to 7

Boring Logs from Soil Area 1

				Par	son	s							BORING	S NUMB	ER: PB-2		
		100		Brin -FG	, In	erhoff c.		BC	RI	NG	LO	G	SHEET	NUMBER	R: <u>1</u>	OF	4
0001	IFCT	PEARs	den i	00.1		-				_	_		PROJEC	CT NUM	BER: 612	2T	
CLIEN CONT	ATION NT: 1 TRAC	N: H New CTOP	Jers R: V	ensad ey De Varre	ridge ck, l epar en G rzne	e over 1 New Je tment leorge, owski	Hacker rsey. of Tra Inc.	nsack l	River. ation.				LOCAT COORD STN. N SURFAC	ION: Rt- 0. N: 0.: 936+ CE ELEV.	80E 100 / -42 .: 37.10 /	ft W of Ex E: OFFSET: t	cit 67 s 94 rt
NSPE	ECTC)R: 1	E. V	ierno)				_				Baseline	: CENTE	ERLINE	OF ROUT	FE 80
	ING	MET	HO	D: N	Iud	Rotar	y						START	DATE: 6	5-8-93 T	IME: 11:	30 am
101	TT L.	- 11	Ca	aina	Sol	it Secon	Shelb	Tubal	Distan	0.4			FINISH	DATE: 6	-9-93 7	IME: 2:0	00 pm
Type/	Svm	bol		-		S	U	(T)	Piston	Prt	cher	Core Barrel		GROUM	DWATE	R DATA	-
D.	- /			4		1.375		w		-		2	-		Water	Casing	Hol
).D.		1	4.	25		2		-	12.00		-	2 25	Date	Time	Depth	Depth	Dept
engt	h				1	24											-
amm	ner W	/t. [3	00		140	Dr	ILL Roc	Size								
amm	ner Fa	all	2	4	1.2	30	1	.D. (0	.D.)								
	0	E		SA	MPL	E		SOIL	BLOW	S/6 in.)				-			-
(FT)	CLO	OWS N /FI			1		0/6 6/12 12/18 18/				REC.		22.2.2.2				
HTH	PHIO	N IS		E	T	(FT)			CORIN	G	[(in.)	1 8	ELD CLAS	SSIFICAT	TON ANI	REMAR	KS
GRA	SING	Ы	MBE	MBC	PTH	BUN	BEC	BEC	lisan	ROD							
_	L.	NO NO	È	N	sγ	DE	(in.)	(in.)	(%)	(in.)	(%)	Elev.					
5			s	1		1- 3	19	23	30	38	15		Brown coa Silt, trace(urse to fine +) fine G	e SAND, Fravel (Fil	little(+) l).	
												5.0	5.0				
,	뵛		s	2		5- 7	38	30	62	28	14	32.1	Gray - bro some coars	wn mediu se to fine s	m to fine Sand, trac	GRAVEL, e(+) Silt	,
						1							(Fill).				
0	2.1			1		10.			100			1.1	Same.				
			S	3		12	23	31	40	27	9		C. C				
1	2-5					111				1							
	Tel				11												
- 1		-										15.0					
o [-	< 2				15-						22.1	Grav media	im to fies	GRAVE		6.02
			2	4		17	21	33	36	29	13		to fine Sand	d, trace(-)	Silt (Fill)	, some co	arse
	5																
	- 1		1.1			20.		23		-55	1.0	1	Same.				
0	-	1	0			20-			10	27	12						
0			s	5		22	22	21	19	31	14						
0			s	5		22	22	21	19	57	14						
0			s	5		22	22	21	19	51	14						

WWWWW		0.0		Parso Brinc FG,	kerl Inc.	noff		BO	RIN (cont	GL	.00	BORING NUMBER: PB-2 SHEET NUMBER: 2 OF 4 PROJECT NUMBER: 6122T
ROJ	ECT:	Rout : Ha	te 80 ckei) brid nsack	ige i	over F ew Jer	lackens sey.	sack Ri	ver.			DRILLER: J. and T. Kurznowski INSPECTOR: E. Vierno
	0	EL.		SA	MPL	5 - 1 - I		SOIL (BLOWS	5/6 in.)	61.1	5
(FT)	CLO	OWS IN./FT	Π	1		-	0/6	6/12	12/18	18/24	REC. (in.)	FIELD CLASSIFICATION AND REMARKS
EPTH	APHI	IG (M		BER	SOL	H (FT			CORING	3		
GR	CASIN	TVPE	MUM	SYME	DEPT	RUN (in.)	REC. (in.)	REC. (%)	L>4" (in.)	RQD (%)	Depth Elev.	
25			s	6		25- 27	19	21	26	28	11	Gray medium to fine GRAVEL, some coarse to fine Sand, trace(-) Silt (Fill).
30			s	7		30- 32	26	31	27	24	14	30.0 7.1 Gray medium to fine GRAVEL, some coarse to fine Sand, trace(+) Silt (Fill).
35			s	8		35- 37	17	21	16	6	6	 35.0 2.1 Brown medium to fine GRAVEL, some(+) coarse to fine Sand, little(-) Silt (Fill).
40			s	9		40- 42	3	4	5	5	3	 40.0 Loss of water. ^{-2.9} Dark gray medium to fine GRAVEL, little(+) coarse to fine Sand, trace(-) Silt.
45	3		s	10		45- 47	7	7	9	8	6	45.0 -7.9 Gray - brown varved clayey SILT. PP = 1.75 tsf
50			s	11		50- 52	6	6	7	8	16	Same. PP = 1.0 tsf
- 55			s	12		55- 57	1	1	2	2	18	Same. PP = 0.75 tsf
60												

	2			Parso Brinc -FG,	ikeri Inc.	hoff		BO	RIN (cont	IG L	.00	SHEET N PROJEC	NUMBER: PB-2 NUMBER: <u>3</u> OF <u>4</u> T NUMBER: 6122T		
ROJ	ECT: TION	Rou : Ha	te 8 cke	0 brie nsack	dge k, N	over H ew Jer	ackens sey.	sack Ri	iver.			DRILLER	: J. and T. Kurznowski FOR: E. Vierno		
	0	EI C		SA	MPL	E	1	SOIL	BLOW	5/6 in.)					
(FT)	CLO	LOWS	Π	-		1	0/6	6/12	12/18	18/24	REC. (in.)	FIELD CLAS	SIFICATION AND REMARKS		
EPTH	APHI	IG (BI		BER	OL	H (FT		-1	CORING	3	-				
۵	GR	CASIN	TYPE	NUM	SYME	DEPT	RUN (in.)	REC. (in.)	REC. (%)	L>4" (in.)	RQD (%)	Depth Elev.			
60			s	13		60- 62	2	5	5	7	24	Gray - brown PP = 0.5	own varved clayey SILT. tsf		
65			s	14		65- 67	WOR	WOR	6	8	24	Same. PP = 0.70) tsf		
70			s	15		70- 72	WOR	WOR	WOR	WOR	24	Red - brow $PP = 0.22$	rown clayey SILT. .25 tsf		
75			s	16		75- 77	WOR	WOR	24	20	24	Red - brow Sand, trac	wn SILT, little coarse to fine e fine Gravel.		
80			s	17		80- 80.5	100		-	19	4	79.0 -41.9 Red - brov Silt, trace(wn coarse to fine SAND, some (+) fine Gravel.		
85			S	18		85- 35.4167	100/ 5"	4		-	4	Same.			
90	ß		s	19		90- 90.5	100	-	- 19	-	2	90.0 -52.9 Red - broy coarse to f	wn medium to fine GRAVEL, some fine Sand, little(-) Silt.		
95											+	95.0			

-	-		1	Parso	ons							BORING NUMBER: PB-2
Brinckerhoff BORING											.00	G SHEET NUMBER: <u>4</u> OF <u>4</u> PROJECT NUMBER: 6122T
PROJE	CT:	Rou : Ha	te 8 icke	0 bri nsacl	dge c, N	over H ew Jer	lackens sey.	sack R	iver.			DRILLER: J. and T. Kurznowski INSPECTOR: E. Vierno
	0	(FT)		SA	MPL	E		SOIL	BLOWS	6/6 in.)	9 E 1	
(FT)	C LO	OWS N./FT	Π			0	0/6	6/12	12/18	18/24	REC.	FIELD CLASSIFICATION AND REMARKS
PTH	APHIC	G (MI		E	or	H (FT			CORING	5		
a ag	GR	ASIN	YPE	NUMB	SYMB	DEPTH	RUN	REC.	REC.	L>4"	RQD	Depth
95			S	20	01	95- 95.5	100	-	-	-	6	Red - brown coarse to fine SAND, little(+) Silt, trace(+) fine Gravel (Till)
100			С	1	100- 105 60 51 85 24 40%	 99.0 -61.9 Approximate top of rock. Red - brown interbedded SANDSTONE / SILTSTONE / MUDSTONE, slightly to moderately weathered, weak to medium strong , slightly to moderately fractured, thin bedded. 						
105		1	\square	-	+	-	-	-				105.0
110										Note 1 System 2. The design only th State. for invo 3. W Pene	: Field c subsurf and esti at they n It is pre estigation OR = PP = tromet	classification is based on Burmister Soil Identification face information shown hereon was obtained for State imate purposes. It is made available to authorized users may have access to the same information available to the esented in good faith, but is not intended as a substitute ons, interpretation or judgment of such authorized users. Weight Of Rod Unconfined compression strength from Pocket ter.
125												
120												

Binckerhoff -FG, Inc.BORING LOGSHEET NUMBER: 1 PROJECT NUMBER: 6122TPROJECT: Route 80 bridge over Hackensack River. LOCATION: Hackensack, New Jersey. CLIENT: New Jersey Department of Transportation. CONTRACTOR Warren Goorge, Inc.UCATION: River road near Pier J-D COORD. NO. 938+55 OFFSET: 9 SURFACE ELEV.: 6.39 ft Bascline: CENTRELINE OF ROUTE START DATE: 64-93 TIME: 8:45 r FINSH DATE: 64-93 TIME: 8:45 r FIELD CLASSIFICATION AND REMARKS FINSH TIME TO PROVIDE TO	4	h			Par	son	s						1.11	BORING		R: PB-3			
PROJECT NUMBER: 6122T PROJECT NUMBER: 6122T LOCATION: River road near Fire 1-D LOCATION: River road near Fire 1-D CONTRACTOR: Warren Compt, Inc. CONTRACTOR: Warren Compt, Inc. DRILLING METHOD: Mud Rotary START DATE: 6-2-33 START DATE: 6-2-33 Type/Symbol Control mount to be prior Conserve Touck mounted Type/Symbol Control mount to be prior Conserve Cours Barel GROUNDWATER DATE Control mount to be prior Conserve Cours Barel GROUNDWATER DATE Control mount to be prior Conserve Cours Barel GROUNDWATER DATE Type/Symbol Control mount to be prior Conserve cours Barel GROUNDWATER DATE Type/Symbol Control mount to be prior Conter Barel Tob pre			-400		Brir -FG	ncke i, In	c.		BC	RI	NG	LO	G	SHEET	NUMBER	1:	OF	3	
PHOLECT: Noute 80 indge over Hackensack River. LOCATION: Biver road near Fire 1-D CORD. N: EISTN: New Jersey Department of Transportation. CONTRACTOR: Warer George, Inc. DefSet 1-D CORD. N: EISTN: NO.: 938+55 OFFSET: 9 SURFACE ELEV: 6-39 ft Baseline: CENTERLINE OF ROUTE START DATE: 6-7-93 TIME: 3:60 pt START DATE: 6-7-93 TIME: 3:63 ft Baseline: CENTERLINE OF ROUTE START DATE: 6-7-93 TIME: 3:64 FINSH DATE: 6-7-93 FINSH D		1507	TUO				-	-		_				PROJEC	CT NUME	BER: 612	2T		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DRILL	ATIO NT: TRAC LER: ECTO	Rew New CTO S. I OR:	Jers R: V Dimi E. V	80 bi kensad sey Do Warro ico / (Vierno	ridge ck, 1 epar en G G. K 0	New Je trnent leorge, utsher	Hacker rsey. of Tra Inc. a	nsack I	River. ation.				LOCAT COORD STN. N SURFAC Baseline	ION: Riv 0. N: 0.: 938+ CE ELEV. :: CENTE	er road n 55 : 6.39 ft ERLINE	ear Pier I E: OFFSET: OF ROU	-D 90' r FE 80	
UpperSymbol Casing Split Spoon Shalby Tube Pirton Pirton Care Barrel GROUNOWATER DATA D.D. 4 1.375 2 2 2 2 2 2 3 10 0 2 Date Time Depth	RIG T	YPE	Tr	uck	mou	nted	Rotar	y						START	DATE: 6	-7-93 1	IME: 8:4	15 am	
S U P L C H OUNDER TAIL TO ATA LD. 4.25 2 2 2 2 0 100 0 <td< td=""><td>1</td><td></td><td></td><td>Ca</td><td>asing</td><td>Spl</td><td>it Spoon</td><td>Shelb</td><td>y Tube</td><td>Piston</td><td>Pit</td><td>cher</td><td>Core Barrel</td><td>TINISH</td><td>GROUN</td><td>DWATE</td><td>R DATA</td><td>90 pm</td></td<>	1			Ca	asing	Spl	it Spoon	Shelb	y Tube	Piston	Pit	cher	Core Barrel	TINISH	GROUN	DWATE	R DATA	90 pm	
D	Type/	Sym	lod				S 📕	U		PN	L		C目			Water	Casing	Hel	
J.D. 4.25 2 2.25 6-11-93 1:00 pm 6.0 ft ength 300 140 0rill Rod Size 6-18-93 7:30 am 5.8 ft ammer Fail 24 300 1.00 pm 6.0 ft 6-18-93 7:30 am 5.8 ft iammer Fail 24 300 1.00 (0.0.) SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer Fail SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer Fail SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer Fail SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer Fail SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer fail SAMPLE SOL (BLOWS/6 in.) FIELD CLASSIFICATION AND REMARKS iammer fail Sample Particle Sample Particle Particle iammer fail Sample Sample Particle Particle Particle Particle iammer fail Sample Sample Particle Particle Particle Particle Partic	.D.			1.1	4	1	1.375						2	Date	Time	Depth	Depth	Dept	
dength tammer Fall 24 0 0 rill Rod Size 6-18-93 7:30 am 5.8 ft 1300 140 Drill Rod Size 10 10.0.0.3 100 <td>).D.</td> <td></td> <td>1</td> <td>4</td> <td>.25</td> <td>-</td> <td>2</td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td>2.25</td> <td>6-11-93</td> <td>1:00 pm</td> <td>6.0 ft</td> <td>12.22413</td> <td></td>).D.		1	4	.25	-	2	-		_			2.25	6-11-93	1:00 pm	6.0 ft	12.22413		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.engt		A/+	7	00	-	24					-		6-18-93	7:30 am	5.8 ft			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lamm	ner V	all		24	-	30	Dr	ILL Roc	Size	-			1.2.1.61				-	
Image: Solution of the second state of the second stat	. artist	T	F	T			5	1		.0.)		_	-				1.2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F	00	IS/F	-	JAC T	AMPL	E	1	SOIL	(BLOW	S/6 in.)	1							
$ \frac{L}{20} \frac{L}{40} \frac{L}{50} \frac{L}{200} \frac{L}{20} \frac{L}{20} \frac{L}{50} \frac{L}{50$	HIF	HC L	BLOW	-	Ř.C.		F	0/6	6/12	12/18	18/24	REC.	FI	ELD CLAS	SIFICAT	ION AN	D REMAR	KS	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPT	APH	USN SU		BER	SOL	H (FT			CORIN	G								
0 S 1 0 <td></td> <td>G</td> <td>CASI</td> <td>TYPE</td> <td>NUM</td> <td>SYME</td> <td>DEPT</td> <td>RUN (in.)</td> <td>REC.</td> <td>REC.</td> <td>L>4"</td> <td>ROD</td> <td>Depth</td> <td colspan="6"></td>		G	CASI	TYPE	NUM	SYME	DEPT	RUN (in.)	REC.	REC.	L>4"	ROD	Depth						
5 5 5 5 5 5 5 5 5 5 5 5 5 5	0						0-		1	1.0	1.1.17	1707	LICY.	Brown con	to Fas	CANID	Lul. C'h		
5 5 6 6.5 6.5 6.5 6.5 6.5 6.5 6				5	1	Ľ	2	3	4	4	4	14	1 8	with red B	rick, conc	rete (Fill)	httle Silt,).		
5 S 2 5 7 3 3 4 7 20 Brown coarse to fine SAND, some Silt. 6.5 -0.1 Brown SILT. PID = 4.0 ppm PP = 4.5 tsf Brown varved clayey SILT. Same. PID = 2.0 ppm PP = 3.25 tsf Brown clayey SILT. PP = 1.0 tsf S 4 15- 15 20 S 5 20- 22 3 5 5 5 20 Brown clayey SILT. PP = 1.5 tsf										1			10						
$S = \begin{bmatrix} 3 & 2 & 3 & 3 & 4 & 7 & 20 \\ \hline & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & &$	5					Η								Brown coa	rse to fine	SAND	ome Filt		
10 10 15 20 20 25 S = 5 S =				S	2		7	3	3	4	7	20	6.5		ise to fine	onite, :	some one.		
10 S 3 10^{-} 7 12 16 19 20 Brown varved clayey SILT. Same. PID = 2.0 ppm PP = 3.25 tsf 15 S 4 15^{-} 6 9 10 16 Brown clayey SILT. PP = 1.0 tsf 16 S 5 20^{-} 3 5 5 20 Same. PP = 1.5 tsf 17 6 9 10 10 16 Brown clayey SILT. PP = 1.0 tsf 18 3 5 5 5 20^{-} 3 5 5 20^{-} 17 6 9 10 10 16 Brown clayey SILT. PP = 1.0 tsf 10 5 5 5 5 20^{-} 8 18 3 5 5 5 20^{-} 8													-0.1	Brown SIL $PP = 4.5$	T. $PID = tsf$	4.0 ppm			
10 S 3 10^{-}_{12} 7 12 16 19 20 Brown varved clayey SILT. Same. PID = 2.0 ppm PP = 3.25 tsf 15 S 4 15^{-}_{17} 6 9 10 10 16 Brown clayey SILT. PP = 1.0 tsf 20 S 5 20^{-}_{22} 3 5 5 20 Same. PP = 1.5 tsf 20 S 5 20^{-}_{22} 3 5 5 20 PP = 1.5 tsf			-																
Same. PID = 2.0 ppm PP = 3.25 tsf S 4 15- 15 S 4 15- 17 6 9 10 10 16 S 5 5 20- 22 3 5 5 5 20 Same. PID = 2.0 ppm PP = 3.25 tsf Brown clayey SILT. PP = 1.0 tsf PP = 1.5 tsf	10		-											Brown var	ved clayey	SILT.			
15 15 15 15 15 17 17 17 17 10 10 10 10 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 10 16 10 10 16 10 10 16 10 10 10 16 10 10 16 10 10 10 10 10 10 10 10 10 10	2			s	3		10-	7	12	16	19	20		Same. PID PP = 3.25	= 2.0 pp	m			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				12								.01				
S 4 15- S 4 17 6 9 10 10 16 Brown clayey SILT. PP = 1.0 tsf S 5 5 20- 20 S 5 20- 22 3 5 5 5 20 PP = 1.5 tsf																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5		-			H							Y	Dense - L	CH T				
S 5 $\frac{20}{22}$ 3 5 5 20 Same. PP = 1.5 tsf				s	4		15- 17	6	9	10	10	16	F	PP = 1.0 t	sf				
0 S 5 $\frac{20}{22}$ 3 5 5 20 Same. 5 S 5 $\frac{20}{22}$ 3 5 5 20 PP = 1.5 tsf																			
S 5 $\begin{bmatrix} 20 \\ 22 \\ 22 \end{bmatrix}$ 3 5 5 5 20 $\begin{bmatrix} Same. \\ PP = 1.5 \text{ tsf} \end{bmatrix}$			-																
PP = 1.5 tsf	0		-				20-				-		S	ame.				0	
				2	5		22	3	5	5	5	20	P	PP = 1.5 ts	sf				
5																			
	:5		171					10		_		1.1							

	Brinckerhoff -FG, Inc. (continued)									.00	6	SHEET NUMBER: <u>3</u> OF <u>3</u> PROJECT NUMBER: 6122T				
ROJ	ECT:	Rout Ha	te 8 cke	0 brid nsack	dge k, No	over H ew Jer	lackens sey.	sack Ri	ver.				DRILLER: S. Dimico / G. Kutshera INSPECTOR: E. Vierno			
		(FT)		SA	MPL	E		SOIL	BLOWS	5/6 in.)	5. C.	· · · · · ·				
(FT)	CLO	N./FI		1		-	0/6	6/12	12/18	18/24	REC. (in.)	FIE	FIELD CLASSIFICATION AND REMARKS			
H	APHI	IG (BI		ER	OL	H (FT	1		CORING							
ā	GR	ORIN	YPE	NUMB	YMBC	DEPTI	RUN	REC.	REC.	L>4"	RQD	Depth				
0			с	3		59- 64	60	9.5	16	0	0%	1 F	 1.5" diameter piece of GNEISS COBBLE, pieces of GNEISS in Sand matrix (Till). .0 6 Approximate top of rock 			
5	3					61						64.0 -57.6 /	 64.0 57.6 Approximate top of rock. Red - brown fine grained SANDSTONE / SILTSTONE with some MUDSTONE. 			
			С	4		69	60	54	90	15	25%	s 59.0	slightly weathered, medium strong, slightly fractured, thin to medium bedded.			
0				į					1.1		1.1	-62.6	Boring terminated at 69 feet.			
75 30								 Note 1. Field classification is based on Burmister Soil Identification System. 2: The subsurface information shown hereon was obtained for State design and estimate purposes. It is made available to authorized user only that they may have access to the same information available to the State. It is presented in good faith, but is not intended as a substitute for investigations, interpretation or judgment of such authorized users. 3. PP = Unconfined compression strength from Pocket Penetrometer. PID = Photonionization Detector reading. 								
35												E-				
00																

		B		Pars Brine -FG,	ons cker Inc	hoff		во	RIN	GI	.00	G	SHEET I	NUMBER	R: PB-4	OF	2	
PROJI LOCA CLIEN CONT		Rou N: Ha New J CTOR	ite 8 acke erse : W	0 bri ensaci y De arre	idge k, N part n Ge	over H ew Jer ment o corge,	lacken sey. of Trar Inc.	sack R Isport:	liver. ation.				LOCATION: Opposite Pier 3-D COORD. N: E: STN. NO.: 940+00 OFFSET: 90' rt SURFACE ELEV.: 7.1 ft					
DRILL INSPE DRILL	ER: CTC	S. Di R: E METI	Nic Vi	o/G ierno D: M	. Ku	Rotary				_			Baseline : CENTERLINE OF ROUTE 80 START DATE: 6-1-93 TIME: 11:10 am					
AIG 1	YPE:	Tru	Ck T	noun	Soli	Snoon	Shalbu	Tube	Pieton	Pitel		Tore Barrel	FINISH	CROUN	2-93 T	IME: 11:	30 am	
Type/	Svm	bol	Cale	ing i	Spin	- Spoon	U	M	PN	1			1	GROON	Votor	Coning	Hala	
.D.	Jynn		4		1	.375			. 🗳	-	-	2	Date	Time	Depth	Depth	Depth	
D.D.		F	4.	25		2	11.00					2.25	6-2-93	7:30 am	4.5 ft	- open	sepren	
ength	1				5	24							1.2.1			17.4		
lamm	er V	Vt.	30	0		140	Dr	ILL ROC	Size		_	-		· · · · · · · ·				
lamm	er F	all	2	4		30	1	.D. (O	.D.)			-						
	0	Ec		SA	MPL	E		SOIL	(BLOWS	6 in.)		1.2						
(FT)	CLO	OWS N./FJ	Π	1.1		1.9	0/6	6/12	12/18	18/24	18/24 REC. (in.)			SIECAT			ove	
HL	HIG	(BL		œ	1	(FT)		COR					ELD CLA	RING NUMBER: PB-4 EET NUMBER: 1 OF 2 OJECT NUMBER: 6122T CATION: Opposite Pier 3-D ORD. N: E: N.NO.: 940+00 OFFSET: 90' rt RFACE ELEV.: 7.1 ft seline : CENTERLINE OF ROUTE 80 ART DATE: 6-1-93 GROUNDWATER DATA ate Time Depth Depth Depth Depth 2-93 7:30 am CLASSIFICATION AND REMARKS vn coarse to fine SAND, some Silt, (+) fine Gravel with red Brick, rete (Fill). vn - gray SILT. = 4.5 tsf - brown clayey SILT, trace coarse ne Sand. = 0.75 tsf				
DEF	BRAI	SING	ш	MBE	MBO	H	DUN	DEC	BEC	1	DOD							
		COP	TYF	NUI	SVI	DEF	(in.)	(in.)	(%)	(in.)	(%)	Elev.						
0			s	1		0- 2	3	5	9	12	15	13	Brown coa trace(+) f concrete (.	arse to fine ine Gravel Fill).	e SAND, l with red	some Silt, Brick,		
- 5			S	2		5- 7	6	15	25	40	15	<u>4.0</u> 3.1	Brown - g PP = 4.5	ray SILT. tsf	5			
- 10			s	3		10- 12	13	16	23	26	20	l.P	Red - brow to fine Sar PP = 0.73	wn clayey nd. 5 tsf	SILT, tra	ce coarse		
- 15			s	4		15- 17	4	5	4	6	15		Red - brow $PP = 0.73$	wn clayey 5 tsf	SILT.			
20			s	5		20- 22	6	13	13	14	16	18.0 -10.9	Red - brov Silt, little	wn coarse (-) fine Gr	to fine SA ravel.	AND, som	e(+)	
25 PTE	0-N	- 7/3	8/1	993								Bor	ing No.	PR-4	She	et 1	of 2	

=				Pare	ons			1.21	-		1.11	5.115	BORING NUMBER: PB-4			
		00	đ	Brinc FG,	kert Inc.	noff		BOI	(conti	G L	.00		SHEET NUMBER: 2 OF 2 PROJECT NUMBER: 6122T			
PROJE	ECT: TION	Rou : Ha	te 8 Icke	0 bri nsacl	dge o c, Ne	over H ew Jer	lackens sey.	sack Ri	ver.				DRILLER: S. Dimico / G. Kutshera INSPECTOR: E. Vierno			
÷., 1		ET)		SA	MPL	E		SOIL (BLOWS	/6 in.)		-				
PTH (FT)	PHIC LOG	(BLOWS (MIN./FT		e.	JL	(FT)	0/6	6/12	12/18 ORING	18/24	REC. (in.)	FI	ELD CLASSIFICATION AND REMARKS			
DE	GRA	CASING	TYPE	NUMB	SYMBO	DEPTH	RUN (in.)	REC. (in.)	REC. (%)	L>4" (in.)	RQD (%)	Depth Elev.				
25	*****		s	6		25- 27	50	16	18	23	9		Red - brown coarse to fine SAND, some(+ Silt, little(-) fine Gravel.			
- 30			s	7		30- 31	45	125		-	12		Red - brown medium to fine SAND, some(+) Silt.			
	**********											75.0				
- 35			S	8		35- 35.5	115	-	÷	1	3	-27.9	Red - brown coarse to fine SAND, little(+) fine Gravel, trace Silt, with red shale fragments.			
-40	urr Herr Reit Reit Reit Reit Reit Reit		s	9		40- 40.9	40	130/	-	÷	9) e .	Same.			
		-										43.0				
-45			с	1		43- 48	60	58.5	98	17	28%	-35.9	Approximate top of rock. Attempted Spoon at 43' with 100/0". Red - brown MUDSTONE / SANDSTON slightly weathered, weak to medium strong , moderately fractured.			
-	æ			-	-		-			-		48.0	Boring terminated at 48 feet.			
- 50										Note Syste 2: TI desig only State for i	e 1: Field em. he subsu gn and e that the e. It is p nvestiga	d classifica arface info estimate p ey may hav resented i ttions, inte	ation is based on Burmister Soil Identification ormation shown hereon was obtained for State surposes. It is made available to authorized users we access to the same information available to th in good faith, but is not intended as a substitute erpretation or judgment of such authorized user			
										3. 1 Per	PP = U netrom	Inconfineter.	ed compression strength from Pocket			
60										C						

ROUTE:	80	LOCAL NAM	/E:		_				NJDOT BORING NO.:	_
SECTION	20		1						FIELD BORING NO. NW3-6	
TATION	: 28+428	OFFSET: 3	11 m Rt.	1.2.1	REFERENC	CE.	CL ROUTE	80 BL	GROUND ELEVATION 6.76	
RILLER	JEFF CRA	NIG		1.11	DATE STAF	RTED:	10/25/99		Ground Water Elevation	
NSPECT	OR: L.J.	ESPINOZA		1.11	DATE COM	PLETED:	10/25/99	-	0 Hr. NOT RECORDED	Data
ORING	CONTRACT	OR: CRAIG	TEST B	ORING	CO., INC.				24 Hr.	Date
Lab. 1		1.00							P.P. Installed	Date:
DEPTH			SAM	PLE	Blo	ws on Spo	00	REC		Date:
(m)	CASING	SAMPLE	DEP	тн	150mm]	300mm	450mm	(mm)	SOIL DESCRIPTION & STRATIGRAPHY	-
		S-1	0.3	0.76	24	24	21	203	be all amf SAND are Convert to Diff.	-
	11						-	200	on-gy chil SAND, sin Gravel, tr Silt	FILL
	1						-	-		
	1.1.1		-	1						1
1.5		S-2	1.5	1 05	22	22	20			
			1.0	1.00	64	23	22	229	same	FILL
							-			
							-			
		-								
2.0		6.9								
3.0		5-3	3	3.45	19	18	12	229	gy cmf SAND & GRAVEL, tr Silt	FILL
							1			-
	-		-	-		-				A
							1.000			· · · · · · · · · · · · · · · · · · ·
	-	10 mm - 1	1.1.1					-		1
4.5	(S-4	4.5	4.95	15	23	30	254	bn cmf SAND & mf GRAVEL	FILL
				7.111				1	a state of the second	
				5 U						
	-				-					
	2.2.2						-			
6.0		S-5	6	6.45	32	47	40	229	same	FILL
	1.0	1	-				1.1			
					11		1			
				C = 1						-
				1. C						
7.5	5.00	S-6	7.5	7.95	31	24	23	203	bn mf SAND, tr Silt	FUL
							-			Titt
— I				1000			1.11			-
				1.00			000	-		1
						-				1
9.0		S-7	9	9.45	12	16	18	305	bn SILT, sm Clav, tr f Sand	
								194	and the second	-
										_
	1.1.1.1.1	1							BOTTOM OF HOLE 9.45 m	-
	1							-	SOTTOM OF HOLE 9.43 III	-
10.5		1				· · · · ·				
										-
						-				-
										10
		-		-			1			-
12.0				-						2000

Nominal I.D. of Drive Pile	85 mm 100 mm
Nominal I.D. of Split Barrel Sampler	35 mm
Weight of Hammer on Drive Pipe	140 kg
Weight of Hammer on Split Barrel Sampler	63.5 kg
Drop of Hammer on Drive Pipe	600 mm
Drop of Hammer on Split Barrel Sampler	760 mm

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

The subsurface information shown hereon was obtained for State design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the State. It is presented in good faith, but is not intended as substitute for investigations, interpretation or judgement of such authorized users.

A.G. LICHTENSTEIN & ASSOCIATES, INC.

Approximate Change in Strata:

Inferred Change in Strata:

NOTE: HOLE MOVED APPROXIMATELY 5' NORTH INTO SHOULDER HOLLOW STEM AUGER USED

Sheet 1 of 1

A.G. LICHTENSTEIN	8	ASSOCIATES.	INC
-------------------	---	-------------	-----

COUTE:	80	LOCAL NAM	AE:					1.11	NJDOT BORING NO.	
ECTION	20								FIELD BORING NO: NW3-7	
TATION	28+485	OFFSET: 3	0 m Rt.	11.1	REFEREN	CE	CL ROUTE	80 BL	GROUND ELEVATION: 8.81	
RILLER	JEFF CR	AIG			DATE STA	RTED:	10/25/99	1.01	Ground Water Elevation	
SPECT	OR: TONY	DROZDOWS	SKI		DATE COM	PLETED:	10/25/99		0 Hr. NOT RECORDED	Date
ORING	CONTRACT	OR: CRAIG	TEST BO	ORING C	CO., INC.				24 Hr.	Date:
	0.0113	1							P.P. Installed	Date:
DEPTH	1		SAM	PLE	Blo	ws on Spor	00	REC		Date
(m)	CASING	SAMPLE	DEP	тн	150mm	300mm	450mm	(mm)	0.15m Asobalt	-
		S-1	0 15	0.61	62	42	23	300	bn fmc SAND sm fc Gravel	-
	CT					76	2.5	500		FILL
	-							_		-
	-									1.1.1.1
15		5.2	15	1.05	10	10	05	000		-
1.0	2.2.2	0-2	1.5	1.95	10	19	25	250	gy-bild GRAVEL, sm mg Sand, tr Silt	FILL
	-					-		_		100
	-	-	-	-						
				-	-		-			
20				40.4		-				1200
3.0	-	5-3	3	3.45	11	13	21	200	gy-bl fc GRAVEL, It c Sand (note: lost mud)	FILL
				-						
			-			1.1				
		· · · · · · · ·		_	-		· · · · ·			1
			-				-		Web accession to the second	
4.5		S-4	4.5	4.95	12	8	10	150	same (lg 3/4" dia. Stones) (note: lost mud)	FILL
			·	-				1.1		1.1
					-					
			100	-	1.1.1		1.1			
	1.15.1	1.00	11 T					100		1
6.0		S-5	6	6.45	21	20	23	300	same, sm f Sand	FILL
	1000					1 1 - 1		-		
	1.00	1		E LA						1
	1.1		-	200		C		1.1		
		1.								
7.5	1 1	S-6	7.5	7.95	16	19	21	300	bn mc SAND, sm f Gravel, tr Silt	FUL
		100		22.0						
				1		-				
					1.					
				2.51	1					-
9.0	1000	S-7	9	9.45	20	16	23	200	bn fmc SAND, tr f Gravel, tr Silt	FILL
		1		() A				100		TILL
	1.00									_
					-			-	BOTTOM OF HOLE 9 45 m	-
							-	-	DOTTOM OF HOLE 3.45 M	-
10.5				-						-
										1
							-			-
				1						1
				-		-				1.
	-			_			-			

Nominal I.D. of Drive Pile	85 mm 100 mm	
Nominal I.D. of Split Barrel Sampler	35 mm	
Weight of Hammer on Drive Pipe	140 ka	
Weight of Hammer on Split Barrel Sampler	63.5 kg	
Drop of Hammer on Drive Pipe	600 mm	
Drop of Hammer on Split Barrel Sampler	760 mm	

The subsurface information shown hereon was obtained for State design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the State. It is presented in good faith, but is not intended as substitute for investigations, interpretation or judgement of such authorized users.

A.G. LICHTENSTEIN & ASSOCIATES, INC.

Approximate Change in Strata:

Inferred Change in Strata:

NOTE: DRILLER'S MUD USED.

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

> Sheet 1 of 1

ROUTE	80	LOCAL NA	ME:		A				NJDOT BORING NO	
SECTION	20	κ.	1						FIELD BORING NO .: NW3-8	
STATION:	28+530	OFFSET:	28 m Rt.		REFEREN	CE	CL ROUTE	80 BL	GROUND ELEVATION: 10.49	
DRILLER:	JEFF CRA	AIG			DATE STA	RTED:	10/26/99	e - 11 - 1	Ground Water Elevation	
INSPECTO	DR: L.J.	ESPINOZA			DATE CON	PLETED:	10/26/99	-	0 Hr. +6.22 MUD LEVEL	Date: 10/26
BORING C	ONTRACT	TOR: CRAI	G TEST B	ORING	CO., INC.				24 Hr. WATER LEVEL WAS NOT REACHED	Date: 10/27
									P.P. Installed	Date:
DEPTH			SAM	PLE	Bio	ows on Spo	on	REC	SOIL DESCRIPTION & STRATIGRAPHY	1
(m)	CASING	SAMPLE	DEP	тн	150mm	300mm	450mm	(mm)	0.20 m Asphalt	
		S-1	0.3	0.76	6	8	7	127	gy of GRAVEL & of SAND	FILL
100	1.	1			1	12.000	1		State Street and Street Street	
						. C				
			1.0			1	- C			
1.5	1.	S-2	1.5	1.95	5	9	8	127	same	FILL
		1			1					
100	11 121				1					1
- D	1	1.000					12-11			
111		i di la			1	1:				
3.0	t*	S-3	3	3.45	21	23	19	203	gy of GRAVEL & cmf SAND	FILL
	11.000		-					1. 2.1		b
				L. Ann			1			1
	1111			1.1						
1.1				-			1	1.1		
4.5	10.000	S-4	4.5	4.95	11	19	12	229	same	FILL
				16.4				10.0		
	1. 1.			10.00			12			
	1.000	1	-			1	1	≤ 1		
	1.		-				1	1		· · · · · · · · · · · · · · · · · · ·
6.0	1.	S-5	6	6.45	13	20	12	279	same	FILL
100			-							11
- C							·	1		1
						1		-		
	1	1. A. 199		1		1.00). 			
7.5	11	S-6	7.5	7.95	14	14	16	254	same	FILL
	1.			-			1	4		15
				_	-		1			1
	1.1.1	-				-	1.1	· · · · · ·		
N	1			_			1	1		
9.0		S-7	9	9.45	18	14	9	254	blk-gy cmf SAND, sm cf Gravel, sm Silt	FILL
	1	-	1.1.1	-			4	-		
			1.2.2	_			1.00	· · · · · · · · · · · · · · · · · · ·	The star former and	-
L		1	1.77	_		-	$(S_{i}) = 0$		BOTTOM OF HOLE 9.45 m	
			1.000			1	1			1
10.5					-					
100				-			(11-
1							1			
1.1										
12.0			1.1				CT			

 Nominal I.D. of Drive Pile
 85 mm 100 mm

 Nominal I.D. of Split Barrel Sampler
 35 mm

 Weight of Hammer on Drive Pipe
 140 kg

 Weight of Hammer on Split Barrel Sampler
 63.5 kg

 Drop of Hammer on Drive Pipe
 600 mm

 Drop of Hammer on Split Barrel Sampler
 760 mm

The subsurface information shown hereon was obtained for State design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the State. It is presented in good faith, but is not intended as substitute for investigations, interpretation or judgement of such authorized users.

A.G. LICHTENSTEIN & ASSOCIATES, INC.

Approximate Change in Strata:

Inferred Change in Strata:

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

Sheet 1 of 1

ROUTE:	80	LOCAL NA	ME:						NJDOT BORING NO.	
SECTION	20)						1.00	FIELD BORING NO .: NW3-9	
STATION:	28+578	OFFSET:	23 m Rt.	-	REFERENC	E:	CL ROUTE	80 BL	GROUND ELEVATION: 11.53	
DRILLER	JEFF CRA	AIG			DATE STAR	RTED:	10/26/99		Ground Water Elevation	
INSPECT	OR: L.J.E	SPINOZA		-	DATE COM	PLETED:	10/26/99	LTN 1	0 Hr. +6.04 MUD LEVEL	Date 10/26
BORING (CONTRACT	TOR: CRA	IG TEST E	BORING	CO. INC.				24 Hr. WATER LEVEL WAS NOT REACHED	Date: 10/20
							-		P.P. Installed	Date: 10/2/
DEPTH	1.2		SAM	PLE	Blo	ws on Spor	on	REC		Date.
(m)	CASING	SAMPLE	DEP	TH	150mm	300mm	450mm	(mm)	0.25 m Asphalt	
1.9		S-1	0.3	0.76	7	15	22	220	av one SAND an of Crowd to Sill	-
			0.0	0.10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		22.0	gy ani sale, sh'a Glavel, ti Sit	FILL
				-				-		
								-		
15		0.0								-
1.5		3-2	1.5	1.95		12	7	254	same	FILL
		-								
		-	-							
		1				_		11		1
		1					1.1	11 11		
3.0		S-3	3	3.45	26	14	13	178	gy of GRAVEL & cmf SAND	FILL
	1000	1	1				-			1
			1	1		1	-			1
			4							1.1
	152-5	L				1.000		12416		1
4.5	1.1.1	S-4	4.5	4.95	17	18	16	178	same	FILL
	12.00	5 Ti	15 6.21	1.51						1.500
	1.12			1.1						
			01			1.200		1.00		
			1	1.1						-
6.0		S-5	6	6.45	11	12	13	152	same	FUL
	200					-				THE
		1		-		-				-
		-								
7.5		S-6	7.5	7.95	16	14	15	203	same	CTU A
144							10	200	adine	FILL
						-				
			-							
										-
9.0	-	5.7	0	P AF	12	4.0		000		
0.0		0.7	3	8.40	13	11	14	203	same	FILL
			-				-			-
		1	-	-		-				
		-			-	-			BOTTOM OF HOLE 9.45 m	1
10.5	-	-	-			-				
10.5			-							-
	-		-				1.00			1
	-			-			1.1	1.12		
				10.11						
	12.00									
12.0						- Contract (100 m		

		_
Nominal I.D. of Drive Pile	85 mm 100 mm	
Nominal I.D. of Split Barrel Sampler	35 mm	
Weight of Hammer on Drive Pipe	140 kg	
Weight of Hammer on Split Barrel Sampler	63.5 kg	
Drop of Hammer on Drive Pipe	600 mm	
Drop of Hammer on Split Barrel Sampler	760 mm	

The subsurface information shown hereon was obtained for State design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the State. It is presented in good faith, but is not intended as substitute for investigations, interpretation or judgement of such authorized users.

A.G. LICHTENSTEIN & ASSOCIATES, INC.

Approximate Change in Strata:

Inferred Change in Strata:

Sheet 1 of 1

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

		Dent		LUCAL	AME:	-	51	gn St	TEST HOLE NO. 435W - 1	8
SEC	TION:	Koute	17 to	Teaned	k R	bad	1	_		
STA	TION:	937+4	O OFFSET	92'	Rt.	REFE	RENCE	LINE:	BL - Route 80 - E.B. GROUND LINE ELEVATION: +39.5'	
Em. 201 NEW JERSEY DEPARTMENT OF TRANSPORTATION RUITE 80 LOCAL NAME Sign Structure TEXT HOLE NO. 435W - 6 SCITION: MOUTE NOUTE 01 / LO TERNENCE LIME: BL - ROULE 80 - E.B. GROUND LIME ELEVATION. 439.5' BORMOGNADE EN: 92' EL: REFERENCE LIME: BL - ROULE 80 - E.B. GROUND LIME ELEVATION. 439.5' Environ E.V. T. BORMOGNADE EN: DATE STATEC: 6/6/77 Ant 47.5' Caved In & DTY Dem. 6/7/77 INFECTOR: BENTY DATE STATEC: 6/6/77 Ant 47.5' Caved In & DTY Dem. 6/7/77 Science Samo DATE STATEC: 6/6/77 Ant 47.5' Caved In & DTY Dem. 6/7/77 Science Samo DATE STATEC: 6/6/77 Ant 47.5' Caved In & DTY Dem. 6/7/77 Science Samo Samo DATE STATEC: 6/6/77 Ant 47.5' Caved In Science Dem. 6/7/77 Science Samo Science Science										
NSP	ECTOR:		Henry			DATE	COMP	ETED.	6/7/77 244 +29 1' Caved in & Dry Date: 6/7/	17
	CASING	1		51.7	Blov	vs on S	poon		Sample ID (4 P.P. Installed) Date: 6/8/	7
	BLOWS	SAM	PLE NO. C	EPTH	0%	6/12	12	REC.	and Date:	-
	5	8-1	0.0'	1.5'	1	7	11	2"	Brown SILT some CF Send traces (1) on a	_
	17	1227				-		- 1	or of the or of	-
	30			1			1.11			-
	58		-		125		1			
° —	169	8-2	5.01	6.5	22	20	67	190		1
	89	8-3	6.5	8.0'	58	40	20	10"	Grey CF SAND, little Silt, some CF Gravel.	
	60		1					14	Stown CF SAND, some Silt, little CF Gravel.	1
	35	8-4	8.0'	9.5'	17	18	21	12"	Brown CF Sand, some Silt, some CF Growel	_
0	62				1.1.1		1	2.2.43	, some of gravel.	-
	75	8-5	10.0'	11.5	13	25	24	14"	Grey CF Sand, little (+) Silt, some (+) CF	-
1	83			-	-				Gravel.	
	65	-			-		-			
	63	100	150.8							
	12.54	8-6	15.0'	16.5	15	14	23	6"	Brown CF SAND little (+) Sile litela ME Count	
			1.000		(1.1			The second of second se	6
ł	1	1		-	1				<u>x</u>	
ł				-	2001	-	-		BOTTOM OF HOLE	-
-	_		-				-	-		
1							-			_
	1			10-12					G.W.T.	_
Ļ	1	1.20		1.1		100	1.1	1.7.1	6/13/77	-
+								1.1	and Dry	-
ł			-			-	-	100		
Ē						-+-				
Ē				1		-	-			
1					1	1.1				_
H									+	-
-				-	-	-				-
ł					-	-				
F							-	-		_
T										_
-	1	_	1.00							-
+	_					_				-
F			-		-	-	-			1
1										
N	lominal I.	D. of Driv	Pipe	21/2 "	-	X	XX		The Contractor shall make blo and block	
N	lominal I,	D. of Spli	t Barrel Sa	mpler	11/2	u .			himself of the actual subsurface conditions. The Information contained on this	
W	eight of	nommer or	Salia Pip	- 300 IL					log is not warranted to show the actual subsurface conditions. The Contractor	
D	rop of ha	mmer on l	Prive Pine	24"	140	IDs.	-	-	agrees that he will make no claims against the State if he finds that the actual conditions do not conform to those indicated by this los	
D	rop of ha	mmer on S	plit Barrel	Sampler	30 "		-		The second s	
-	1							_	New Jersey Department of Transportation	
		1.1			_		-		Soils Bureau	
I des	scription:	represen	t a field id	entificatio	m					
er 0.	m. ourmi	stet unles	a otherwis	e noted.				A	pproximate Change in Strate	

÷

No. 660	Elev. +5.0' 0'0"-5'6" 5'6"-15'0" 15'0"-35'0" 35'0"-50'0" 50'0"-55'6" W.L. 14'0"	Fill-Sand, Gravel, Brick Gray Fine Sand, Silt, Trace Clay, Layered Gray Silt, Clay, Little Sand in Few Spots Gray-Brown Silty Clay Red Medium to Coarse Sand, Gravel
No. 661	Elev. +7.0' 0'0"-1'0" 1'0"-6'6" 6'6"-12'0" 12'0"-30'0" 30'0"-43'0" 43'0"-47'0" W.L. 13'0"	Fill-Sand, Gravel Fill-Cinders, Black Silt Gray Clayey Silt, Layers of Fine Sand Gray to Gray-Brown Clayey Silt, Layers of Fine Sand Gray-Brown to Red-Brown Silty Clay Red Decomposed Shale
No. 662	Elev. +7.0' 0'0"-6'0" 6'0"-7'0" 7'0"-10'0" 10'0"-25'6" 25'6"-39'0" W.L. 10'6"	Fill-Brown Sand, Gravel Gray Fine Sand Red-Brown Silty Clay Red-Brown Clayey Silt Red Sand, Gravel, Silt, Trace Clay, Shale Fragments

NO, 100	8'0"-12'0" 12'0"-3'6" 8'0"-12'0" 12'0"-18'0"	Fill-Gravel, Silt, Sand Gray-Brown Medium Sand Gray Clayey Silt, Varved With Fine Sand Gray Silt, Trace Clay, Sand Gray Silty Clay, Varved With Fine Sand
1	25'0"-33'0" 33'0"-52'0" 52'0"-58'0" 58'0"-65'0" 65'0"-73'0"	Gray-Brown Clayey Silt Gray-Brown Clayey Silt to Silty Clay, Varved With Fine Sand Red-Brown Silty Clay, Trace Sand Red-Brown Silty Clay, Varved With Fine Sand Red Sand, Gravel, Silt
No. 709	73'0"-81'0" W.L. 4'0" Elev. +6.4 0'0"-9'0" 9'0"-18'0"	Red Shale Fill-Gravel, Cinders Gray Silt, Little Fine Sand
	18'0"-27'0" 27'0"-45'0" 45'0"-57'0" 57'0"-65'0" 65'0"-67'0" 67'0"-75'0" WLL. 4'0"	Gray Silty Clay, Varved With Fine Sand Gray Clayey Silt to Silty Clay, Layers of Fine Red-Brown Clay, Few Sand Partings Red Silty Clay, Trace Sand Red Decomposed Shale Red Shale

-

5

Sa

10 710	Elev +6.2	
taile lice	0.0.1.0.	Tonsofl
	110"-)00"	R'11
	hto"-010"	Brown Madium Sand
	010"-2010"	Grav Silt Trace to Little Clay Varmed
	30-300	With Fine Sand
	2010" 1810"	Rod-Brown Silty Cleyr Veryad With Fine Sand
	19101 57101	Pad Brown Clever Stit Closely Sneed Partings
	40 0 -31 0 6710" 5810"	Bed Medium Cand Group Clev
	29101 HOLON	Red Medium Danu, Graver, Oray
	2010 - 12 0	Ded Candetene
	12.0 =10.0	red Sandstone
	W.D. 0.0	
No. 711	Elev. +6.1	
	0'0"-6'0"	Fill-Sand, Gravel
	6'0"-9'0"	Brown Fine Sand
	9'0"-18'0"	Gray Silt, Little Clay, Trace Fine Sand
	18'0"-24'0"	Gray-Brown Clayey Silt
	24'0"-52'6"	Red-Brown Silty Clay Varved With Fine Sand
	52'6"-65'6"	Red Sand, Silt, Gravel, Shale Fragments
	65'6"-73'6"	Red Sandy Shale
	W.L. 4'0"	
N- 730	101 16 7	
10. 115	DICK TOT	0411
		Fill Buerro Fire to Medium Cond
	8101 1010"	Grow Fine Cilty Soud
	1010" 3810"	Cher Duren Cilty Clay, Versied With Fine Cond
	1810" DE 10"	Gray-Drown Silley Clay, Varveu with Fine Band
	10'0 =2')'0	Gray File Silty Sald, Trace City
	2010 -3010	Gray Silty Clay varved with Fine Sand
	1010" 6810"	Brown Cilty Clay Variat With Edge Cand
	40.0 = 20.0	Act Brown Silly Clay, Verved with File Sand
	20.0 =01.0 81.10" 87.10"	Red Fine to Medium Silty Dana, Trace Clay, Fine Grave,
	DT 0 401 0	ved puste
	W.L. 4.0	
No. 713	Elev. +5.9	and the second
	0'0"-7'0"	Brown Sand, Clay (Fill-Driller)
	7'0"-18'0"	Gray Clayey Silt, Layers of Fine Sand
	18'0"-40'0"	Gray Silty Clay, Varved With Fine Sand
	40'0"-53'0"	Red-Brown Silty Clay, Varved With Fine Sand
	53'0"-75'0"	Red Silty Sand, Gravel
	75'0"-77'0"	Soft Red Shale
	77'0'-83'0"	Red Sandy Shale
	W.L. 2'0"	
No. 714	Elev. 45.1	
101 12-4	0'0"-1'0"	(abblacter a
	1'0"-6'0"	Brown Medium Sand (Fill_Dudilow)
	6'0"-12'0"	Grav Fina to Madium Sand
	12'0"-22'0"	GreveRnorm Silt Vertrad With Fine Cand
	TO O TEL V	wing-brown offer, warven with sine pana

No. 714		
Cont'd.	22'0"-47'0"	Red-Brown Silty Clay, Verved with Fine Sand
a second second	47'0"-58'0"	Red Silty Clay, Few Layers of Sand
	58'0"-70'0"	Red Fine Sand, Silt, Gravel,
	70'0"-78'0"	Red Sandstone and Shale
	W. L. 2'6"	
No. 715	Elev. +5.4	
	0'0"-0'4"	Macadam
	0+4"-7*0"	Fill-Brown Sand Cinders
	7'0"-17'0"	Gray Clayey Silt
	17'0"-40'0"	Gray Silty Clay, Partings to 1/16th of an Inch Varves of Silt or Silt to Fine Sand
	40'0"-55'0"	Red-Brown Silty Clay, Irregular Layers Fine
		Sand and Fine Silty Sand
	55'0"-71'0"	Red Fine to Medium Sand, Gravel, Boulder Fragments, Shale Fragments at Bottom
	71 '0" +79'0"	Red Sandy Shale
	W. L. 5'0"	
No. 716	Elev. +6.0	
	0'0"-14'0"	Brown Medium Sand
	14'0"-25'6"	Gray Clayey Silt, Varved with Silt to Fine Sand
	20'0"=30'0"	Gray Silty Clay, Varved with Clayey Silt
	30'U =79'U	Req-Brown Clay, Trace Silt
	7010" 8016"	Red Fine to Medium Sand, Gravel Chale Bus much
	8016"_8816"	Pad Sandy Shale
	W. L. 2'0"	Ver pand Mete
No. 717	Elev	
	0'0"-1'6"	Fill-Dark Sand
	1'6"-3'0"	Gravel, Fibers
	3'0"-11'0"	Brown Fine to Medium Sand
	11'0"- 21'6"	Gray Clayey Silt Trace Sand
	21'6"-32'0"	Gray Silty Clay, Partings of Fine Sand, Silt
	32'0"-45'0"	Gray and Red-Brown Silty Clay, Varved with Clavey Silt
	45'0"-53'0"	Red Sand, Silt, Gravel. Shale Fragments
	53'0"-59'0"	Red Sandy Shale
	W. L. 2'0"	
No. 718	Elev.+5.4	
	0'0"-1'0"	Soil, Roots
	1'0"-2'6"	Fill-Cinders
	2'6"-18'0"	Brown Fine to Medium Sand
	18'0"-23'0"	Gray-Brown Silty Clay, Varved with Silt,
	23'0"-35'0"	Red-Brown Silty Clay, Varved with Silt, Very
		rine cand, Trace Clay

A-150

2. 1

1. 1

No. 718	and the second	
Cont'd.	35'0"-42'6"	Red Silty Clay Varved with Silt
	42'6"-50'6"	Red Sand, Fine Gravel, Trace Silt
	5016"-54'0"	Red Sand, Cobbles, Trace Clay
	54'0"-60'6"	Red Sandy Shale
	W. L. 1'0"	
No. 710	Flow 45 9	
10. 113	0'0"-15'0"	Yellow and Brown Fine to Medium Sand
	15:0"-28:0"	Brown Grav-Brown and Grav Fine Saturated Silty Cand
	28'0"-53'0"	Grav to Red-Brown Silty Clay Varyed with Silt
	53'0"-58'0"	Red Silty Sand. Fine Gravel
	58'0"-65'0"	Red Fine to Medium Sand, Gravel, Shale Fragments
	65'0"-73'0"	Red Sandy Shale
	W. L. 2'0"	a local as caused as about the
an mol	17C. C	
No. 724	CLEV. 40.0	Vill Cindens Cond Grand
	100 -4 0	Come Dana Fine Cand
	710" 1110"	Davis Organia Silt
	11108 00108	Craw Claw Silt Fine Sand Alternative in
	TT.0 -20.0	White Version and Partindo
	2010"-1010"	Cher to Red Prove Silty Clay Portings of
	20 0 -49 0	Cilt to Fire Card
	hoto"-7010"	Red Brown Silty Sand Graval Cobbleg
	49 0 -10 0	Rock Framenta
	7010" .7810"	Red Candy Shale
	W. L. 5'6"	nea paral pitare
No. 725	Elev. +6.5	
	0'0"-5'0"	Fill-Cinders, Sand, Clay, Gravel, etc.
	5'0"-20'0"	Gray Fine to Medium Sand
	20'0"-25'0"	Gray Fine to Medium Sand. Trace Silt
	25'0"-40'0"	Gray-Brown Clay and Silt, Varved with Silt
		to Fine Sand
	40'0"-49'0"	Red-Brown Silty Clay, Varved with Silt to Fine Sand
	49'0"-52'0"	Red Sand, Gravel, Cobbles
	52'0"-54'0"	Brown Sand-Stone Boulders
	54'0"-62'0"	Red Sand, Gravel, Boulders, Clay
	62'0"-68'0"	Red Sandstone
	68'0"-70'0"	Red Shale and Sandstone
	70'0"-73'0"	Red Sandy Shale
	W. L. 4'0"	
No 726	Flow 17 2	
10. 120	010"-110"	Edil-Ometral Sand Bouldars Massilaneous
	410"-710"	Vallow-Brown Fine Cand Stilt Fibers
	710"-1710"	Grav to Red Brown Clay Vanued with Gilt Gard
	10-410	Seems of Kine Sard
	4710"-6016"	Pad Vine Silty Sand Coursel Saltan
	6916"-7716"	Red Sandstone Streaks of Cardy Chains
	W. L. 6'0"	war banna cone, acreake of bandy shale

ŝ

.....

No. 727	Elev. +6.1 0'0"-5'0"	Fill-Gray and Brown Sand, Gravel
	5'0"-9'0"	Brown Sandy Silt
	9'0"-24'0"	Gray Clay, Little Silt, Verved with Silt,
		Little Clay: Silt to Fine Sand Partings
	24'0"-41'0"	Red-Brown Silty Clay, Partings of Silt to Fine Send
	41'0"-50'0"	Red Fine Sand Gwarel
	5010"-6810"	Red Fine to Medium Sand Gravel Cobbles
	68'0"-76'0"	Red Sendstone
	7610"-7816"	Red Bandy Shale to Sandatone
	W. L. 716"	THE DOURT DIVETO TO DENTS LOTE
No. 728	Elev. +6.9	
	0'0"-1'0"	Fill-Cinders Sand Gravel Silt
	1'0"-10'6"	Brown Fine Sand Turce Silt
	1016"-2316"	Grev Clay Varmed with Silt Dauthur of Dire Cont
	23 16"-34 16"	Bad Brown Silty Class Baylings of Fine Sand
	34 6"-45 0"	Red Silty Clay, raroings of Silt to Fine Sand
	4510"-6510"	Red Good Crown Cabbles
	6510"-6710"	Red Cendy Chal-
	6710"-7510"	the bandy plate
	W T. 5'0"	ONALE
No. 729	Elev. +6.4	
	"0"-9"0"	Fill-Dark Sand Aches Onends Matter and
	9'0"-16'0"	Gray Sand, Prace Silt
	16'0"-24'0"	Gray Claver 911+ Trans 911+11 Cand
	24'0"-40'0"	Gray Silty Clar Variat with Clause City
	40'0"-60'0"	Red Fine to Comma Cand Comma
	6010"+6510"	Red Sendstone
	65'0"-68'0"	Red Sandy Shale
	W. L. 410"	nor oundy pliete
No. 730	Elev. +5.7	
	0'0"-3'0"	F11)-Broken Rock, Sand Gravel
	3'0"-9'0"	Red-Brown Fine to Coarce Sand Convol These City
	9'0"-14'0"	Grav Fine Sand, Trace Silt Diant Downlas
	14'0"-19'6"	Gray Silty Clay Vowend with Cilt to Man Could
	1916"-2410"	Gray and Red Silty Clay Versed with City to Gand
	24'0"-95'0"	Red-Brown Silty Clay Varyed with Silt to Sand
	35'0"-40'0"	Dark Red Silty Clay, Veryed with Silt to Fine Sand
	40'0"-50'0"	Red-Brown Fine Sand Fine Ground Little Cart
	50'0"-64'0"	Red-Brown Fine to Medium Sand Grand The
		Sandatone Bragmenta
	64'0"-68'0"	Red Sandatone
	68'0"-72' 0"	Red Sendy Shale
	W. L. 2'0"	and damy prists

A-153

¥.

	1	
No. 731	Elev. +8.1	
	0'0"-5'0"	Fill-Broken Rock
	510"-910"	Brown and Gray Send, Gravel, Trace Silt
	010"-1110"	Brown Fine Sand Trace Silt
	17 10"-1510"	Cray Fine Sand Little Silt Fay Fihana
		Didy Fine Gally Dicole Ditt, rew fibers
	19.0 -29.0	Rea-Gray Silty Clay, Fartings of Silt to Fine Sand
	25.030.0.	Red-Brown Silty Clay, Partings to Varves of
		Silt to Fine Sand
	36'6"-50'0"	Red-Brown Fine Sand, Silt, Gravel
	50'0"-64'0"	Red Fine Sand, Silt, Gravel, Boulders
	64 '0"-72 '0"	Red Sandy Shale
	W. L. 710"	
No 722	Flow (6 3	
NO* 135	DICY. +U.J	
	0.0.=0.0	Fill-Brown Sand, Gravel
	6'6"-17'0"	Gray Silt, Trace Clay, Fine Sand, Layers of
		Peaty Plant Remains
	17'0"-29'0"	Gray Fine to Medium Sand
	29'0"-37'0"	Gray and Red-Brown Silty Clay, Partings to Varves
		of Silt to Fine Sand
	37'0"-59'6"	Red-Brown Fine Sand, Little Silt, Gravel, Few
	21 - 22 -	Rock Framents
	5016"-6716"	Rod Candy Cholo
	UT EIGH	yea nough sugre
	м. т. 2.0	
No. 733	Elev. 40.2	
	0.01.0.	Fill-Brown Sand, Little Gravel
	7'0"-23'0"	Gray Silt, Peaty Plant Remains
	23'0"-25'0"	Gray Fine to Medium Sand
	25'0"-34'0"	Grav to Red-Brown Silty Clay, Varved with Silt
		to Fine Sand
	3410"-5810"	Red-Brown Fine Send Gravel [it+1e Silt
	0.0 000	Cardatone Engements Bottom
	ERIO" SELO"	Bad Chalan Candatana da Dad Canda Chala
	50.0 =00.0	ned onaley sandstone to ned sandy shale
	M. D. D.O.	
No. 734	Elev. +6.1	
	0'0"-2'0"	Macadam
	2'0"-4'0"	Brown Sand, Gravel (Fill?)
	4'0"=10'0"	Gray Silt, Peaty Plant Remains, Trace Brown Sand
	10'0"-24'0"	Gray Silt. Trace Fine Sand Increasing to
		Partings of Bilt to Wine Sand
	2410"-3510"	Red Brown Silty Clay Destined of Gilt to Fire Cond
	2510", 2010"	Pro Prove Struy Oray, rerotings of Site to Fine Sand
	33.0 -39.0	Red-prown Silt, Fine Sand, Gravel, Trace Clay
	39.0.=45.0.	Red-Brown Fine Sand, Silt, Gravel
	45'0"-60'0"	Red-Brown Fine Sand, Little Silt, Gravel, Boulders
	60'0"-65'0"	Red Decomposed Shale
	65*0"-73'0"	Red Shaley Sandatone, and Red Sandy Shale
	W. L. 3'0"	

A-154

No. 735	Elev. +6.3 0'0"-6'0" 6'0"-9'0" 9'0"-17'0" 17'0"-30'0" 30'0"-51'0" 51'0"-54'0" 54'0"-59'0" W. L. 4'6"	Fill-Red-Brown Sand, Gravel, Crushed Rock Dark Silt, Plant Remains, Trace Clay, Fine Sand Gray Fine to Medium Sand Gray and Red-Brown Silty Clay, Partings of Silt to Fine Sand Red-Brown Sand, Gravel, Little Silt Red Shaley Sandstone Red Sandy Shale
No. 736	Elev. +5.1 0'0"-4'0" 4'0"-8'0" 8'0"-15'0" 15'0"-26'0" 26'0"-41'0" 41'0"-45'6" 45'6"-48'6" 48'6"-53'6" W. L. 3'8"	Fill-Crushed Rock, Sand, Gravel, etc. Gray and Yellow-Brown Fine Sand Gray Clayey Silt Red-Brown Silty Clay, Partings of Silt to Fine Sand Red-Brown Sand, Silt, Gravel, Cobbles Red Soft Sandstone Red Shaley Sandstone Red Shaley Sandstone Red Sandy Sbale
No. 737	Elev. +6.4 0'0"-7'0" 7'0"-10'6" 10'6"-13'0" 13'0"-20'0" 20'0"-28'0" 28'0"-50'0" 50'0"-58'0" W. L. 6'0"	Fill-Red-Brown Silty Sand, Cine Cinders, Gravel, Miscellaneous Cray Fine Sand, Trace Silt Gray Clayey Silt Gray and Red-Brown Silty Clay Red-Brown Silty Clay, Partings of Silt to Fine Sa Red-Brown Silty Sand, Gravel Red Sandy Shale

	B	Soring Logs from Soil Area 2
No. 1108	Eley, - 0'0"-0'0" 9'0"-20'0" 20'0"-21'0" W. L. 0'6"	Elack Bilt Clay, Sand Gravel Riprap Fill Red Sand Clay and Gravel Soft Shale
No. 1109	Elev 0'0"-3'0" 3'0"-7'0" 7'0"-17'0" 17'0"-18'0" W. L. 0'0"	Black Silt, Clay, Sand Gravel, Riprap Fill Black Silt Red Sand Clay and Gravel Soft Shale
No. 1110	Elev C'0"-6'0" 6'0"-7'6" 7'6"-18'6" 18'6"-20'0" 20'0"-25'0" W. L. C'0"	Black Silt, Sand, Clay Gravel, Riprap Fill Black Silt Red Sand Clay and Gravel Soft Shale Shale
No. 1111	Elev O'O"-10'O" W. L. O'O"	Flack Silt Clay Gravel and Riprap Fill
No. 1112	Elev 0'0"-9'0" 9'0"-27'5" 27'5"-29'11" 29'11"-34'11" W. L. 0'0"	Black Silt Sand Clay Gravel Riprap Fill Red Sand Clay and Gravel Soft Shale Shale (Drilled)
No. 1113	Elev 0'0"-9'6" 9'6"-12'0" 12'0"-29'4" 29'4"-30'4" 30'4"-35'4"	Fiprap Fill Black Silt Frown Clay Layer of Brown Sand Red Sand Clay and Gravel Soft Shale Shale (Drilled)

94	N 26-3-939	former clay pit exposed 3 to 7 feet of yellow-brown sand (Qmt) overlying 10 feet of horizontally-bedded light-gray- brown fat clay (Qhkl)
No.	1118 Elev. +6.0 0'0"-5'0" 5'0"-8'6" 8'6"-10'0" 10'0"-24'0" 24'0"-28'0" W. L. 3'0"	Earth Sand and Gravel Fill Fine Red Sand Red Clay Red Sand and Gravel Shale
No.	1117 Elev. +8.75 0'0"-6'6" 6'6"-10'3" 10'3"-17'5" 17'6"-38'6" 38'6"-40'0" W. L	Earth Sand Gravel Brick Fill Fine Brown Sand Red Clay Compact Red Sand Clay Gravel and Boulders Red Shale
No.	1115 Elev. +3.0 0'0"-5'0" 5'0"-21'0" 21'0"-26'0" 26'0"-35'0" W. L. 0'0"	Mud and Bog Soft Gray Clay Fine Silty Gray Sand Gray Clay
No.	1114 Elev 0'0"-9'6" 9'6"-15'0" 15'0"-17'0" 17'0"-33'0" 33'0"-38'0" W. L. 2'0"	Black Silt Red Sand Clay and Gravel Boulder (Drilled) Red Sand Clay and Gravel Shale (Drilled)

Boring Logs from Soil Area 3

.

.

. .

. .

. .

9-A. Mauraydi (well).

•

÷

0 - 5 soil 5 - 48 red clay and sand 48 - red shale

No. 1116	Elev. +4.5 0'0"-2'0" 2'0"-8'8" 8'8"-13'0" 13'0"-40'0" W. L. 3'8"	Earth and Wood Fill Silty Red and Gray Sand Gray Clay Thin Layers of Sand Gray Clay

237	26-5190	0-3	clay and fill	
		3-37	fine silt, sand (Qmt over Qhkl)	
		37-300	red shale	

Boring Logs from Soil Area 4

7-B. Bergen County Sewage Plant boring,

90 feet to rock

8-B. Merhoff Brick Company Well.

85 feet to rock

9-B. Bergen County Sewage Plant boring.

7 - 20 gray clay and organic matter 20 - 31 fine sand 31 - 70 clay 70 - 75 sand and gravel 75 - 82 gray sandstone 82 - 87 red shale	0	-	1	marsh
20 - 31 fine sand 31 - 70 clay 70 - 75 sand gravel 75 - 82 gray sandstone 82 - 87 red shale	7	-	20	gray clay and organic matter
31 - 70clay70 - 75sand and gravel75 - 82gray sandstone82 - 87red shale	20	-	31	fine sand
70 - 75 send and gravel 75 - 82 gray sandstone 82 - 87 red shale	31	-	70	clay
75 - 82 gray sandstone 82 - 87 red shale	70	-	75	sand and gravel
82 - 87 red shale	75	-	82	gray sandstone
	82	-	87	red shale

No. 166 Elev 0'0"-7'6" 7'6"-18'0" 18'0"-23'0" 23'0"-79'0" 79'0"-84'0" 84'0"-91'6" W. L	Fill Gray Organic Silt Light Gray Silt & Clay Light Gray & Light Brown Varved Silt & Clay Red Brown Silt & Clay Red Brown Coarse to Fine + Sand, Some - Silt, Trace Fine Gravel	
No. 1115 Elev. +3.0 0'0"-5'0" 5'0"-21'0" 21'0"-26'0" 26'0"-35'0" W. L. 0'0"	Mud and Bog Soft Gray Clay Fine Silty Gray Sand Gray Clay	
No. 1136 Elev. +4.15 0'0"-21'0" 21'0"-71'0" 71'0"-78'0" W. L	Organic Silt Gray and Reddish Brown Clay Red Brown Clay and Gravel	
No. 1137 Elev. +6.80 0'0"- 7'0" 7'0"-21'0" 21'0"-36'0" 36'0"-72'0" 72'0"-82'4" W. L. −	Organic Silt Gray Clay Trace of Organic Silt Medium to Fine Sand and Clay Grayish Brown and Reddish Brown Clay Red Clay and Gravel	

1324 to 1	327 The E	ergen County Sewer Authority, Clinton Bogert, Engrs.
No. 1324	Elev. +8.0' 0'0"-7'5" 7'5"-14'8" 14'8"-24'0" 24'0"-62'4" 62'4"-69'0" 69'0"-79'0" 79'0"-84'0" W.L. 6'0"	Cinders, Wood, Brick, Sand and Gravel Fill Mud and bog Gray Sand and Clay Gray Clay Red Clay Red Sand, Clay and Gravel Shale
No.1325	Elev. +5.0' 0'0"-9'0" W.L. 8'1"	Cinders, Brick, Wood, Sand and Gravel Fill
No. 1326	Elev. +5.0' 0'0"-11'3" 11'3"+22'0" 22'0"-33'5" 33'5"-66'4" 66'4"-72'0" 72'0"-82'6" 82'6"-87'6" W.L. 6'3"	Cinders, Wood, Brick, Sand, Gravel and Clay Fill Mud and Bog Gray Clay and Sand Gray Clay Red Clay Red Clay, Sand and Gravel Shale
No. 1327	Elev. +8.0' 0'0"-18'3" 18'3"-37'5" 37'5"-62'0" 62'0"-73'8" 75'8"-81'0" 81'0"-86'0" W.L. 11'2"	Brown Sand, Gravel, Brick and Wood Fill Gray Clay and Sand Gray Clay Red Clay Red Clay, Sand and Gravel Shale
	18'3"-37'5" 37'5"-62'0" 62'0"-73'8" 75'8"-81'0" 81'0"-86'0" W.L. 11'2"	Gray Clay and Sand Gray Clay Red Clay Red Clay, Sand and Gravel Shale

Salisbury, 1902, p. 617	0-85 at 85	clay (Qhkl) bedrock
Parillo, 1959 well 9B	0-7 7-20 20-31 31-70 70-75 75-82	marsh (Qm) gray clay and organic matter (Qm) fine sand (Qal) clay (Qhkl) sand and gravel (Qhkf) gray sandstone
	Salisbury, 1902, p. 617 Parillo, 1959 well 9B	Salisbury, 1902, 0-85 p. 617 at 85 Parillo, 1959 0-7 well 9B 7-20 20-31 31-70 70-75 75-82 82-87

Boring Logs from Soil Area 5

23	The Lo 412 Mi	ouis I t Ker	Berger (nble Ave	Frou	p, Inc	2.		Drilling Log	BORING NO.:	GT001
	Morri	stow	n, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Eart	hMa	ark Mitig	gatio	n Se	rvic	es		PROJECT NO:	KT500F4
PROJEC	T: R	licha	ard P. Ka	ane V	Wetla	and	Mitiga	ntion Bank	DATE STARTED:	2/18/2009
DRILLIN	NG CO	ONI	ГКАСТ	OR	•	N/	/A		DATE FINISHED:	2/18/2009
DRILLIN	NG M	ETI	HOD:		I	Han	nd Aug	er	DRILLER:	N/A
В	ORE	HO	LE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	· (in):		3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth (ft	:):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:		I	Hand Au	uger			Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to	Wate	r (ft	:): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Rock	(ft)	: N/A	4			Perm	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	2 -		DL					Dark greenish gray (5GY4/1) Organic	SILT; saturated.	Organic Silt (collected sample GT001A at 0.0 to 3.5 ft bgs)
	4 -		SM					Olive black (5Y2/1) fine SAND, some	Silt; saturated .	Silty Sand (collected sample GT001B at 3.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

23	The 412	Loui Mt K	s Berger (emble Ave	Frou	p, Ind	2.		Drilling Log	BORING NO.:	GT003
	Mor	risto	wn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthN	lark Mitig	gatio	n Se	rvic	es		PROJECT NO:	KT500F4
PROJEC	T:	Rich	nard P. Ka	DATE STARTED:	2/18/2009					
DRILLIN	NG (CON	TRACI	OR	:	N/	'A		DATE FINISHED:	2/18/2009
DRILLIN	NG I	MET	THOD:]	Han	d Aug	er	DRILLER:	N/A
В	OR	EH(OLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	(in)):	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth ((ft):	5.00			Ľ	Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand Au	uger			Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVAT	TION (ft): N/A
Depth to	Wat	ter (i	ft): At	Surf	face]	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	ck (f	t): N/2	4			Perm	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 -		SP-SM					Dark greenish gray (5GY4/1) fine SAN	ND, lttle Silt; saturated.	Sand (collected sample GT003A at 0.0 to 2.0 ft bgs)
	3 -		PEAT					Brownish black (5YR2/1) PEAT, little	fine Sand; saturated.	Peat (collected sample GT003B at 2.0 to 3.5 ft bgs)
	4 -		SM					Dark greenish gray (5GY4/1) fine SAN	ND, some Silt; saturated.	Silty Sand (collected sample GT003C at 3.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

The I 412 N	Louis At Ke	Berger G mble Ave	Frou	p, Inc	2.		Drilling Log	BORING NO.:	GT005
Morr	ristov	vn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT: Ear	rthM	ark Mitig	gatio	n Se	rvic	ces		PROJECT NO:	KT500F4
PROJECT:	Rich	ard P. Ka	ane V	Wetl	and	l Mitiga	tion Bank	DATE STARTED:	2/18/2009
DRILLING C	CON	TRACT	OR		N	/A		DATE FINISHED:	2/18/2009
DRILLING N	ЛЕТ	HOD:		l	Han	nd Aug	er	DRILLER:	N/A
BORI	EHO	LE DA'	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total Depth (ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:		Hand Au	uger			Scree	Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to Wat	er (f	t): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to Roc	k (ft): N/A	4			Permi	t No.: N/A		
NOTES:									
Well Construction Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
0 1 - 2 - 3 - 4 -		SP-SM					Dark greenish gray (5GY4/1) fine SAN Greenish black (5GY2/1) fine SAND, saturated.	ND, little Silt; saturated. little Silt, trace Peat;	Sand (collected sample GT005A at 0.0 to 3.5 ft bgs) Collected sample GT005B at 3.5 to 5.0 ft bgs End of Boring at 5 ft bgs.

The 412	Loui Mt K	s Berger (emble Ave	Frou	p, Inc	2.		Drilling Log	BORING NO.:	GT007
Mon	rristo	wn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT: Ea	arthℕ	lark Mitig	gatio	n Se	rvic	ces		PROJECT NO:	KT500F4
PROJECT:	Ricl	nard P. Ka	ane V	Wetl	tion Bank	DATE STARTED:	2/18/2009		
DRILLING	CON	TRACI	OR		N	/A		DATE FINISHED:	2/18/2009
DRILLING	MET	THOD:		l	Han	nd Aug	er	DRILLER:	N/A
BOR	EHO	OLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter (in	l):	3				Comp	letion: N/A	NORTHING:	N/A
Total Depth	(ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:		Hand Au	uger			Scree	Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to Wa	ter (ft): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to Ro	ck (f	t): N/A	4			Permi	t No.: N/A		
NOTES:									
Well Construction Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
1 - 2 - 3 - 4 -		SP-SM SP-SM					Dark greenish gray (5GY4/1) fine SAN Greenish black (5GY2/1) fine SAND, I saturated.	ND, little Silt; saturated. ittle Silt, trace Peat;	Sand (collected sample GT007A at 0.0 to 3.5 ft bgs) Collected sample GT007B at 3.5 to 5.0 ft bgs End of Boring at 5 ft. bgs.

25	The 1 412 M	Loui At K	s Berger (emble Ave	Grouj	p, Ind	с.		Drilling Log	BORING NO.:	GT009
	Mor	risto	wn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthN	lark Mitig	gatio	n Se	rvic	es		PROJECT NO:	KT500F4
PROJEC	T:	Rich	hard P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLIN	NG (CON	TRACT	ſOR	•	N/	/A		DATE FINISHED:	2/16/2009
DRILLIN	NG I	MEI	FHOD:]	Han	nd Aug	er	DRILLER:	N/A
В	OR	EHO	OLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	• (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	pth (ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger			Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to	Wat	er (i	ft): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/2	A			Perm	it No.: N/A		
NOTES:										
Well Construction	- Depth	ド	SOS PEAT	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description Grayish black (N2) PEAT; saturated.		Remarks Peat (collected sample GT009A at 0.0 to 2.5 ft bgs)
	2 - 3 - 4 -		SP-SM					Medium gray (N5) fine SAND, little S	ilt; saturated.	Sand (collected sample GT009B at 2.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

23	The 1 412 N	Loui At K	s Berger (emble Ave	Grouj	p, Inc	2.		Drilling Log	BORING NO.:	GT010
	Mor	risto	wn, NJ 07	'960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthM	lark Mitig	gatio	n Se	rvic	es		PROJECT NO:	KT500F4
PROJEC	T:	Ricł	hard P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLIN	NG (CON	TRACI	COR	:	N/	A		DATE FINISHED:	2/16/2009
DRILLIN	NG N	MEI	THOD:		l	Han	d Aug	er	DRILLER:	N/A
В	OR	EHO	OLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	• (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	pth (ft):	5.00			'	Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger			Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVA	FION (ft): N/A
Depth to	Wat	er (i	ft): At	Surf	face]	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/2	A			Permi	it No.: N/A		
NOTES:										
Well Construction	 Depth 	Lithology	nscs	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description	T: saturated	Remarks Organic Silt
	1 -		OL					Brownish black (5YR2/1) Organic SIL	1; saturated.	(collected sample GT010A at 0.0 to 2.5 ft bgs)
	3 -		SP-SM					Dark greenish gray (5G4/1) fine SAN	D, little Silt; saturated.	Sand (collected sample GT010B at 2.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

10	The 3	Louis Mt K	s Berger (emble Ave	Grou	p, Inc	2.		Drilling Log	BORING NO.:	GT011
	Mor	risto	wn, NJ 07	'960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthM	lark Miti	gatio	n Se	rvice	es		PROJECT NO:	KT500F4
PROJEC	T:	Rich	nard P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLIN	NG (CON	TRACT	ror		N/.	А		DATE FINISHED:	2/16/2009
DRILLIN	NG I	MET	THOD:]	Hand	d Aug	er	DRILLER:	N/A
B	OR	EHC)LE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	(in)):	3			- (Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth (ft):	5.00			, r	Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger			Screer	n Length (ft) /Slot (in): N/A	GROUND ELEVA	ΓΙΟΝ (ft): N/A
Depth to	Wat	t <mark>er</mark> (1	ft): At	Surf	face]	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f1	t): N/2	A			Permi	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	0 1 - 2 - 3 -		SM					Olive black (5Y2/1) fine SAND, and S Madium dark grave (N4) fine SAND a	ilt; saturated.	Silty Sand (collected sample GT011A at 0.0 to 3.5 ft bgs)
	4 -		SM					Medium dark gray (N4) fine SAND, s	ome Silt; saturated.	GT011B at 3.5 to 5.0 ft bgs End of Boring at 5 f.t bgs.

Morristown, NJ 07960 Page 1 of 1 WELL NO:: N/A CLIENT: EarthMark Mitigation Services PROJECT NO: KT500F4 PROJECT: Richard P. Kane Wetland Mitigation Bank DATE STARTED: 2/16/2009 DATE FINISHED: 2/16/2009 DRILLING CONTRACTOR: N/A DATE FINISHED: 2/16/2009 DRILLING METHOD: Hand Auger DRILLING: BOREHOLE DATA WELL DATA INSPECTOR: BOREHOLE DATA WELL DATA INSPECTOR: BOREHOLE DATA WELL NO: N/A Sampler: Hand Auger Screen Length (ft): Solution: N/A Permit No:: N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A NOTES: Total Depth (ft): N/A Permit No:: N/A NOTES: Total Depth (ft): Sity Sampler: Gate Sity Sity Sampler: Gate Sity Sity Sampler: 1 Solution Solution Sity Sampler: Gate Sity Sity Sampler: Gate Sity Sity Sampler: 1 Solution Solution Solution Solution<		The J 412 N	Louis At Ke	s Berger (emble Ave	Grouj	p, Inc	2.		Drilling Log	BORING NO.:	GT012
CLIENT: EarthMark Mitigation Services PROJECT NO: KT500F4 PROJECT: Richard P. Kane Wetland Mitigation Bank DATE STARTED: 2/16/2009 DRILLING CONTRACTOR: N/A DATE FINISHED: 2/16/2009 DRILLING METHOD: Hand Auger DRILLER: N/A BOREHOLE DATA WELL DATA INSPECTOR: K. Schuch Diameter (in): 3 Completion: N/A NA Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A EASTING: N/A Depth to Water (ft): A/S surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A NOTES: Image: Streen Length (ft) N/A Image: Streen Length (ft) N/A Remarks Image: Streen Length (ft): N/A Permit No.: N/A N/A NOTES: Image: Streen Length (ft): N/A Permit No.: N/A Image: Streen Length (ft): N/A Image: Streen Length (ft): N/A Permit No.: N/A Image: Streen Length (ft): N/A Image: Streen Length (ft): N/A Permit No.: N/A Image: Streen Length (ft): N/A Image: Streen Length (ft): Streen Length (ft): Streen Length (ft): Streen Length (ft): Stre	r and a second s	Mori	isto	wn, NJ 07	7960				Page 1 of 1	WELL NO.:	N/A
PROJECT: Richard P. Kane Wetland Mitigation Bank DATE STARTED: 2/16/2009 DRILLING CONTRACTOR: N/A DATE FINISHED: 2/16/2009 DRILLING CONTRACTOR: N/A DATE FINISHED: 2/16/2009 DRILLING CONTRACTOR: N/A DRILLER: N/A BOREHOLE DATA WELL DATA INSPECTOR: K. Schuch Diameter (in): 3 Completion: N/A NORTHING: N/A Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No.: N/A N/A NOTES: Image: Section of the gamma	CLIENT:	Ea	rthM	lark Miti	gatio	n Se	rvice	es		PROJECT NO:	KT500F4
DRILLING CONTRACTOR: N/A DATE FINISHED: 2/16/2009 DRILLING METHOD: Hand Auger DRILLER: N/A BOREHOLE DATA WELL DATA INSPECTOR: K. Schuch Diameter (in): 3 Completion: N/A INSPECTOR: K. Schuch Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A NOTES: Image: State	PROJEC	T:	Rich	nard P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLING METHOD: Hand Auger DRILLER: N/A BOREHOLE DATA WELL DATA INSPECTOR: K. Schuch Diameter (in): 3 Completion: N/A NORTHING: N/A Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A NOTES: Image: State of the state of th	DRILLIN	IG (CON	TRACT	ΓOR		N/.	А		DATE FINISHED:	2/16/2009
BOREHOLE DATA WELL DATA INSPECTOR: K. Schuch Diameter (in): 3 Completion: N/A NORTHING: N/A Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft): Slot (in): N/A EASTING: N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No.: N/A NOTES: Image: State of the state	DRILLIN	IG N	IET	THOD:]	Hano	d Auge	er	DRILLER:	N/A
Diameter (in): 3 Completion: N/A NORTHING: N/A Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No:: N/A N/A Image: Completion (ft): N/A NOTES: Image: Completion (ft): M/A Permit No:: N/A Image: Completion (ft): Remarks Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Remarks Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Remarks Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Remarks Image: Completion (ft): Image: Completion (ft): Image: Completion (ft): Image: Completion (ft)	B	ORI	EHC)LE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Total Depth (ft): 5.00 Total Depth (ft): N/A EASTING: N/A Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No.: N/A TOC ELEVATION (ft): N/A NOTES: Image: Stress of the stres	Diameter	(in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Sampler: Hand Auger Screen Length (ft) /Slot (in): N/A GROUND ELEVATION (ft): N/A Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No.: N/A NOTES: NOTES: Remarks Image: Surface Sur	Total Dep	th (i	ft):	5.00			,	Total	Depth (ft): N/A	EASTING:	N/A
Depth to Water (ft): At Surface Depth to Water (ft): N/A TOC ELEVATION (ft): N/A Depth to Rock (ft): N/A Permit No.: N/A NOTES: Image: Construction of the state of th	Sampler:			Hand A	uger		5	Screen	h Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to Rock (ft): N/A Permit No.: N/A NOTES: Image: Stress of the stres	Depth to V	Wat	er (f	ft): At	Surf	face]	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
NOTES: Image: State of the state of t	Depth to 1	Roc	k (ft	t): N/.	A			Permi	t No.: N/A		
Image: Description Remarks Image: Description Remarks Image: Description Remarks Image: Description Organic Silt Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description <td>NOTES:</td> <td></td>	NOTES:										
0 OL Olive black (5Y2/1) Organic SILT; saturated. Organic Silt (collected samp GT012A at 0.0 2.0 ft bgs) 1 Image: Collected samp GT012A at 0.0 2.0 ft bgs) Pale yellowish brown (10YR6/2) fine SAND, some Silt; Silty Sand (collected samp GT012B at 2.0 5.0 ft bgs) 3 Image: Collected samp GT012B at 2.0 5.0 ft bgs) Silty Sand (collected samp GT012B at 2.0 5.0 ft bgs)	Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
2 Image: SM SM Pale yellowish brown (10YR6/2) fine SAND, some Silt; saturated. Silty Sand (collected samp GT012B at 2.0 5.0 ft bgs) 3 Image: SM <		1 -		OL					Olive black (5Y2/1) Organic SILT; sat	urated.	Organic Silt (collected sample GT012A at 0.0 to 2.0 ft bgs)
End of Boring a		3 -		SM					Pale yellowish brown (10YR6/2) fine S saturated.	SAND, some Silt;	Silty Sand (collected sample GT012B at 2.0 to 5.0 ft bgs) End of Boring at 5 ft bgs

The Louis Berger Group, Inc. 412 Mt Kemble Ave									Drilling Log	BORING NO.:	GT013
	Mor	risto	wn,	NJ 07	1960				Page 1 of 1	WELL NO.:	N/A
CLIENT: EarthMark Mitigation Services										PROJECT NO:	KT500F4
PROJEC	T:	Ricł	nard	P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLIN	NG (CON	ITR	ACT	ΓOR		N/.	А		DATE FINISHED:	2/16/2009
DRILLIN	NG N	MET	ГНС	DD:]	Hano	d Aug	er	DRILLER:	N/A
В	ORI	EH(OLE	E DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	• (in)	:		3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	pth (ft):		5.00				Fotal	Depth (ft): N/A	EASTING:	N/A
Sampler:			Ha	nd A	uger		5	Screei	n Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to	Wat	er (f	ft):	At	Sur	face]	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (ft	t):	N/2	A			Permi	it No.: N/A		
NOTES:											
Well Construction	Depth	Lithology		nscs	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 -		OL						Olive black (5Y2/1) Organic SILT; sa	urated.	Organic Silt (collected sample GT013A at 0.0 to 2.5 ft bgs)
	3 -		SM						Pale yellowish brown (10YR6/2) to m (10YR5/4) fine SAND, some Silt; satu	oderate yellowish brown rated.	Silty Sand (collected sample GT013B at 2.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

The Louis Berger Group, Inc. 412 Mt Kemble Ave									Drilling Log	BORING NO.:	GT014
	Mori	risto	wn, N	NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT: EarthMark Mitigation Services										PROJECT NO:	KT500F4
PROJEC	T:	Ricł	nard	P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/16/2009
DRILLIN	NG C	CON	JTR.	ACT	OR		N/.	А		DATE FINISHED:	2/16/2009
DRILLIN	NG N	MET	ГНО	D:]	Hano	d Aug	er	DRILLER:	N/A
В	ORI	EH(DLE	DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	• (in)	:		3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	pth (ft):		5.00				Fotal	Depth (ft): N/A	EASTING:	N/A
Sampler:			Har	nd A	uger			Screei	n Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to	Wat	er (f	ft):	At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (ft	t):	N/2	4			Permi	it No.: N/A		
NOTES:											
Well Construction	Depth	Lithology		naca	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 -		OL						Olive black (5Y2/1) Organic SILT; sa	urated.	Organic Silt (collected sample GT014A at 0.0 to 2.5 ft bgs)
	3 -		SM						Pale yellowish brown (10YR6/2) to m (10YR5/4) fine SAND, some Silt; satu	oderate yellowish brown rated.	Silty Sand (collected sample GT014B at 2.5 to 5.0 ft bgs) End of Borjng at 5 ft. bgs.

1	The I 412 N	Louis At Ka	s Berger (emble Ave	Grou	p, Inc	c.		Drilling Log	BORING NO.:	GT015		
	Mor	risto	wn, NJ 07	7960				Page 1 of 1	WELL NO.:	N/A		
CLIENT	Ea	rthM	1ark Miti	gatio	on Se		PROJECT NO:	KT500F4				
PROJEC	T:	Ricł	nard P. K	DATE STARTED:	2/16/2009							
DRILLIN	IG (CON	TRAC	ΓOR		N/	/A		DATE FINISHED:	2/16/2009		
DRILLIN	IG N	MET	THOD:]	Han	nd Aug	er	DRILLER:	N/A		
В	ORI	EHC	DLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch		
Diameter	(in)	:	3				Comp	letion: N/A	NORTHING:	N/A		
Total Dep	oth (ft):	5.00)			Total	Depth (ft): N/A	EASTING:	N/A		
Sampler:			Hand A	uger			Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A		
Depth to	Wat	er (f	ft): At	Sur	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A		
Depth to	Roc	k (fl	t): N/.	A			Perm	it No.: N/A				
NOTES:												
Well Construction	Depth	Lithology	nscs	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks		
	1 -		OL					Olive black (5Y2/1) Organic SILT, tra	ice fine Sand; saturated.	Organic Silt (collected sample GT015A at 0.0 to 3.0 ft bgs)		
	4 -		SM					Pale yellowish brown (10YR6/2) to m (10YR5/4) fine SAND, some Silt; satu	oderate yellowish brown rated.	Silty Sand (collected sample GT015B at 3.0 to 5.0 ft bgs) End of Boring at 5 ft. bgs.		

The Louis Berger Group, Inc. 412 Mt Kemble Ave								Drilling Log	BORING NO.:	GT016
	Mor	risto	wn, NJ 0	c 7960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rth№	1ark Miti	igatic	on Se	rvio	ces		PROJECT NO:	KT500F4
PROJEC	T:	Ricl	hard P. K	DATE STARTED:	2/16/2009					
DRILLIN	NG (CON	NTRAC'	TOR		N	/A		DATE FINISHED:	2/16/2009
DRILLIN	NG N	MET	FHOD:]	Har	1d Aug	er	DRILLER:	N/A
В	OR	EHO	OLE DA	ATA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	(in)):	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth ((ft):	5.00)			Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger	,		Scree	n Length (ft) /Slot (in): N/A	GROUND ELEVA	FION (ft): N/A
Depth to	Wat	ter (ft): At	t Sur	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/	'A			Perm	it No.: N/A		
NOTES:										
Well Construction	→ Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description Olive black (5Y2/1) Organic SILT, tra	nce fine Sand; saturated.	Remarks Organic Silt
	1 - 2 -									(collected sample GT016A at 0.0 to 2.5 ft bgs)
	3 -		ML					Medium dark gray (N4) Clayey SILT, saturated.	trace fine Sand;	Clayey Silt (collected sample GT016B at 2.5 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

	The I 412 N	Louis At Ko	s Berger (emble Ave	Grou	p, Ind	2.		Drilling Log	BORING NO.:	GT017
	Mor	risto	wn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthM	lark Mitig	gatio	n Se	rvic	ces		PROJECT NO:	KT500F4
PROJEC	T:	Rich	nard P. Ka	tion Bank	DATE STARTED:	2/16/2009				
DRILLIN	NG (CON	TRACT	OR		N/	/A		DATE FINISHED:	2/16/2009
DRILLI	NG N	MET	THOD:]	Han	nd Aug	er	DRILLER:	N/A
B	ORI	EHC	DLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	' (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth (ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger			Screer	Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to	Wat	er (f	ft): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f1	t): N/2	4			Permi	t No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 - 2 - 3 - 4 -		PEAT					Olive black (5Y2/1) PEAT; saturated. Medium dark gray (N4) Clayey SILT, saturated.	trace fine Sand;	Peat (collected sample GT017A at 0.0 to 3.5 ft bgs) Clayey Silt (collected sample GT017B at 3.5 to
	5	· · · · · · · · · · · · · · · · · · ·								5.0 ft bgs) End of Boring at 5 ft. bgs.

10	The 412 M	Loui: Mt K	s Berger (emble Ave	Grou	p, Ind	с.		Drilling Log BOI	RING NO.:	GT018
	Mor	risto	wn, NJ 07	960				Page 1 of 1 WE	LL NO.:	N/A
CLIENT	: Ea	rthN	lark Mitig	gatio	n Se	rvic	ces	PRO.	JECT NO:	KT500F4
PROJEC	T:	Rich	nard P. K	tion Bank DAT	E STARTED:	2/16/2009				
DRILLIN	NG (CON	TRACT	OR		N,	/A	DAT	E FINISHED:	2/16/2009
DRILLIN	NG I	MET	THOD:]	Har	nd Aug	er DRII	LLER:	N/A
В	OR	EH(DLE DA	TA				WELL DATA INSP	ECTOR:	K. Schuch
Diameter	(in)):	3				Comp	letion: N/A NOR	THING:	N/A
Total Dep	oth ((ft):	5.00				Total	Depth (ft): N/A EAST	ΓING:	N/A
Sampler:			Hand A	uger			Scree	Length (ft) /Slot (in): N/A GRO	UND ELEVA	TION (ft): N/A
Depth to	Wat	ter (f	ft): At	Surf	face		Depth	to Water (ft): N/A TOC	ELEVATION	(ft): N/A
Depth to	Roc	k (ft	t): N/2	4			Perm	t No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 -	 	PEAT					Olive black (5Y2/1) PEAT; saturated.		Peat (collected sample GT018A at 0.0 to 2.5 ft bgs) Collected sample GT018B at 2.5 to 3.0 ft bgs
			OL					Olive black (5Y2/1) Organic SILT; saturated.		Organic Silt
	4 -		ML					Medium dark gray (N4) Clayey SILT, trace fir saturated.	ne Sand;	Clayey Silt (collected sample GT018C at 3.0 to 5.0 ft bgs) End of Boring at 5
	5_	· · ·								ft. bgs.

10	The 3	Loui At K	s Berger (emble Ave	Grouj e	p, Inc	2.		Drilling Log	BORING NO.:	GT020
	Mor	risto	wn, NJ 07	1960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rth№	lark Miti	gatio	n Se	rvic	es		PROJECT NO:	KT500F4
PROJEC	T:	Ricl	hard P. K	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/17/2009
DRILLIN	NG (CON	TRACI	ΓOR		N/	'A		DATE FINISHED:	2/17/2009
DRILLI	NG I	MEI	FHOD:]	Han	d Aug	er	DRILLER:	N/A
B	OR	EHO	OLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	• (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total De	pth (ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand A	uger			Screer	n Length (ft) /Slot (in): N/A	GROUND ELEVA	ΓΙΟΝ (ft): N/A
Depth to	Wat	er (i	ft): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (f	t): N/2	A			Permi	it No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 -	 	PEAT					Brownish black (5YR2/1) PEAT; satu	rated.	Peat (collected sample GT020A at 0.0 to 2.0 ft bgs)
	3 -		ML					Medium dark gray (N4) Clayey SILT	saturated.	Clayey Silt (collected sample GT020B at 2.0 to 5.0 ft bgs) End of Boring at 5 ft. bgs.
10	The] 412 N	Louis At Ko	s Berger (emble Ave	Grou	p, In	c.		Drilling Log BORIN	NG NO.:	GT022
----------------------	--------------------------	---------------------------------------	-------------------------	-----------------	-----------------	------------	-----------	---	-----------------	--
	Mor	risto	wn, NJ 07	960				Page 1 of 1 WELL	NO.:	N/A
CLIENT	: Ea	rthM	lark Mitig	gatio	n Se	rvic	ces	PROJEC	CT NO:	KT500F4
PROJEC	T:	Ricł	nard P. Ka	ane '	Wetl	and	Mitiga	tion Bank DATE S	TARTED:	2/17/2009
DRILLIN	NG (CON	TRACT	FOR		N/	/A	DATE F	INISHED:	2/17/2009
DRILLIN	NG N	MET	THOD:]	Han	nd Aug	er DRILLF	CR:	N/A
В	OR	EHC	DLE DA	TA				WELL DATA INSPEC	TOR:	K. Schuch
Diameter	' (in)	:	3				Comp	letion: N/A NORTH	ING:	N/A
Total Dep	oth (ft):	5.00				Total	Depth (ft): N/A EASTIN	G:	N/A
Sampler:			Hand Au	uger			Scree	h Length (ft) /Slot (in): N/A GROUN	D ELEVA	FION (ft): N/A
Depth to	Wat	er (f	ft): At	Surf	face		Depth	to Water (ft): N/A TOC EL	EVATION	(ft): N/A
Depth to	Roc	k (ft	t): N/A	4			Perm	t No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 - 2 - 3 - 4 -		PEAT					Brownish black (5YR2/1) PEAT; saturated. Medium dark gray (N4) Clayey SILT, trace fine S	and;	Peat (collected sample GT022A at 0.0 to 4.0 ft bgs) Collected sample GT022B at 4.0 to 5.0 ft bgs Clayey Silt
	5	· · · · · · · · · · · · · · · · · · ·						saturated.		End of Boring at 5 ft. bgs.

1	The 1 412 N	Louis At Ko	s Berger (emble Ave	Grou	p, In	с.		Drilling Log	BORING NO.:	GT024
	Mor	risto	wn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT	: Ea	rthM	lark Mitig	gatio	n Se	rvic	ces		PROJECT NO:	KT500F4
PROJEC	T:	Ricł	nard P. Ka	ane '	Wetl	and	Mitiga	tion Bank	DATE STARTED:	2/17/2009
DRILLIN	NG (CON	TRACT	OR		N/	/A	- - -	DATE FINISHED:	2/17/2009
DRILLIN	NG N	MET	THOD:]	Han	nd Aug	er	DRILLER:	N/A
В	ORI	EHC	DLE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	' (in)	:	3				Comp	letion: N/A	NORTHING:	N/A
Total Dep	oth (ft):	5.00				Total	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand Au	uger			Screer	Length (ft) /Slot (in): N/A	GROUND ELEVAT	TION (ft): N/A
Depth to	Wat	er (f	ft): At	Surf	face		Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to	Roc	k (ft	t): N/A	4			Permi	t No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	1 - 2 - 3 - 4 -		PEAT					Dusky brown (5YR2/2) PEAT; saturate Medium dark gray (N4) Clayey SILT, tr saturated.	ed. race fine Sand;	Peat (collected sample GT024A at 0.0 to 4.0 ft bgs) Collected sample GT024B at 4.0 to 5.0 ft bgs Clayey Silt
	5									End of Boring at 5 ft. bgs.

The Loui 412 Mt K	is Berger G emble Ave	roup	o, Inc	•		Drilling Log	BORING NO.:	GT026
Morristo	wn, NJ 079	960				Page 1 of 1	WELL NO.:	N/A
CLIENT: EarthN	/lark Mitig	gatio	n Sei	vice	es		PROJECT NO:	KT500F4
PROJECT: Ric	hard P. Ka	ne V	Wetla	and I	Mitiga	tion Bank	DATE STARTED:	2/17/2009
DRILLING CON	NTRACT	OR	:	N/A	4		DATE FINISHED:	2/17/2009
DRILLING ME	THOD:		ł	Hand	l Aug	er	DRILLER:	N/A
BOREH	OLE DAT	ΓА				WELL DATA	INSPECTOR:	K. Schuch
Diameter (in):	3			(Comp	letion: N/A	NORTHING:	N/A
Total Depth (ft):	5.00			ſ	[otal]	Depth (ft): N/A	EASTING:	N/A
Sampler:	Hand Au	ıger		S	Screer	h Length (ft) /Slot (in): N/A	GROUND ELEVA	FION (ft): N/A
Depth to Water ((ft): At S	Surf	àce	Ι	Depth	to Water (ft): N/A	TOC ELEVATION	(ft): N/A
Depth to Rock (f	't): N/A	١		I	Permi	it No.: N/A		
NOTES:								
Well Construction Depth Lithology	USCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
	PEAT					Brownish black (5YR2/1) PEAT, little	Silt; saturated.	Peat (collected sample GT026A at 0.0 to 1.0 ft bgs)
	ML					Medium dark gray Clayey SILT, trace	e fine Sand; saturated.	Clayey Silt (collected sample GT026B at 1.0 to 5.0 ft bgs) End of Boring at 5

	Гhe L 412 M	ouis It Ke	Berger G	Frou	p, Ind	2.		Drilling Log	BORING NO.:	GT028
N N	Morri	istov	vn, NJ 07	960				Page 1 of 1	WELL NO.:	N/A
CLIENT:	Eart	thM	ark Mitig	gatio	n Se	rvice	es		PROJECT NO:	KT500F4
PROJECT	F: F	Rich	ard P. Ka	ane V	Wetl	and l	Mitiga	tion Bank	DATE STARTED:	3/6/2009
DRILLIN	G C	ON '	TRACT	OR		N/A	A		DATE FINISHED:	3/6/2009
DRILLIN	IG M	IET	HOD:]	Hanc	d Auge	er	DRILLER:	N/A
BO	ORE	НО	LE DA	TA				WELL DATA	INSPECTOR:	K. Schuch
Diameter	(in):		3			(Comp	letion: N/A	NORTHING:	N/A
Total Dep	th (f	t):	5.00			1	Fotal]	Depth (ft): N/A	EASTING:	N/A
Sampler:			Hand Au	ıger		S	Screer	h Length (ft) /Slot (in): N/A	GROUND ELEVA	TION (ft): N/A
Depth to V	Wate	er (f	t): At	Surf	face	I	Depth	to Water (ft): N/A	TOC ELEVATION	I (ft): N/A
Depth to I	Rock	(ft)): N/A	4]]	Permi	t No.: N/A		
NOTES:										
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	Blows/6 in	PID (ppm)	Description		Remarks
			ML-CL					Olive gray (5Y4/1) Silty CLAY, trace	fine Sand; saturated.	Silty Clay (collected sample GT028A at 0.0 to 5.0 ft bgs) End of Boring at 5 ft. bgs.

UTE:			LOCAL N	AME:	Ret	aini	ng Wa	11 Boring TEST HOLENO 40/11-	215
CTION:	Jachin	aton A	F F	ATTO	HM_ C	200	(102)		215
ATION: 14	vasiiiii	COFESET	ve., r.	AUS	PEEE	DENCE	102)		
A.1.011. 1.	(1 + 2	5011321	. 15.	Rt.	KEFE	RENCE	LINE	Washington Ave. S BL GROUND LINE ELEVATION: 19.7	
RINGS MAD	DE BY:	Rubin	no	1	DATE	STAR	TED:	11-30-82 0 Hr. +14.7' Date: 1	1-30
SPECTOR:		Henry	y	1.1	DATE	COMP	LETED:	11-30-82 24 Hr. +15.7' Filled in Dry Dote: 12	2-01
CASING	SAMP	LE NO. D	EPTH	Blow	s on S	poon	REC	Sample ID ft. P.P. Installed Date:	
BLOWS				6	12	18		Profile Change	
4	S-1	0.0'	1.5'	1	5	8	0.9"	Brown/Red Brown CF Sand, and Silt, little	1
10				-				_MF Gravel	
48				-				-	-
20		12			1			1	-
37	S-2	5.0'	6.3'	20	40	125/	0.8'	Red Brown CF Sand, some Silt, some CF Gravel	-
300/	1.000				1.7.7	0.3			- 6
0.5'		6 -1	11.11						
-	C-1	6.5	11.5	C	DRE		1.8'	Red Brown interbedded SANDSTONE & SHALE	-
1	1				ROD		0%	-	-
	1. 2.				ind n		010		11
		1	1.00				1	Bottom of Hole	11
-			-			-			
		-		_					
-								-	-
					-			-	-
					33		-		-
			223				1		
	-								
				-		-			
-					-				-
	1.1				-				-
11-21		1						-	
	5-0-H	1							
-						-			
-	-		_	-	-				-
	-	-						-	-
	_		12						-
1.00		1.000				1			
1		1				-			1
-				_				-	-
									-
									-
1									
Nominal I	.D. of Dri	ve Pipe	21/2 "			XXX		The contract of the contract o	
Nominal I	D. of Spl	it Barrel S	ampler	13	211			ine Contractor shall make his own subsurface investigations in order to sat himself of the actual subsurface conditions. The Information contained on t	his
Weight of	hommer o	n Drive Pi	pe 300	bs.				log is not warranted to show the actual subsurface conditions. The Contrac	tor
Weight of	hammer o	n Split Bar	rel Sample	er 140	lbs.			agrees that he will make no claims against the State if he finds that the act	val
Drop of h	ammer on	Split Barre	1 Sampler	30 "				and a second sec	
». 1	1/8"							New Jersey Department of Transportation	
Dia,	-10							Duran is contacting a second	

For	m SO-2	2/79			I	NEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION Field #B-26	
ROL	JTE:			LOCAL N	AME:	Re	tain	ing Wa		016
SEC	TION	Ucohi					- di ziti	ang ne		- 216
STA	TION: 12	7 ± 0	S OFFSET	ve. In	D+	veme	nts	FAUS 1	FM-8298(102)	- 1
	1104: 12	./ +).) OFFSET	: 15	KL.	KEFE	RENCE	LINE: W	Vashington AVE. 5 BL GROUND LINE ELEVATION: +21.	·
BOR	INGS MAD	DE BY:	Ru	bino		DATE	STAR	TED:	UHr. +16.5'	11-29-8
NSF	PECTOR:	1.00	He	nry	- 1	DATE	COMP	LETED:	11-29-82 24 Hr. +13.5' Caved in & Dry Date: 1	1-30-8
	CASING	SAMP	LE NO. D	EPTH	Blov	vs on S	poon	REC.	Sample ID ft. P.P. Installed Date:	
	BLOHS	0.1	1 0 01	1	6	12	18		Profile Change	
	20	5-1	0.0.	1.5	2	6	11	0.8	Red Brown CF Sand, some Silt, some CF Gravel	
	41				-	-			-	1
	45					-	-		-	
5	28	-					-		-	1-
	91	S-2	5.0'	5.51	125	-	-	0 3	Samo	-
	140	0 2	5.0	5.5	145			0.5	Same	
	357/	5-3	6.51	7 5	36	125	-	0.51	Same	2 21
	0.5'	5 5	0.5	1.5	30	145		0.5	Same	1.5
	0.5	C-1	7.5	12 5	CC	RE	-	1 11	Red Brown Soft SUATE	
-		01	1.5	12.5	RI	C	-	229	Red brown Sore Share	
	-		-		RC	n		0%	6 	
	-				100			0%		
					-				D. 4. C. 77. 1	-12.5
		1	-		-				Bottom of Hole	
-										-
						-		0-	-	
					-					
							-	1.		
-					-		-			-
					ť		-			
					-	-	-			
			-							
					-	-				
-			1		-		-			1
							-			1
		-								
							_			
		-					-			
4										-
			100		-					
			1		-		-			
	-				-					
-	-						-			
	-				1.1					
					-	-				
					-	_	-			
-					-					
	Nominal I	D. of Dri	ve Pipe	21/2"			XXX			
	Nominal I	D. of Spl	it Barrel S	ampler	13	1/2 11			The Contractor shall make his own subsurface investigations in order to sa	tisfy
	Weight of	hammer o	n Drive Pi	pe 300 l	bs.				log is not warranted to show the actual subsurface conditions. The Contra	this
	Weight of	hammer o	n Split Bar	rel Sample	er 140) Ibs.			agrees that he will make no claims against the State if he finds that the ac	tual
	Drop of he	ommer on	Drive Pipe	24 ''					conditions do not conform to those indicated by this log.	
	Drop of he	ammer on	Split Barre	I Sampler	30 ''		-		Now Joseph Department of The	
	Die	AX							new Jersey Department of Transportation	
re	Jia								Burrow of Contraction of the	
oil c fter	lescription D.M. Burm	is represen ister unle	nt a field i ess otherwi	dentificat se noted.	ion		-		Bureau of Geotechnical Engineering	

after D.M. Burmister unless otherwise noted.

For	m SO-2	2/79				NEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION Field #B-27	
ROL	TE:			LOCAL N	AME:	Ret	tain	ing Wa	11 TEST HOLE NO. 40414	217
SEC	TION:	Washin	ngton A	ve. Im	prov	remen	nts	FAUS #	M-8298(102)	21/
STA	TION: 12	8 + 60	OFFSET	. 40'	Rt	REFE	RENCI	ELINE.	Washington Ave. SPI	
				. 40	ALC .	KETE	RENCI	E LINE:	Flowation G W T	3
BOR	INGS MA	DE BY:	Ru	bino		DATE	STAR	TED:	11-22-82 0 Hr. +16.3' Date: 1	1-23-8
INSI	PECTOR:	-	He	nry		DATE	COMP	LETED:	11-23-82 24 Hr. +16.3' Caved in & Wet Date: 1	1-24-8
	BLOWS	SAME	PLE NO. D	EPTH	Blov	16 12	12 12	REC.	Sample ID ft. P.P. Installed Date:	
	2	S-1	0.0'	1.5	1	1	2	0.3'	Red Brown CF Sand, and Silt. little MF Gravel	1
	15	1	1.00	10000]	
	29				-					
5	44	-		-					-	25
° -	34	S-2	5.0'	6.5"	20	16	20	0.81	Red Brown CE Sand some (1) Gilt and an	
	47		5.0	0.5	20	10	20	0.0	Gravel	-
	93	S-3	6.5	8.0'	42	42	125	1.5'	Same	
	216				1	11.		10.00		-
0_	500/	S-4	8.0'	8.8'	65	125/	-	0.2'	Same	9.8
	0.8	0.1	0.01	1/ 01	-	0.3	<u></u>			
		C-1	9.8	14.8'		KE		2.4	Red Brown Soft SHALE	10.00
					RO	D D	-	48%		
5	1	1			119	-		0%		14 0
-			1	1					Bottom of Hole	14.0
	12				1	1				-
										1
					1.1.1					
- '	-	-			-					
		-			-					
		2	1.				1 -			
			1				1			-
5				1.000						
	-									
							_			
)					-	-	-			
	1		1	1.1.1.1		- 1	100.0		-	-
	1			1		1				1
			N				1.25			
	-									
-					-				-	-
	1000	11 - 11								
					1					
										1
1		1 I								
Г	Nominal I	.D. of Dri	ve Pipe	21/2 "			XXX			
	Nominal I	.D. of Spl	it Barrel S	ampler	1	1/2"			The Contractor shall make his own subsurface investigations in order to sa himself of the actual subsurface conditions. The information contained are	tisfy
L	Weight of	hammer o	n Drive Pi	pe 300 l	bs.				log is not warranted to show the actual subsurface conditions. The Contract	ctor
F	Weight of	hammer o	n Split Ba	rel Sample	er 14	0 lbs.			agrees that he will make no claims against the State if he finds that the act	tual
-	Drop of h	ammer on	Drive Pipe	24"	2011	-			conditions do not conform to mose indicated by this log.	
L	prop of h	A T	Split Barre	Jumpler	30				New Jersey Department of Transportation	
ore	Dia	AX								
Core Soil c after	Dia lescription D.M. Burn	ammer on AX ns represe nister unle	split Barre ant a field i ass otherwi	identificat	30 '' ion				New Jersey Department of Transportation Bureau of Geotechnical Engineering Approximate Change in Strata	

after D.M. Burmister unless otherwise noted.

Form SO-2	2/79				NEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION Field #B-28	1
ROUTE:			LOCALN	AME:	Rc	adwa	ay Bor	ing TEST HOLE NO. 404W-	-218
SECTION:	Washi	ington .	Ave. I	mpro	veme	ent E	AUS #	M-8298 (102)	
STATION:	130 + 0	5 OFFSET	: 2' Lt	t.	REFE	RENCI	ELINE:	Vashington Ave. SBL GROUND LINE ELEVATION: +28.0	1
BORINGS M	ADE BY:	А	ugusti	ne	DATE	STAR	TED. 1	2-22-82 Elevation G.W.T.	
NEDECTOR			-0-0		DITE	COUR		0 Hr. Filled in Dry +22.4' Date: 12	2-22-8
CASIN	cl	H	enry	Ta	DATE	COMP	LETED	2-22-82 24 Hr. Same Date: 12	2-23-8
BLOW	SAM	PLE NO. D	EPTH	0	16 /	112	REC.	and Date:	
176	0	1	1	0	12	18		Profile Change	100
5	2 S-1	1.0'	2.5'	15	26	24	1.5'	Brown CF SAND little Silt little (-) F Crow	0.8
17			1		1.22				
10		1	1		· · · · ·]	
5 9	0.0		1						1
	5-2	5.0.	6.5	4	7	4	0.5'	Brown CF SAND, little Silt, some CF Gravel	
	S-3	6 5'	8 0'	2	1	11	1 21	Red Brown CF Sand, and (-) Silt, little (+)	
	S-4	8.0'	9.5'	19	19	26	1.0'	Red Brown CF Sand some Silt some (1) CF	
0	11.1							Gravel	
	S-5	9.5'	11.0'	37	36	40	1.5'	Brown CF Sand, some (+) Silt, some (+) CF	
	S-6	11.0'	12.0'	51	118	-	1.0'	Red Brown CF Sand, and (+) Silt, little MF	12.0
		-		-	-			Gravel	1
	-	1		-	-			Bottom of Hole	-
-	1	1	-		-			-	
		17			1				-
									-
_	-			1.5.2	-				
· —	-			-					
	1	1	-				- 14		
		1.1.1							
		2.5				1			1
	-	1				-			1
	-	-	-	-					
		1							
					111			-	
-			1		1				
1	-	1.000		1	1, 11				
		1 - N							-
+	-	-		-					
1						-			
				1					-
	-				1				1
									1.00
Nomina	I.D. of Dr	ive Pipe	21/2 "			XX			
Nomina	1.D. of Sp	lit Barrel S	ampler	13	5"			The Contractor shall make his own subsurface investigations in order to sat himself of the actual subsurface conditions. The information contained as a	isfy
Weight	of hommer	on Drive Pi	pe 300	bs.	_			log is not warranted to show the actual subsurface conditions. The Contract	tor
Weight	of hammer	on Split Ba	rel Sample	er 140) Ibs.	_		agrees that he will make no claims against the State if he finds that the act	lau
Drop of	hammer on	Drive Pipe	24"	2011				conditions do not conform to mose indicated by this log.	
orop of	nammer on	Split Barre	Sampler	30				New Jersey Department of Transportation	

Bureau of Geotechnical Engineering

Approximate Change in Strata _

OUTE:			LOCAL N	AME:	Wa	11 B	oring	TEST HOLE NO. 404W-	219
ECTION:	Washin	gton A	ve., Im	prov	veme	nts,	FAUS	# M-8298(102)	
TATION: 13	1 + 03	OFFSET	:11' R	lt.	REFE	RENCE	LINE:	Washington Ave. S BL GROUND LINE ELEVATION: +24.6	1
ORINGS MAI	DE BY:	Rub	ino		DATE	STAR	TED:	12-09-82 Elevation G.W.T.	
SPECTOR.		Hen	ru		DATE	COUP	LETED.	12-10-82 0Hr. +23.6' Date: 12-	10-8
CASING	1	nen	Ly	Blas	DATE	COMP	LETED:	12-10-82 24 Hr. Same Date: 12-	13-8
BLOWS	SAMP	LE NO. D	EPTH	0/	16	12	REC.	and Date:	
4	S-1	0.0	1.5'	2	22	18	0.5'	Brown CF SAND some Silt little (-) CF Crown	
19	1.	24.25					4.5	Stown of BAND, Some Bill, Illie (-) of Gravel	
21	S-2	1.5'	3.0'	10	12	14	0.7'	Brown CF Sand, and Silt, little (-) MF Gravel	
31		1.00	1	173	1	- 5			1
- 31	6-2	5 01	6 51	20	20	10	1 01		
40	5-5	5.0	0.5	32	38	49	1.0.	Reddish Brown CF Sand, and Silt, little MF	
73	S-4	6.5'	8.0'	31	51	125	1 51	Same	-
300	S-5	8.0'	9.0'	63	125	-	0.7'	Same	0
							1.2		9.
-	C-1	9.0'	14.0'	CO	RE		1.8'	Red Brown SANDSTONE and SHALE	
-				RE	C	-	36%		1.000
-	-			RQ	<u>v</u>		0%	Dether C W 1	14.
		-						BOLLOW OL HOLE	-
	1000	1							
		in in							-
	1								
				1					
		1		-					
-						-			1
				-		-			
				1.11					
					1				
		P 1					= 1		
				-					
-			-			-		1	
					1.1				
1	1		1.20				1		
		1.000	1						
			1						
-					-	1	1		11.27
					-				-
I									
Naminal	D -(D.)	Pt-	21/ 11	-		TYNY IV			
Nominal	.D. of Sel	t Barrel S.	2/2 ···	11	2	AAA		The Contractor shall make his own subsurface investigations in order to satis	sfy
Weight of	hammer or	Drive Pin	be 300 l	bs.	-			himself of the actual subsurface conditions. The Information contained on the	is
Weight of	hammer or	Split Bar	rel Sample	er 140) Ibs.		-	agrees that he will make no claims against the State if he finds that the actu	al
Drop of h	ommer on	Drive Pipe	24 ''	1				conditions do not conform to those indicated by this log.	
Drop of h	ammer on S	Split Barre	Sampler	30 ''				New Jersey Department of Transportation	
A A	X							and a second and a second s	

Approximate Change in Strata ____

			0	Giles (co	Drilling NTRACTOR)	Corp.		-		
NTRACT	NO		PURPÓS	E		RDW	Y.Rt.20B	STA. 17+	20 C))FF
RIG NO. DATE TIME STA TIME FIN WEATHE DEPTH F	1 7-1 8:0 8:0 8:0 8:0 8:0 8:0 8:0 8:0 8:0 8:0	TYPE J. 1-69 0 A.M. 0 P.M. udy 13.0'	eep	DF	RILLER C.A.		HELPER(S)	H. King	sten	
	DELEVA	TION NG 'LOG	+5. +5.	.9 .9	е	M.L LEVATIO	W. ELE	VATION	TER	
			000000	PAY	QUANTIT	IES			T 05 000	
2-1/2	3"	4"	BURING		ORDINARY	UNDIST.		LIN. F	1. OF RUC	K CORE
TEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM
		13.0'	1000		2	2		1.2		
A SING RDINAR NDIST U	UN Y DRY SAI RBED SAI	MPLES	0.D2' TYPE	SIZE 4" 1.D.1 Shelb	<u>-1/2"</u>	WEIGHT	TOF HAMM 300# 140# LENGTH	ER 24''0	AV. F. 18 30 D <u>3-1/2''</u>	ALL 3")" I.D. <u>3-1</u>
DATE TIME DEPTH	No Che	cks				=		==		
ENERA	L REMAR	KS							_	_

÷

Boring No. <u>U-2</u> Sheet No. <u>2</u> of <u>2</u>

CONSULTING ENGINEERS

(

1

BORINGS FOR

Berry's Creek Bridge

	BLOWS	BLOWS	. ON		SAMPLE		
ELEV.	ON CASING	SPOON	FOR 6	NO.	DEPTH	LOG	MATERIAL & REMARKS
	63					1	and the second
	42				1.000]	Misc, Fill
	13				Surger and Surgers		
	14	1	0.			1.	
100	23						
-0.1	10	Push		U-1	5.0 -	6.0	15"/24'
	21				7.0'		Brown PEAT & Organic SILT.
	8	Push		U-2	7.0 -	1	
-3.1	24				9.0'	19.0'	-do-
	16	Push	1.5	S-1	9.0 -		Shelby-insufficient recovery
	27		-		11.0'	1	Varyed Brown-Clavey SILT: Silty CLAY
		12	11	5 2	11.0'-	1	-same-
-7 1		14	15	1	13.0'	1	Same
7.1	-	14	15	-	15.0		
	-			-		- 1	Pottom of Note 6 12 01
						-	Bollom of Hole & 15.0
	-	-		-		-	harmon
	-		-	-		-	
	1		1	-		-	
				-		1	
	1 ····	-					
1000				1.1	· · · · · · · · · · · · · · · · · · ·		
				1.5.5.4]	
			-			7	
	1			1		1	
	-	1	1.0			1	
		-	-			-	
	-		-			-	
				-		-	
	-		-	-		-	
_	-	-	-			-	
			-			-	
1.11				-		-	
	1.		-	-			
_	12. 19.1	1.000			1000	·	
_			6. C. e.	1	1		
				1			
		1					
						1	
	1	1		1		1	
	1			1		-	The second secon
	-	-	-	1	1.5.	-	The second
						-	
			-	-		-	
			-	-		-	
		-		-		-	
			-	-		-	
-	-		-		and the summaries	-	
						_	
		1	1				
						-	

CONSULTING ENGINEERS

Boring No. U-3

Sheet No. 1 of 2

BORINGS FOR

Berry's Creek Bridge (PROJECT)

Giles Drilling Corp.

MG NO.		1	THEF. J	een		LED C.An	tonazio.		н. к	ingsten	
TIME STARTED 12:30 P.M. Cloudy	RIG NO. DATE	7-1	0-69	ucp	DR	ILLER_		ELPERISI.			
TIME FINISHED 4:30 P.M. Cloudy WEATHER Cloudy DEPTH REACHED 12.0' ROUND ELEVATION +4.9 RERO OF BORING LOG +4.9 EERO OF BORING LOG +4.9 ELEVATION GROUND WATER	TIME STA	RTED 12:	30 P.M.				-			_	_
WEATHER	TIME FIN	SHED	30 P.M.				-				
DEPTH REARPOOND ELEVATION HALS ML.W. ELEVATION PAY QUANTITIES PAY QUANTITIES LINEAL FEET OF BORING SAMPLES LIN. FT. OF ROCK CO 2 -½ 3" A" ORDINARY UNDIST. 1 -¾ ITEM UNIT MEM UNIT WEIGHT SIZE WEIGHT OF HAMMER AV FALL COL 2" ID 1-1/2" 140# OB OB	WEATHER		2 0'				-				
ROUND ELEVATION 44.9 ML.W. ELEVATION EERO OF BORING LOG 44.9 ELEVATION GROUND WATER PAY QUANTITIES LINEAL FEET OF BORING SAMPLES LIN. FT. OF ROCK CO 2-½ 3" 4" ORDINARY UNDIST. 1-% ITEM ITEM ITEM ITEM ITEM ITEM UNIT WEIGHT SIZE WEIGHT OF HAMMER AV FALL CASING	DEFINIK								and a second	-	
PAY QUANTITIES LINEAL FEET OF BORING SAMPLES LIN. FT. OF ROCK CO 2-½ 3" 4" ORDINARY UNDIST. 1-% 1-% ITEM	ROUND ERO O	ELEVA	TION NG LOG		+4.9	<u> </u>	M.L LEVATIO	N GROU	VATION	TER	
LINEAL FEET OF BORING SAMPLES LIN. FT. OF ROCK CO 2-½ 3" 4" ORDINARY DRY DRY 1-¾ 1-¾ 1-¾ ITEM ITEM <t< td=""><td></td><td></td><td></td><td></td><td>PAY</td><td>QUANTIT</td><td>IES</td><td></td><td></td><td>-</td><td></td></t<>					PAY	QUANTIT	IES			-	
2 -½ 3" 4" ORDINARY DRY UNDIST. DRY 1-½ 1		LINEAL P	FEET OF	BORING			SAMPLES		LIN. F	T. OF ROC	K CORE
ITEM ITEM <th< td=""><td>2-1/2</td><td>3"</td><td>• 4"</td><td></td><td></td><td>ORDINARY</td><td>UNDIST. DRY</td><td></td><td>1-3/8</td><td>1-%</td><td></td></th<>	2-1/2	3"	• 4"			ORDINARY	UNDIST. DRY		1-3/8	1-%	
UNIT WEIGHT SIZE WEIGHT OF HAMMER AV FALL CASING 4" 300# 18" ORDINARY DRY SAMPLES 0.0. 2" 1.0.1-1/2" 140# 30" INDIST URBED SAMPLES TYPEShe1by LENGTH24"_OD3-1/2".D GROUND WATER READINGS	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM
UNIT WEIGHT SIZE WEIGHT OF HAMMER AV FALL CA SING			12.0'			2	1				
CA SING 4" 300# 18" ORDINARY DRY SAMPLES 0.D. 2" 1.D.1-1/2" 140# 30" INDIST URBED SAMPLES TYPEShelby LENGTH24"_OD3_1/2".D GROUND WATER READINGS		UN	T WEIGHT		SIZE		WEIGHT	OF HAMN	ER	AV. F	ALL
ORDINARY DRY SAMPLES O.D. 2" I.D.1-1/2" 140# 30" JNDISTURBED SAMPLES TYPEShelby LENGTH24" OD3=1/2".D GROUND WATER READINGS					4"		3	00#		18'	
INDISTURBED SAMPLES TYPE <u>Shelby</u> LENGTH <u>24"</u> OD <u>3-1/2</u> ".D GROUND WATER READINGS DATE	ASING		the second se	00 2'	I.D.1	-1/2"	1	40#		30'	_
GROUND WATER READINGS DATE TIME DEPTH no check GENERAL REMARKS	RDINAR	DRY SAL	MPLES	0.0.				I ENGTH	0 11.10	D a 1/al	ID 3-
	CASING ORDINARY	RBED SAL	MPLES MPLES	TYPE	Shelby			LENGIN	-14-0	J-1/2	I.D
SENERAL REMARKS	CA SING ORDINARY UNDIST U GROUN DATE	RBED SAL	MPLES MPLES	TYPE	Shelby						
GENERAL REMARKS	CA SING ORDINARY JNDIST U GROUN DATE TIME	N DRY SAU	MPLES MPLES		Shelby						1.0
	CA SING DRDINAR INDIST U GROUN DATE TIME DEPTH	no che			Shelby						
	CA SING DRDINAR JNDIST U GROUN DATE TIME DEPTH	no che		TYPE DINGS	Shelby						
	CA SING RDINAR INDIST U GROUN DATE TIME DEPTH	no che			Shelby						
	CA SING RDINAR INDIST U GROUN DATE TIME DEPTH SENERAL	no che		<u>TYPE</u> DINGS	Shelby				`		
	CA SING PRDINARY UNDIST U ORTOUR DATE TIME DEPTH GENERAL	no che			Shelby						
A	CA SING PRDINARY UNDIST U DATE TIME DEPTH GENERAL	no che			Shelby						
A	CA SING ORDINAR UNDIST U DATE TIME DEPTH GENERAL	no che			Shelby						
	CA SING DRDINARY UNDIST U DATE TIME DEPTH GENERAL	no che			Shelby						
	CA SING ORDINAR' UNDIST U DATE TIME DEPTH GENERAL	no che			Shelby						
	CA SING DRDINAR' UNDIST U DATE TIME DEPTH GENERAL	no che			Shelby						

FORM N2I-A

5

Boring No. U-3 Sheet No. 2 of_

BORINGS FOR

(

f

(

Berry's Creek Bridge

.

	BLOWS	BLOWS	ON	Sel	SAMPLE		MATERIAL & REMARKS	
ELEV.	CASING	PENETR	ATION	NO.	DEPTH	200		
	36							
	58			-				20/2
	19	7	7	51	2.0 -		Fill. Br. c-f + SAND and Silt,	20/20
	13	9	7	11	4.0	1.	No. Boo over all	0/2
1 1	10	Pust		u.	4.0 -	6 0'	NO RECOVERY	91.4
-1.1	14	3	3	5-2	6.0-	0.0	Gr. Br. Varved Clavey SILT: Silty CLAY	24/2
	24	6	8	0-2	8.0'	1	di. bi. tarved erdyey biar; birty early	
	25	0	0		0.0	1		
	23				1	1		
		Pust	-	1-1	10.0-		-same-	19/2
-7.1					12.0'	1.50		
						4	the second s	
	1 Fee			1				
				100			Bottom of Hole @ 12.0'	
	10.00							10
			1	1.1	1			
		10,000	1		1.000			
	1.0			1				
			11			1		
	1			-		-		
	1	-		-	1	4		
				-		-		
_	-	-	-	-		-		
			-	-		-		
	-			-	-	-		
	-		-	-		4		
						-		
		-		-		-		
	+			-		-		
	+	-		-		-		
		+		+	1	-		
				-		-		1
		-	-	+		-		
		-	-	-	-	-		
	-	-		-				
		1	-	-		-		
	1	-		+		-		
	-	-	-	1	100000			
	-	1	-	-	1			
1000								
	1		T	-				
					4	-		
			1					
200								
			-	_	-			

Boring No. U-5 Sheet No. 1 of 3

.

4

CONSULTING ENGINEERS

BORINGS FOR

Berry's Creek Bridge

Giles Drilling Corp.

(CONTRACTOR)

CONTRACT NO. ______ PURPÓSE _______ STRUCTURE NO. ______ LOCATION ______ RDWY.Rt. 20 ESTA. 18 + 90 OFF. 18' LT

(

ĭ

DATE	7-7-69	7-8-69	7-9-69	7-10-69	
THE CTARTER	8:00 A.M.	8:00 A.M.	8:00 A.M.	8:00 A.M.	
TIME STARTED	4:30 P.M.	4:30 P.M.	4:30 P.M.	4:30 P.M.	
WEATHER	Rain	Clear	Clear	Cloudy	Sec. 201
DEPTH REACHE	p 10.0'	34.0	80.0'	87.5'	

GROUND ELEVATION ZERO OF BORING LOG +3.8 +3.8

M.L.W. ELEVATION _____

PAY QUANTITIES LIN. FT. OF ROCK CORE SAMPLES. LINEAL FEET OF BORING ORDINARY UNDIST. 1-% 1-3/8 3" . 4" 2-1/2 DRY DRY ITEM 3 11 82.0' 5.5 AV. FALL WEIGHT OF HAMMER

SIZE UNIT WEIGHT 24" 300# 4" CASING 30" 1.D. 1-1/2" 0.D. 2" 140# ORDINARY DRY SAMPLES 24" OD 3-1/2/b 3-1/4" Shelby LENGTH_ UNDISTURBED SAMPLES TYPE. GROUND WATER READINGS DATE TIME DEPTH

GENERAL REMARKS _____ At 82.0' switched to 2-1/2" casing

INSPECTOR C. N. Garmaldi RESIDENT ENGINEER

Boring No._____ Sheet No. 2 of 3

BORINGS FOR

Berry's Creek Bridge

5

1

BLOWS	BLOWS	BLOWS ON		AMPLE	LOG	MATERIAL & REMARKS			
CASING	PENETR	ATION	NO.	DEPTH					
12									
17		1914]				
19	1			92.0360					
17	1.0								
15									
9	1	1	S1	5.0 -		Gray Organic SILT & CLAY, trace roots.			
10	2	2		7.0'					
17					8.0'				
32	0.000								
35									
53	7	:9	S2	10.0-		Varved Brown Silty CLAY; Clayey SILT			
66	ho	12	1001	12.0'		the first state of the second states and the second states and the second states and the second states and the			
60									
41	1.000				3				
31	Push		111	15.0-		-same-			
				17.0'					
			10.5						
		1		1					
	Pust		112	20.0-		Varved Gray Silty CLAY; Clayey SILT	18"		
				22.0'					
	1.200								
ale and	P		1.0	1.					
	-	-	-						
1	Pus	-	-	25.0'-	_	no recovery			
1.150		1.000	-	27.0'	-				
-	Pus	4	113	27.0'-	-	-same-	/		
			-	29.0'	-				
_	-	-	-		_				
1.1	4.5	-			-				
1	-	-	-		_				
	-	-	-		1				
1	-	-	-		_				
	Pus	H	114	34 0'-	_		21"/		
	1			36.0'					
		1							
	1	1.5							
1		1.00		1	-				
_			_		-		2111/2		
	Pus	h	U5	40.0-		Varved Gray Silty CLAY; Clayey Silt	21 /2		
11-		1000		42.0'					
		-	_		_				
		2	-	-	_				
-	_		-	1			24"7		
21	Pus	h	06	45.0-	_	-same-	24 14		
	2	-	-	47.0'	-				
-	12.5	-		-	_				
	BLOWS ONING I2 I7 I9 I7 I5 9 I0 I7 32 35 53 66 60 41 31 	BLOWS ON CASING BLOWS SPOON PENETR 12 PENETR 12 PENETR 17 19 17 19 17 15 9 1 10 2 17 - 32 - 35 - 53 7 66 10 60 - 41 - 31 Pust - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>BLOWS ON CASING BLOWS PENETRATION 12 </td> <td>BLOWS ON CASING BLOWS PENETRATION NO. 12 NO. NO. 17 I I 19 I I 17 I I 19 I I 17 I I 19 I I 17 I II 10 2 II 32 III S1 10 2 III 32 III III 33 Push III III IIII IIII III IIII IIII III IIII IIII III IIIII IIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>BLOWS ON CASING BLOWS ON SPOON FOR 6" PENETRATION SAMPLE 12 NO. DEPTH 17 - - 19 - - 17 - - 15 - - 9 1 1 S1 5.0 9 1 1 S1 5.0 17 - - - - 12 - - - - 17 - - - - 12 - - - - 31 Push III 15.0 - 17.0' - - 17.0' - 21 - - 17.0' - 21 - - - - - 31 Push III 15.0 - - 22.0' - - - - - Push II3</td> <td>BLOWS ON PENETRATION SAMPLE LOG 12 NO DEPTH LOG 17 NO DEPTH LOG 19 NO DEPTH LOG 17 NO DEPTH LOG 19 NO DEPTH LOG 17 NO DEPTH LOG 17 NO DEPTH LOG 9 1 1 S1 S.O 9 1 1 S1 S.O 17 NO NO DEPTH B.O' 35 NO NO S.O NO 35 NO NO S.O' S.O' 66 IO 12 I2.O' S.O' 60 III 15.0 III IS.O 10 III IS.O III IS.O' 11 III S.O III IS.O' 12 IIII III S.O' III 13 Push 25.0' III IIII</td> <td>BLOWS BLOW ONE COME PORTRATION NO DEPTH 12 17 17 17 19 10 2 17 17 17 17 17 17 17 17 17 17</td>	BLOWS ON CASING BLOWS PENETRATION 12	BLOWS ON CASING BLOWS PENETRATION NO. 12 NO. NO. 17 I I 19 I I 17 I I 19 I I 17 I I 19 I I 17 I II 10 2 II 32 III S1 10 2 III 32 III III 33 Push III III IIII IIII III IIII IIII III IIII IIII III IIIII IIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	BLOWS ON CASING BLOWS ON SPOON FOR 6" PENETRATION SAMPLE 12 NO. DEPTH 17 - - 19 - - 17 - - 15 - - 9 1 1 S1 5.0 9 1 1 S1 5.0 17 - - - - 12 - - - - 17 - - - - 12 - - - - 31 Push III 15.0 - 17.0' - - 17.0' - 21 - - 17.0' - 21 - - - - - 31 Push III 15.0 - - 22.0' - - - - - Push II3	BLOWS ON PENETRATION SAMPLE LOG 12 NO DEPTH LOG 17 NO DEPTH LOG 19 NO DEPTH LOG 17 NO DEPTH LOG 19 NO DEPTH LOG 17 NO DEPTH LOG 17 NO DEPTH LOG 9 1 1 S1 S.O 9 1 1 S1 S.O 17 NO NO DEPTH B.O' 35 NO NO S.O NO 35 NO NO S.O' S.O' 66 IO 12 I2.O' S.O' 60 III 15.0 III IS.O 10 III IS.O III IS.O' 11 III S.O III IS.O' 12 IIII III S.O' III 13 Push 25.0' III IIII	BLOWS BLOW ONE COME PORTRATION NO DEPTH 12 17 17 17 19 10 2 17 17 17 17 17 17 17 17 17 17		

CONSULTING ENGINEERS

			Be	ORINGS FOR	
		PL	RPOSE_		
ON _		SAMPLE			
ATION	NO.	DEPTH	LOG	. MAICHIAL & REMARKS	-
		50.0'-		no recovery	_

Boring No. U-5

Sheet No. 3 of 3

1.44 Takin I.	BLOWS	BLOWS	ON	S	SAMPLE	LOG MATERIAL & REMARKS					
46.2	CASING	PENETR	PENETRATION		DEPTH	200					
		Push			50.0'-		no recovery				
	1.00		572		52.0'		-same-				
		Push		U7	52.0'-			24"/24			
-	2	200.00			54.0'			_			
			2								
54.2		1000			1	58.0'	the second s				
			1000			-					
					10.01	-		1011704			
	-	Push		08	60.0'-	4	Red Brown Clayey SILT	12 /24			
			-		61.0.	-					
	•					-					
(1)		-		-		CE OF					
01.2		Duck	-	-	ZE AT	05.0	DD FOROUNT!				
		rust		-	67 01	-	no recovery				
		Duch		011	67 0'-	-	Varyed Red Br Silty CLAV: Clavey Silt trace	24"/24			
	-	rusi		109	69 0'	-	f Gravel	L+ / 1.1			
	-		1000	-	03.0	-					
						-					
				-		-					
	-			-	-	-					
				-		-					
		-		-		-					
		Pust		1110	75.0'-	-	-Same-	24"/24			
	-	1001	-	1010	77.0'	-					
	-	-		-	1110	-	the second se				
						-		12.2			
				1				20.14			
(Carlow Carlow C	23	Push	1	U11	80.0'-		Red Br. Silty CLAY; Clayey Silt, trace	24"/24			
	24				82.0'	-	f Gravel.				
	24			1							
80.2	16			1.0		84.0'					
C	87	122.00	1		N 10.20						
	53	46	12X	53	85.0'-		Red Br. c-f SAND, some Clayey Silt, some				
	96	12X	14X		87.0'		c-f Gravel (Shale fragments) - Till	Contraction of the			
83.9 2	50/6	1			87.5'-		Drove Open end rad. 300# hammer, 100 blows				
			1		87.7'		for 2"				
	1000				1						
			1.00				Bottom of hole @ 87.7'				
	1.0	12.000	1.1		1						
		1.1	10.00		1.00		X used 300# hammer from 85.5' to 87.0'				
	1000	÷									
1.1.1.1											
							1				
					1 C-	1					
		1.00			1						
		T	1								
		2 minutes	1.00								

1

5

CONTRACT NO._

CONSULTING ENGINEERS

Boring No. _D-4 Sheet No.1 of 2

BORINGS FOR

Berry's Creek Bridge (PROJECT)

Giles Drilling Corp.

NTRACT										
NIRACI			DUDDÓC	(C O	NTRACTOR)			STE	NOTURE NO	
CATION .	NU		PURPUSE			RDWY	. Rt. 20	B STA. 18 .	+ 04 C	FF. 25"
RIG NO. DATE TIME STAI TIME FINI WEATHER DEPTH RE	1 7-2 RTED 8:0 SHED 4:3 C ACHED	TYPE -69 0 A.M. 0 P.M. lear 27.0	Skid	DF	RILLER <u>.I.</u>	Fowler_ +	HELPER(S)	A. King	sten	
ROUND ERO O	ELÉVAT F BORI	TION NG LOG		+5.4 +5.4	E	M.L ELE VATIO	W. ELE	VATION	TER	
				PAY	QUANTI	TIES				
1	LINEAL F	EET OF	BORING		00000014/001	SAMPLES		LIN, F	T. OF ROC	K CORE
2-1/2	3"	4"			DRY	DRY	1.1.1	1- 3/8	1-%	
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM
27.0	-			1	5				1	
A SING RDINARY	DRY SAN	MPLES	 O.D2'' TYPE	SIZE 1/2" I.D	1-1/2"	WEIGHT	OF HAMN 300# 180# LENGTH	MER	AV. F. 18 30 D	ALL '' '' .D
GROUN DATE TIME DEPTH	n o chec							==		
ENERAL	REMAR	кs		•	_			-		
	_									-

INSPECTOR .

C. N. Garmaldi

RESIDENT ENGINEER

FORM N21-A

(

Boring No. D-4 Sheet No. 2 of 2

BORINGS FOR

5

(

Berry's Creek Bridge

ELEV	BLOWS	BLOW	FOR 6"	1.1	SAMPLE	106	MATEDIAL & PENARUE
.5.4	CASING	PENET	RATION	NO.	DEPTH	1 200	MATERIAL & REMARKS
	60				· · · · · · · · ·		
	100	10-11					
	98	(!	1000	1	1	10 m 1	
	41	1	1			1	
	6	1.001					
PG-IT-ITC-	5	6	1	1	5.0'-	1	Fill: Black ct-f SAND tracet Silt little m.f.
1.6	11	1	1		7.0'	7.0'	Gravel
	17			-			
	17	-	-			-	
-	14	-		-		-	
- 21	15	11	6	2	10.01	4	
	17	11	112	4	10.0 -		Layers: Br. f SAND, some Clayey SILT; Br.
	1/	9	14	-	12.0	1.1	CLAY & SILT, 1/16" - 1/4" layers.
	31			-			
0.0	1/			-		14.0'	
	14			-		1.100	
	19	2	3	3	15.0'-		Varved Gray Clayey SILT: Silty CLAY.
1	21	3	3		17.0'		1/16" - 1/8" layers
	31	132.1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	29]	
	30				1.	1	
	22	1	2	4	20.0'-		- 22ma-
	40	1	2		22 01	1	-same-
	27	-	-	-	22.0	1	
	31		-	-			
	32					1	
	- 22	1	2	F	25 01	1	
21 6		1	2	2	25.0'-	1	-same-
41.0		1	1		27.0		
		-	-				
		-	-	-			
							-Bottom of Hole @ 27.0'
				1.0		1	
				122			
	1.1			1.10	1		
	1. 21			6-7. d			
	1.000			L]	
						1	
	1			1		1	
			-			1	
		1.2				1	
						1	
				-		4	()
100				-		-	
	-					-	
				141			
	1						
				-	11		
	1.0		0				
	1000						
					-		
					1000	1	

HOWARD, NEEDLES, TAMMEN & BERGENDOFF Baring No. D-7

Sheet No. 1 of 2

CONSULTING ENGINEERS

BORINGS FOR

Berry's Creek Bridge

Giles Drilling Corp.

(CONTRACTOR)

CONTRACT NO.	PUR	PÓSE	· · · · · · · · · · · · · · · · · · ·			NO
LOCATION			RDWY.	Rt. 20B ST	A. 22 + 27	OFF. 32'LT

(

RDWY. KC

t		20	₿	STA.	22
-	-	-	Б	J.m.	

RIG NO 2 DATE	TYPE <u>Jeep</u> 7-3-69 8:00 A.M.	DRILLER <u>Beckwith</u> HELPER(S)_ <u>Hunter</u>	
TIME FINISHED _ WEATHER _ DEPTH REACHED	4:30 P.M. Clear 77.0'		

GROUND ELEVATION ZERO OF BORING LOG +7.1 +7.1

.

M.L.W. ELEVATION ELEVATION GROUND WATER _____

4

EAL F	EET OF	BORING		10.000	SAMPLES		LIN. F	T. OF ROC	K CORE
3"	4"			ORDINARY	UNDIST. DRY		1-3/8	−5/ ₈	
EM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM
				6			1.200		
	3" EM	3" 4" EM ITEM	3" 4" EM ITEM ITEM	3" 4" ITEM ITEM ITEM	Item Item ORDINARY DRY 3" 4" ORDINARY DRY 'EM ITEM ITEM 6	Item Item Item Item 3" 4" ORDINARY DRY UNDIST. DRY 'EM ITEM ITEM ITEM 6 6	Item Item Item Item 3" 4" ORDINARY DRY UNDIST. DRY EM ITEM ITEM ITEM 6 6	Image: Second state Second state Second state Second state 3" 4" ORDINARY DRY UNDIST. DRY I-3% EM ITEM ITEM ITEM ITEM 6 6 1	Image: Second

CASING	2-1/2"	300#	18"		
ORDINARY DRY SAMPLES	O.D. <u>2"</u> I.D. <u>1-1/2</u> "	180#	24"		
UNDISTURBED SAMPLES	TYPE	LENGTH	O.D 1.D		
GROUND WATER REA	DINGS		===		

GENERAL REMARKS

INSPECTOR _____ C. N. Garmaldi ____ RESIDENT ENGINEER

FORM N21-A

CONSULTING ENGINEERS

BORINGS FOR

Berry's Creek Bridge

FIEV	BLOWS	BLOW	S ON		SAMPLE	100	MATERIAL & REMARKS
7.1	CASING	PENET	RATION	NO.	DEPTH		
ONTRACT	24	10	21	1	0-2.0'		3" Asphalt
	31	9	8				Fill: Red Brown c-f SAND, some Silt, some m-f
	25		1.000	1	1		Gravel (shale fragments).
	7						
	10	_	12.21				
1	14	7	8	2	5.0-		-same-
	22	11	10		7.0'		
0.9	31		· · · · · · · · · · · · · · · · · · ·		1	8.0'	
	5	1.	1	1		_	
	5	-	-	-		-	
	7	1	:2	3	10.0-		Black Organic SILT & CLAY.
	9	2	1		12.0'		
	7						
	8		1000			-	
	6			-		-	
8.9	7	2	2	4A	15.0-	16.0'	Gray f SAND, some c Silt.
	8	3	2	4B	17.0'	_	Varved Brown Clayey SILT; Silty CLAY.
_	10	-	1.00	-		_	1/16" - 1/8" varves.
	1 15	-		1-		-	
	14	-		-			
_	15	2	2	5	20.0-	_	Varved Gray Clayey SILT; Silty CLAY.
	21	2	2	-	22.0'	4	1/16" - 1/8" varves.
	12	-	-	-		_	
	17		-			-	
	18			-		-	ward and a first and a state of the state of
_	-	1	1	6	25.0-	-	same
19.9		1	1	-	27.0'	-	
		-	-			-	
				+		-	Bottom of Hole @ 27.0'
	1	-	-	-		-	
	-	-		-		-	
	-	-		-	+	-	
	1	+	-			-	
	-		-	-		-	
	-	-		+		-	
	-	-		-	+	-	
	-	-		1-		-	
	-		-	1-		-	
		-	-			-	
		+	-	+-		-	
344		1-		-		-	4
	-	-	+	+	+	-	
		-	-	+-		-	
-		-				-	Sector of Manager and States of States of States
	-	-		-		-	
	-	-	-			-	
		-		+		-	
				1			

Boring No. <u>D-7</u> Sheet No. <u>2</u> of <u>2</u>

1

r

Boring No. ____6_ Sheet No. ___1 of __2

CONSULTING ENGINEERS

(

1

BORINGS FOR

. .

RIG NO DATE TIME STAR TIME FINIS	2	_	PURPOSE	Ciles Dr	illing Com	rp.											
RIG NO DATE TIME STAR TIME FINIS	2		PURPÓSE	(CO M	TRACTOR)												
RIG NO DATE TIME STAR TIME FINIS	2		PURPÓSE	:	PURPÔSE STI												
RIG NO DATE TIME STAR TIME FINIS	2		and the second sec	PURPOSE STRUCTURE NO ROWYR+ 208 STA 21 + 26 OFF 25'I													
RIG NO DATE TIME STAR TIME FINIS	2			_		RDW1	Rt. 20B	STA. 21 +	- 26_ 0	FF25'1							
WEATHER	TED	TYPE 7-2-69 8:00 A.M. :30 P.M. lear 27.0'	Jeep	DR	ILLER <u>Bec</u>	kwith (HELPER(S)	Hunter									
POLIND		ION	+4	.7		MI	W ELE	VATION									
ERO OF	BORIN	IG LOG	+4	.7	E	LEVATIO	N GROU	JND WA									
				PAY	QUANTIT	IES											
L	LINEAL F	EET OF	BORING			SAMPLES		LIN. F	T. OF ROC	K CORE							
2-1/2	3"	4"			ORDINARY DRY	UNDIST. DRY		1- 3/8	1-%								
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM							
27.0'			I=		6				1								
	UNI	T WEIGHT		SIZE		WEIGHT	T OF HAMN	ER	AV. F	ALL							
ASING			2-	1/2"			300#		18"	·							
RDINARY	DRY SAM	APLES	0.D2"	I.D.1	-1/2"		180#		30"								
GROUND DATE TIME DEPTH	no che	R REA	DINGS			-											
ENERAL	REMAR	KS		-													
								4									

D-6

Boring No._

Sheet No. 2 of 2

CONSULTING ENGINEERS

BORINGS FOR

INTRAC	T NO		-		PL	RPOSE_		
ELEV.	BLOWS	BLOW	S ON		SAMPLE	LOG	MATERIAL & REMARKS	
.7	CASING	PENET	RATION	NO.	DEPTH	1		
	1	1	1	1	0.0-2.0'	1	Black Organic SILT & CLAY.	
	1	1	1	-				
	2			-	1			
	2			-	1	C		
	1							
	1	1	P	2	5.0 -		Black Organic SILT & CLAY, trace roots,	
	1	P	P	-	7.0'	1		
	1		-	-	1	1		
F 0	2			-		1.0.01		
2.3	4	1	1	1 2	10.0	10.0.		
	4	2	2	13	12 01	1	Diack organic Sill & CLAY, with layer Gr. f Sand	
	5	4	4	-	14.0	1		
9.3	6	-	-	-		14 01	terre and the second	
2.5	7	-	1			14.0	· · · · · · · · · · · · · · · · · · ·	
	10	2	3	4	15.0'-		Varved Brown Clavey STLT: Silty CLAV	
	111	3	4	1	17.0'	1	Metter Prona Diagey Dinit, Dilly Diality	
	14		1	1		1		
	14					1		
	10	1		100]		
	9	1	1	5	20.0-]	Varved Gray Clayey SILT: Silty CLAY,	
	13	1	2		22.0'			
	10	1.1	1 1 1		C 2-24 million	10.00		
	11			12.		1		
-	12			-				
	-	1	2	6	25.0'-	-	-same-	
2.3	1	2	2	-	27.0			
	-	-		-	-			
	+	-		-		-	Bottom of Hole @ 27.0'	
		-	-	-		-		
	-	-		-		-		
	-		-	1				
	1	-	-	-	1.1	1		
	-	-	1		1	1		
						1		
	1		1	-		1		
	12.5	-	1	1		-		
	1.00		1		1			
				1	1			
	1 1 1 1 1							
					1.			
	10-23							
	1 6						A CONTRACTOR CONTRACTOR CONTRACTOR	
-		-		-				
	1		1.00			-		
		1	1					

ł

(

7-C. WNEW	Radio Station bori	ings.
0 5 8 60 64 75 78	5 bog 8 gray clay 16 brown clay 60 gray clay 64 red clay 75 clay and g 78 clay grave rock - oth	gravol el and sand her borings had 72 and 84 fest to bedrock
No. 84	Elev 0'0"-15'0" 15'0"-19'0" 19'0"-21'0" 21'0"-24'0"	Water Wood Piling & Timbers River Mud Fill Grev Silt
	24'0"-42'0" 42'0"-68'5" W. L	Grey Silty Clay Brown Silty Clay (Varved)
No. 85	Elev 0'0"-27'0" 27'0"-29'0" 29'0"+47'0" 47'0"-68'6" W. L	Water River Mud Fill Grey Silty Clay Greyish Brown Silty Clay (Varved)
No. 86	Elev 0'0"-14'0" 14'0"-18'0" 18'0"-40'0"	Water River Mud Fill Grey Silty Clay
	40'0"-56'0" 56'0"-78'0" 78'0"-81'0" 81'0"-84'0" 84'0"-96'6" W. L	Greyish Brown Silty Clay (Varved) Brown Silt Traces of Clay & Fine Sand Brown Silt Some Sand & Gravel Brown Silt Sand & Gravel Brown Silt & Clay Sand, Gravel & Sandstone Fragments
No. 154	Elev. +6.60 0'0"-5'0" 5'0"-9'5" 9'5"-11'8" 11'8"-34'0" 34'0"-50'0" W. L. 1'5"	Miscellaneous Fill Silty Sand, Trace Decayed Vegetation Medium Sand Clay; Layers of Fine Brown Sand Red Clay, Trace of Gray Clay
No. 155	Elev. +5.64 0'0"-4'5" 4'5"-5'5" 5'5"-7'5" 7'5"-12'5" 12'5"-16'0" 16'0"-23'0" 23'0"-37'0" 37'0"-53'0"	Miscellaneous Fill Peat; Silt Silty Sand, Decayed Vegetation Medium Gray Sand Clay; Some Brown Red Clay Red Clay; Gray Clay Clay; Layers of Fine Sand; Trace of Red Clay Red Clay, Trace of Gray Clay

243	26-48	17	0-6 6-56 56-150 150-162 162-330	black muck (Qm) gray clay (Qhkl) red clay (Qbnl) red sand with some gravel (Qbnf or Qt red shale
110	Parillo well 5	o, 1959 G	0-7 7-27 27-109 109-150 150-192 192-263 263-271	marsh mud (Qm) clay (Qhkl) sand and gravel (Qbnf) clay (Qbnl) sand and gravel (Qbnf) clay, sand, and gravel (Qbnl and Qbnf) sandstone
110	No. 1370	W. L. 2'4" Elev 0'0"-2'0" 2'0"-8'6" 8'6"-17'0" 17'0"-21'0" W. L. 2'6"	Sand, Sand, Miscel Silt, Silt,	Gravel, Boulders Fill Some Silt, Trace of Gravel Trace of Clay. Laneous Fill Some Clay, Trace of Fine Sand Little Clay, Trace of Fine Sand
	No. 1369	Elev 0'0"-2'6" 2'6"-6'6" 6'6"-7'6" 7'6"-14'0" 14'0"-24'0" 24'0"-41'0"	Sand a Sand, Miscel Organi Silt, Silt a Silt a	nd Gravel, Fill Some Silt, Trace of Gravel Trace of Clay. Laneous Fill c Silt Little Clay Some Clay, Trace of Fine Sand nd Clay, Trace of Fine Sand (Varved) Some Clay, Trace of Fine Sand
		0'0"-2'0" 2'0"-6'0" 6'0"-8'6" 8'6"-9'0" 9'0"-18'0" 18'0"-21'0" W. L. 2'4"	Sand a Sand, Miscel Organi Fine S Silt, Silt a	nd Gravel, Fill Some Silt, Trace of Gravel Trace of Clay. Laneous Fill c Silt Little Clay and Some Clay, Trace of Fine Sand nd Clay, Trace of Fine Sand (Varved)

.

1

Boring Logs from Soil Area 7

HOWARD, NEEDLES, TAMMEN & BERGENDOFF CONSULTING ENGINEERS Sheet No. 1 of 2

BORINGS FOR

				Route	17 Wide	ening			-		
		_		Warren	George	e, Inc.					
	NO.	A	PURPOS	E Emb	ankment	Culver		STRUCTURE NO.			
OCATION	Rot	ute 17	(Buff's	s Diner)	RDW	VY. NB	STA.	138/25	OFF. 871R	
RIG NO.	3	TYPE AC	ker-Sk	id DRI	LLER J. (Cochran	HELPER(S)	V. 1	Larance		
DATE	_6	-17-65				_					
TIME START		915	-	-		-					
TIME FINISH	HED	130									
WEATHER	C	lear									
DEPTH REAC	CHED2	71				_					
ZERO OF	BORING	LOG IS	ELEV.	_ + 5.	0	ELEVATIO	N GROUI	ND WA	TER	-9.6	
			PILIC	PAT	QUANI	SAMPLES	-	1 104			
21/4"	LINEAL F	L A"	RING	1		Y UNDIST.		136"	15%"	LK CORE	
ITEM #	ITEM #	ITEM #	ITEM #	ITEM #	ITEM #	ITEM #	ITEM #	ITEM #	F ITEM #	ITEM #	
27					6						
	UN	IT WEIGHT		SIZE		WEIGHT	OF HAMMER		AV. F	ALL	
ASING			-	2글"	-	300#	Ħ.	_		24"	
RDINARY	DRY SAN	APLES	_2"0D	, 1-3/8	"ID	1407	4	_	30"		
INDISTURE	ED SAMP	LES	TYPE	_		DIMEN			÷		
GENERA		RKS <u>G</u> .	W. Leve	el 6-17	-65 @1	130 , -9	9.6'; c	overed	l becaus	e it	
was da	ngerou	s uncov	ered.						_		
		100	Company and the		DECIDEN	T ENGIN	IFFR	Geo	rge Sabl	le	
NSPECT	OR	J. Ø. I	lopas		RESIDEN	I LINGIN					
NSPECT	OR	J. W. H	lopas		RESIDEN	i Lion					

Boring No. <u>D-138</u> Sheet No. <u>2</u> of <u>2</u>

BORINGS FOR

Route 17 Widening

FLEW	BLOWS	BLOW	S ON		SAMPLE	106	MATERIAL & REMARKS
5.0	CASING	FOR	6" RAT'N	NO.	DEPTH		
-6.5	10 8 6 4 3 17	13 5 4 2	9 4 2 11	1	0-2 5-7		Rd.Br. fine SAND, some medium to/ coarse Gravel trace Silt 12/24 Rd.Br.&Br.Gr. fine to/ medium SAND, some medium to fine Gravel, trace Silt 18/24
-6.5	28 38 44 11 21 35 64	13 15	11 16	3a 3b	10-11. 11.5-1	12.0 13.4	Br.&Rd. fine SAND, little Silt 7/24 Rd.Br. SHALE Gravel, tr. fine SAND. (possibi) ty of Boulders) 6/24
	67 22 152 77	17 41	<u>38</u> 49	4	15-17		Rd.Br. medium to fine SAND, some Rd.Br. Sand stone (Boulders), little medium to fine Gravel, tr. Silt 14/24
	41 43 27 70 61	37 15	94 27	5	20-22		(Driller said that boulders were evident) Rd.Br. coarse to medium SAND, some medium to coarse Gravel, t. Rd.Br. Clay (VH-PI) 18/24
22.0	46	20 10	13 10	6	25-27		Rd.Br. CLAY (VH-PI) little coarse t.f. Grave trace fine Rd.Br. Sand 6/24 Bottom of Hole
						-	

FORM N20

Boring No. $\underline{D-145}$ Sheet No. $\underline{1}$ of $\underline{2}$

BORINGS FOR

		÷		ROU	te 17 W	idening	3		-1			
				War (CONT	Pren Geo	rge, li	10.					
CONTRACT	NO		PURPOS	E Emb	ankment	Culve	rt	ST	STRUCTURE NO.			
OCATION	Route	e 17 (E	ast Sid	ie)		RDV	VY. <u>NB</u>	STA. 1	45,400	OFF. 76	I Rt	
RIG NO.	_3		cker-Sl	kid DRI	ILLER J. C	ockman	HELPER(S) _	V. La	arance		_	
DATE	6	-17-05					<u></u>			-		
TIME STAR	ED	300	£			_						
TIME FINIS	HED	450							1			
WEATHER	C	lear				_					-	
DEPTH REA	CHED 2	21				_						
1.11							1375	1.1		3.14	-	
ROUND	ELEVATI	ON		11.	1	M	L.W. ELE	VATION		-1.6	-	
ERO OF	BORING	LOG IS	ELEV.	11.	1	ELEVATIO	N GROU	ND WAT	ER	-1.6	=	
	-	and the second		PA	QUANTI	TIES	-				_	
	LINEAL F	EET OF BC	RING		ORDINARY	UNDIST.		LIN.	FT. OF RO	CK CORE		
2½" ITEM #	3" ITEM #	4" ITEM #	ITEM #	ITEM #	DRY ITEM #	DRY ITEM #	ITEM #	1%" ITEM #	15%" ITEM #	ITEM ≠		
					-					1	-	
22!	UNI	IT WEIGHT	<u> </u>	SIZE	1 5	WEIGHT	OF HAMMER		AV. I	FALL	-	
ASING				23"		300/	4			24"		
RDINARY	DRY SAN	APLES	2¥0D	. 1-3/8	3"ID	140/	#			30"		
INDISTUR	BED SAMPI	LES	TYPE			DIMEN	SIONS					
ENERA		RKS G	W. Lev	-1 6-17	-65 @ 1	450 -	1 6 (ho	le was	filled	in		
by Cor	treator	n horsu	no if	left or	it w	ould by	bogon	doug t		maal	_	
of Ame	wiecza (Depuele T		Com 1	CH IN W	DULU III		unus m	J persu	mer		
OI AME	rican.	ITUCK I	eds Tug								-	
				(e							-	
NSPECT	OR J.	W. Kopa	1.8		RESIDENT	ENGIN	EER	Geor	ge Sab	le	_	
04.19 14347/1												
ORM N21												
	1.1				- C							

Boring No. <u>D-14</u>5 Sheet No. <u>2 of 2</u>

BORINGS FOR

Route 17 Widening

	BLOWS	BLOW	S ON	1	SAMPLE		
ELEV.	CASING	FO	R 6" RAT'N.	NO.	DEPTH	LOG	MATERIAL & REMARKS
8.1	0 13 12 26 48 34 33	25 29 8 24	38 20 24 18	8 1 0-2 0.5 BL/ 0 3.0 602 24 2 5-7 Rd .8 of 0 0	BLACK TOP & CRUSHED STONE (driveway) 8/24 Fill-Black & Br. Cinders, some medium to coarse Gravel, parts of Brick Rd. Br. coarse to/ fine SAND & GRAVEL, trace of Rd. Br. Clay (VH-PI) / 5/1 12/24		
	23 22 20 28 37 48 61	12 21	17 22	3	10-12		Rd. Br. fine SAND, trace Silt 18/24
	16 25 68 81 73	99	8	<u>1</u>	15-17		-Same-
		28	17			27.0 *	Bottom of Hole
_							

FORM N20

.

orm 50-2	2/79			1	NEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION							
OUTE:	1		LOCAL N	AME:	Re	oadw.	ay Bor	ing TEST HOLE NO. 4040	V-163						
ECTION:	Moon	achie A	ve., M	loona	chie	E FAI	US M-9	748 (001)							
TATION:	35 + 0	O OFFSET	· 80'	Lt.	REFE	RENCI	E LINE:	South BL GROUND LINE ELEVATION: +4	1						
ORINGS MA	DE BY-	Au	gustin	e	DATE	STAP	TED.	12-10-82 Elevation G.W.T.							
COECTOR		17.	<u>6</u>		DATE	STAR		Date:	12-14-8						
CASING		He	nry	La	DATE	COMP	LETED:	12-14-82 24 Hr. Same Dote:	12-15-8						
BLOWS	SAM	PLE NO. D	ЕРТН	0 6	6 12	12 18	REC.	and Profile Change							
11	S-1	0.0'	1.5'	5	30	40	1.2'	Dark Brown CF Sand, and Silt, little MF							
42	0.0	1 51	2.01	00	0.7	-	1 01	Gravel							
24	5-2	1.5	3.0	29	21	23	1.0.	Brown CF Sand, some Silt, some CF Gravel	-						
25	-	-		+	-			Cinders	-						
24	S-3	5.0'	6.5'	7	15	13	1.5'	Orange Brown/Grev CF SAND some (-) Silt							
20	1000			1				or unge brown, drey of band, some (-) sire							
5				1					1						
12				1	1	-									
16				-				-	-						
15	S-4	10.0	11.5'	4	6	7	0								
14	1	1		-					12.0						
10	1	11.													
8		1.000													
10	S-5	15.0'	16.5'	3	3	4	1.5'	Grey varved Silty CLAY	-						
9	12.4	10		1											
9	-														
10		1		-	-										
- 12	8-6	20.01	21 51	2	2	2	1 21	Same							
1	3-0	20.0	21.5	3	- 2	3	1.3	Jane	01 5						
		-			-			Bottom of Hole	-21.5						
)			1211			1 11								
1.000	-	1		1											
	-	1	· . ·	-											
			-			-									
	-	1		-					-						
1000				1.1	-										
-	-				1				1						
					1 11										
		1			1 1 1										
-					-				-						
1	-	100500	1												
					1. 1				-						
			1												
									1.						
Nominal	1.D. of D	rive Pipe	21/2 "			XX									
Nominal	I.D. of Sp	lit Barrel S	ampler	1	1/2 11			The Contractor shall make his own subsurface investigations in order to himself of the actual subsurface conditions. The Information contained	satisfy on this						
Weight o	f hammer	on Drive Pi	pe 300	lbs.				log is not warranted to show the actual subsurface conditions. The Cont	ractor						
Weight o	fhammer	on Split Ba	rrel Sampl	er 14	O Ibs.			agrees that he will make no claims against the State if he finds that the	actual						
	hammer or	Drive Pipe	e 24''					conditions do not contorm to those indicated by this log,							
Drop of		A 1													

Approximate Change in Strata

Form	30-2	2/19				1211 3	ERSE	I DEI II		
ROUT	'E:		-	LOCAL N	AME:	Roa	idway	7 Bori	ng TEST HOLE NO. 404W -	165
SECT	ION:	Moonac	hie Av	e., Mo	onac	hie	FAUS	\$ #974	8 (001)	
TAT	ION: 3	8+00	OFFSET	· 80'	Lt.	REFE	RENC	LINE:	South BL GROUND LINE ELEVATION: +4.0'	
ORI	GS MAI	DE BY:	Brons	ton	1	DATE	STAR	TED:	9-17-82 Elevation G.W.T.	1
MCDE	CTOP.					DATE	COUP	ETED.	0 Hr. +2.0° Caved In Dote: 9-	-17-82
MSPE	CASING		Henry		Ini	DATE	COMP	LETED:	Sample ID tr. Same Date: 9-	-20-82
	BLOWS	SAME	PLE NO. D	ЕРТН	0 6	6 12	12 18	REC.	and Profile Change	
	10	S-1	0.0'	1.5'	5	22	25	0.2'	Brown SILT some, CF Sand, little (-) F Gravel	1
	25	S-2	1.5'	3.0'	19	16	15	0.9	Brown SILT and, CF Sand, trace F Gravel	1
	21	0.2	2 01	1. 51	6	2	7	1 21		3.0
	10	5-4	4.5	6.0	9	10	9	0.31	Dark Brown PEAT	1
-	18	0 4	4.5	0.0	-	10	-	0.5	Grey MF SAND, some Silt -	74.5
	10	S-5	.6.0'	7.5'	7	8	3	0.2'	Brown CF Sand, some Silt, some CF Gravel	
1	5	S-6	7.5	9.0'	5	5	7	0.2'	Same	1
	7	1	1		-					9.0
-	9	S-7	9.0'	10.5	3	6	8	1.5'	Grey Clayey SILT	
	10	S-8	10.5'	12.0'	4	6	9	1.5	Grey varved CLAY	
	11	5-9	12 01	13 51	7	Q	0	1 51	Samo	
	10	S-10	13.5'	15.0'	3	4	6	1.5'	Same	
	12	0 10	1313						o anic	
-	-	S-11	15.0'	16.5'	4	4	5	1.5'	Same -	
[1		1				16.5
	1		127 2	1					Bottom of Hole	
4								1		· · · · · · · · · · · · · · · · · · ·
-									· · · · · · · · · · · · · · · · · · ·	
ł					-	-		<u> </u>		
ł					-					
ł			1						-	
					1					
-		-	1		-		1	1		
ł		-	-				11			-
ł			1							
-		-					1		-	
T			17			1001	1.0			
t							i			
			1.00							
4								-		
+										-
ł										
ł	-						-			
t					1.00	= 1		1		
Ē							VVIV			-
H	Iominal	I.D. of Dr	lit Barrol	2/2	1	1611	AAA		The Contractor shall make his own subsurface investigations in order to sa	tisfy
1	Weight of hommer on Drive Pine 300 lks								himself of the actual subsurface conditions. The Information contained on t	this
-	Weight of hammer on Split Barrel Sampler 140 lbs.								agrees that he will make no claims against the State if he finds that the act	tual
	Drop of hammer on Drive Pipe 24"								conditions do not conform to those indicated by this log.	
	Drop of H	ammer on	Split Barr	el Sampler	30 '				New Jersey Department of Transportation	

Approximate Change in Strata

Form	SO-2 2	/79			r	NEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION		
ROUTI	E:			LOCAL N	AME:	Roa	adway	y Bori	ng TEST HOLE NO. 404	v - 1	166
SECTI	ON:	Moonad	chie Av	e., Mo	onad	hie	FAI	JS# M-	9748 (001)		
STATI	ON: 41	+ 00	OFFSET	: 85'	Lt.	REFE	RENCE	LINE:	South BL GROUND LINE ELEVATION: +6 /		
BORIN	GS MAD	F BY.	Augus	tine		DATE	STAP	TED. 9	Elevation G.W.T.	r	201
LICOR	CTOP		11			DATE	STAR		0 Hr1.3 Date:	09-3	30-8
INSPE	LIUR:		Henry		T pi	DATE	COMP	LETED:9	-30-82 24 Hr1.9 Date:	10-0)1-8
Ĩ	BLOWS	SAM	PLE NO. D	ЕРТН	0 6	6 12	12 18	REC.	and Profile Change		
F	16	S-1	0.0'	1.5'	4	23	56	1.0'	Brown CF SAND, and (-) Silt, trace F Gravel	L	
H	20	5-2	1 51	2 01	150	61	1.2	1 51		H	
H	20	S-3	3.0'	4.5	19	18	30	1.5	Dark Brown F SAND some (1) Silt mode	-	
5	40					10	50	1.12	Dark Brown r BAND, Some (+) SIIL, Leeds		
	55	S-4	4.5'	6.0'	24	27	30	1.5'	Grey F SAND, little (+) Silt	-	
	46	S-5	6.0'	7.5	19	24	18	1.5'	Orange Brown F SAND, little Silt		
H	39	-			1						
H	38	S-6	7.5	9.0	14	21	13	1.3	Orange Brown MF SAND, little Silt		
0 -	26	5-1	9.0	10.5	10	14	10	1.2	Grey MF SAND, some (+) Silt		
-	15	S-8	10.5	12.01	10	11	15	1.55		1	1,0
F	19	5 0	120.5	12.0	10		15	1.5	Grey CLAY & SILT	+	
F	22									-	-
5	20	14	Page 14			1		1.2			
1		S-9	15.0'	16.5'	16	15	18	1.5'	Grey varved CLAY		-
+	_	- 3			1					-1	.6.5
H			-						Bottom of Hole		-
• F	-		1		-					-	
° +					-					-	
E			1.							-	
1	-			1							
-	_						-				
5			1			2				_	
+										-	
-			-				-	-i		-	
				1				-			
0				1		1.000	124				
			1			1.001					
F			1-3-1	1							
H		_			1	-				_	
5 -			1				-				
+										-	
						1					
E											
-				r = 2	-						
·			L			11	-				
N	ominal I	D. of Dr	ive Pipe	21/2 "			XXX		The Contractor shall make his own subsurface investigations in a large	ant -t	
N	ominal I	D. of Sp	lit Barrel S	ampler	1	1/2"			himself of the actual subsurface conditions. The Information contained o	on this	
W.	eight of	hammer	on Drive Pi	pe 300	lbs.		_		log is not warranted to show the actual subsurface conditions. The Cont	ractor	
W	eight of	hammer a	on Split Ba	rrel Sampl	er 14	0 lbs.			agrees that he will make no claims against the State if he finds that the conditions do not conform to those indicated by this loa.	actual	
D	rop of h	anmer on	Split Barr	Sampler	30	-			·/ ···· ····		
							-		New Jersey Department of Transportation		
ore Di	a								Bureau of Geotechnical Engineering		
12 1				1					and a second and the function		

ge in Strata

Approximate Change in Strata ____

1-B. Permanent notes, New Jersey Geological Survey.

851 to bedrock

2-B. Permanent notes, New Jersey Geological Survey.

191' to bedrock

3-B. Hackensack Water Company. Well #1.

fill
muck
gray sand and clay
gray clay
light brown clay
sandy brown clay
gravel, sand and clay
gravel and sand
medium coarse sand (active)
sand and gravel
clay with sand and gravel
clay with gravel
red hardoan
sand and gravel
red hardpan
silty red brown and grav claw
red silty sandy clay
coarse sand and clay
red hardpan
red clay and sand
red hardpan
red sands
red rock

4-B. Hackensack Water Company. Well #2.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fill muck gray clay red clay red sand and gravel (active) sand and gravel " fine sand with gravel " coarse sand less gravel (active) coarse sand and gravel " fine sand and gravel " fine sand and gravel " fine red sand red clay with sand red clay, sand with gravel brown sand and clay brown sand
174 - 179	red sandy clay
179 - 192	red sand with gravel
192 - 251	red clay sand and little gravel
251 - 263	red clay and sand
263 - 271	red rock and sandstone

2-C. Hackensack Water Company.

0	-	10	marsh	
10		38	clay	
38	-	86	sand and	gravel

3-C. Hackensack Water Company.

0 - 4	marsh
4 - 110 110 - 130 130 - 137 137	clay, some sand sand and gravel clay
137 - 154	sand gravel and clay
154 - 237	mostly clay some sand and gravel
237 - 250	sand
250 -	rod sandstone, shale
130 - 137	clay
137 - 154	sand gravel and clay
154 - 237	mostly clay some sand and gravel
237 - 250	sand
250 -	rod sandstone, shale

3-G. Sewage Disposal Plant

175	-	235	gravel
269	-		red shale

No. 153	Elev. +4.65 0'0"-4'8"	Miscellaneous Fill, Paper, Wood, Rip-Rap	
	4*8"-910" 910"-1110"	Fine Silty Sand, Some Decayed Vegetation	
	11'0"-18'0"	Brown-Gray Clay, Layers of Fine Sand	
	18'0"-29'0" 29'0"-43'0"	Layers of Sand, Layers of Silty Clay Gray Clay. Brown Clay	
	43'0"-54'0"	Red Clay	
	54'0"-70'0"	Red Silty Sand, Layers of Gray Clay, Trace of Red Clay	
	W. L. 1'6"		

ł

105	Parillo, 1959	0-1	fill
	well 3B	1-4	muck
		4-28	gray sand and clay (Qmt over Qhkl)
		28-60	gray clay (Ohkl)
		60-79	light brown clay (Ohkl)
		79-106	sandy brown clay (Ohkl)
		106-110	gravel, sand, and clay (Obnf)
		110-113	gravel and sand (Obnf)
		113-115	medium-to-coarse sand, active (Obnf)
		115-120	sand and gravel (Qbnf)
		120-126	clay with sand and gravel (Obnf or Ot)
		126-130	clay with gravel (Obnf or Ot)
		130-137	red hardpan (Ot or Obnl)
		137-139	sand and gravel (Obnf or Ot)
		139-146	red hardnan (Ot or Obol)
		146-154	NR
		154-170	silty red-brown and gray clay (Obnl)
		170-182	red silty sandy clay (Obn1)
		182-188	coarse sand and clay (Obnl or Ot)
		188-208	red hardpan (Ot or Obnl)
		208-214	red clay and sand (Obnl or Ot)
		214-237	red hardpan (Ot or Obnl)
		237-238	red sands (Ot or Obn1)
		238-243	red rock
100	D. 11 1050		
106	Parillo, 1959	(abbreviate	d log)
	Well 4B	0-2	nn (ar)
		7.25	muck (Qm)
		25 27	gray cray (Qhki)
		27.87	cand and araval active (Obst)
		87 130	fine sand and clay (Obnl)
		130 150	rad clay, cand with graval (Obal)
		150 167	brown sand and clay (Obnl)
		167 174	brown sand (Obnf)
		174.170	red sandy clay (Ohnf)
		179,102	red sand with graval (Obuf)
		102-251	red clay sand and little gravel (Obal or Ot)
		251-263	red clay and sand (Obnl or Ot)

109	Parillo, 1959 well 4G	0-4 4-110 110-130 130-137 137-154 154-237 237-238 238-243	marsh muck (Qm) clay with some sand (Qhkl) sand and gravel (Qbnf) clay (Qbnl) sand, gravel, and clay (Qbnf) mostly clay (Qbnl) sand (Qt or Qbnl) red rock
210	26-2828	0-223 223-400	clay and fine sand (Qhkl over Qbnl rock

Details of Seepage and Slope Stability Analysis for Levees from GeoStudio

Phi: 15 ° Phi: 0° Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Undrained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 500 psf Cohesion: 200 psf Phi: 32 ° Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Unit Weight: 120 pcf Name: Levee Fill (Undrained) Model: Mohr-Coulomb

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 2 ft Levee Rev 1.gsz

Figure B.1: Output from slope stability analysis on the landside of the 2.2 ft levee in Soil Areas 1 to 3 at the end of construction by GeoStudio 2007 SLOPE/W.

2. Case II: Steady State Seepage

Vol. WC. Function: VWC - Levee Fill Name: Clay & Silt (Undrained) Model: Saturated Only K-Sat: 6.6e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Name: Structural Fill Model: Saturated Only K-Sat: 1.66e-005 ft/sec Volumetric Water Content: 0 ft3/ft3 K-Function: Drain Vol. WC. Function: VWC - Drain K-Function: Levee Fill Model: Saturated / Unsaturated Name: Drain Model: Saturated / Unsaturated Name: Levee Fill (Undrained)

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 2 ft Levee Rev 1.gsz

Figure B.2: Output from seepage analysis for the 2.2 ft levee in Soil Areas 1 to 3 at steady state with full flood stage by GeoStudio 2007 SEEP/W

2. Stability Landside (Case II: Steady State)

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 2 ft Levee Rev 1.gsz

Figure B3: Output from slope stability analysis on the landside of the 2.2 ft levee in Soil Areas 1 to 3 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Phi: 25 ° Phi: 25° Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Drained) Model: Mohr-Coulomb Name: Levee Fill (Drained) Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 2 ft Levee Rev 1.gsz

Figure B.4: Output from slope stability analysis on the riverside of the 2.2 ft levee in Soil Areas 1 to 3 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 120 pcf Cohesion: 50 psf Name: Clay & Silt (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Name: Structural Fill

Directory: Z:/Meadow/ands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 2 ft Levee Rev 1.gsz

Figure B.5: Output from slope stability analysis on the landside of the 2.2 ft levee in Soil Areas 1 to 3 at seismic loading by GeoStudio 2007 SLOPE/W

Phi: 15 ° Phi: 0° Name: Clay & Silt (Undrained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 500 psf Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 200 psf Phi: 32 ° Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Unit Weight: 120 pcf Name: Levee Fill (Undrained) Model: Mohr-Coulomb

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 4 ft Levee Rev 1.gsz

Figure B.6: Output from slope stability analysis on the landside of the 4.4 ft levee in Soil Areas 1 to 3 at the end of construction by GeoStudio 2007 SLOPE/W.

2. Case II: Steady State Seepage

Vol. WC. Function: VWC - Levee Fill Name: Clay & Silt (Undrained) Model: Saturated Only K-Sat: 6.6e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Name: Structural Fill Model: Saturated Only K-Sat: 1.66e-005 ft/sec Volumetric Water Content: 0 ft3/ft3 K-Function: Drain Vol. WC. Function: VWC - Drain K-Function: Levee Fill Model: Saturated / Unsaturated Name: Drain Model: Saturated / Unsaturated Name: Levee Fill (Undrained)

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 4 ft Levee Rev 1.gsz

Figure B.7: Output from seepage analysis for the 4.4 ft levee in Soil Areas 1 to 3 at steady state with full flood stage by GeoStudio 2007 SEEP/W.

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 120 pcf Cohesion: 50 psf Name: Clay & Silt (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Name: Structural Fill

Directory: Z:/Meadow/ands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 4 ft Levee Rev 1.gsz

Figure B.8: Output from slope stability analysis on the landside of 4.4 ft levee in Soil Areas 1 to 3 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 50 psf Name: Clay & Silt (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 4 ft Levee Rev 1.gsz

Figure B.9: Output from slope stability analysis on the riverside of 4.4 ft levee in Soil Areas 1 to 3 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

4. Stability Landside (Case IV: Seismic Loading)

Phi: 25 ° Phi: 25° Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Clay & Silt (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 4 ft Levee Rev 1.gsz

Figure B.10: Output from slope stability analysis on the landside of 4.4 ft levee in Soil Areas 1 to 3 at seismic loading by GeoStudio 2007 SLOPE/W.

1. Stability Landside (Case I: End of Construction)

Phi: 15° Phi: 0° Name: Clay & Silt (Undrained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 500 psf Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 200 psf Phi: 32 ° Unit Weight: 120 pcf Cohesion: 0 psf Model: Mohr-Coulomb Name: Levee Fill (Undrained) Name: Drain

Directory: Z:/Meadow/ands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 6 ft Levee Rev 1.gsz

Figure B.11: Output from slope stability analysis on the landside of the 6.6 ft levee in Soil Areas 1 to 3 at the end of construction by GeoStudio 2007 SLOPE/W

2. Case II: Steady State Seepage

Vol. WC. Function: VWC - Levee Fill Name: Clay & Silt (Undrained) Model: Saturated Only K-Sat: 6.6e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ K-Sat: 1.66e-005 ft/sec Volumetric Water Content: 0 ft³/ft³ K-Function: Drain Vol. WC. Function: VWC - Drain K-Function: Levee Fill Model: Saturated / Unsaturated Model: Saturated / Unsaturated Model: Saturated Only Name: Levee Fill (Undrained) Name: Structural Fill Name: Drain

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 6 ft Levee Rev 1.gsz

Figure B.12: Output from seepage analysis for the 6.6 ft levee in Soil Areas 1 to 3 at steady state with full flood stage by GeoStudio 2007 SEEP/W

2. Stability Landside (Case II: Steady State)

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 50 psf Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 120 pcf Name: Levee Fill (Drained) Model: Mohr-Coulomb Name: Clay & Silt (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 6 ft Levee Rev 1.gsz

Figure B.13: Output from slope stability analysis on the landside of the 6.6 ft levee in Soil Areas 1 to 3 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Phi: 25° Phi: 25 ° Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Name: Levee Fill (Drained) Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Clay & Silt (Drained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 6 ft Levee Rev 1.gsz

Figure B.14: Output from slope stability analysis on the riverside of the 6.6 ft levee in Soil Areas 1 to 3 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

4. Stability Landside (Case IV: Seismic Loading)

Phi: 25 ° Phi: 25° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32° Model: Mohr-Coulomb Name: Levee Fill (Drained) Model: Mohr-Coulomb Name: Clay & Silt (Drained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 6 ft Levee Rev 1.gsz

Figure B.15: Output from slope stability analysis on the landside of the 6.6 ft levee in Soil Areas 1 to 3 at seismic loading by GeoStudio 2007 SLOPE/W.

1. Stability Landside (Case I: End of Construction)

Phi: 15 ° Phi: 0° Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Undrained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 500 psf Cohesion: 200 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Levee Fill (Undrained) Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 8 ft Levee Rev 1.gsz

Figure B.16: Output from slope stability analysis on the landside of the 8.8 ft levee in Soil Areas 1 to 3 at the end of construction by GeoStudio 2007 SLOPE/W.

2. Case II: Steady State Seepage

Model: Saturated / Unsaturated K-Function: Top Fill Vol. WC. Function: VWC - Top Fill Volumetric Water Content: 0 ft³/ft³ Name: Structural Fill Model: Saturated Only K-Sat: 1.66e-005 ft/sec Volumetric Water Content: 0 ft3/ft3 K-Function: Drain Vol. WC. Function: VWC - Top Fill Model: Saturated Only K-Sat: 6.6e-006 ft/sec Name: Drain Model: Saturated / Unsaturated Name: Clay & Silt (Undrained) Name: Levee Fill (Undrained)

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 8 ft Levee Rev 1.gsz

Figure B.17: Output from seepage analysis for the 8.8 ft levee in Soil Areas 1 to 3 at steady state with full flood stage by GeoStudio 2007 SEEP/W.

2. Stability Landside (Case II: Steady State)

Phi: 25° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Drained) Model: Mohr-Coulomb Name: Levee Fill (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 8 ft Levee Rev 1 gsz

Figure B.18: Output from slope stability analysis on the landside of the 8.8 ft levee in Soil Areas 1 to 3 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Phi: 25 ° Phi: 25 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Cohesion: 50 psf Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Clay & Silt (Drained) Name: Levee Fill (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 8 ft Levee Rev 1 gsz

Figure B.19: Output from slope stability analysis on the riverside of the 8.8 ft levee in Soil Areas 1 to 3 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

4. Stability Landside (Case IV: Seismic Loading)

Phi: 25° Phi: 25° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay & Silt (Drained) Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Levee Fill (Drained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 1 to 3/File Name: Zone 1 to 3 - 8 ft Levee Rev 1 gsz

Figure B.20: Output from slope stability analysis on the landside of the 8.8 ft levee in Soil Areas 1 to 3 at seismic loading by GeoStudio 2007 SLOPE/W.

Phi: 0° Phi: 15° Phi: 0° Cohesion: 200 psf Name: Levee Fill (Undrained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 200 psf Phi: 32 ° Cohesion: 300 psf Phi: 32° Cohesion: 0 psf Name: Organic Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 85 pcf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Undrained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 2 ft Levee Rev 1.gsz

Figure B.21: Output from slope stability analysis on the landside of the 2.6 levee in Soil Areas 4 to 7 at the end of construction by GeoStudio 2007 SLOPE/W

2. Case II: Steady State Seepage

K-Function: Levee Fill Vol. WC. Function: VWC - Levee Fill Name: Organic Clay (Undrained) Model: Saturated Only K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Volumetric Water Content: 0 ft³/ft³ K-Function: Drain Vol. WC. Function: VWC - Drain K-Sat: 1.66e-005 ft/sec Name: Levee Fill (Undrained) Model: Saturated / Unsaturated Model: Saturated Only Name: Drain Model: Saturated / Unsaturated Model: Saturated Only Name: Clay (Undrained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 2 ft Levee Rev 1.gsz

Figure B.22: Output from seepage analysis for the 2.6 levee in Soil Areas 4 to 7 at steady state with full flood stage by GeoStudio 2007 SEEP/W

2. Stability Landside (Case II: Steady State)

Phi: 20 ° Phi: 25 ° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 85 pcf Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Organic Clay (Drained) Name: Clay (Drained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 2 ft Levee Rev 1.gsz

Figure B.23: Output from slope stability analysis on the landside of the 2.6 levee in Soil Areas 4 to 7 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W

3. Stability (Case III: Rapid Drawdown)

Cohesion: 0 psf Phi: 20 ° Phi: 25 ° Phi: 22 ° Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Clay (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 85 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Organic Clay (Drained) Name: Structural Fill

Directory: Z:/Meadow/ands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 2 ft Levee Rev 1.gsz

Figure B.24: Output from slope stability analysis on the riverside of the 2.6 levee in Soil Areas 4 to 7 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

4. Stability Landside (Case IV: Seismic Loading)

Unit Weight: 85 pcf Cohesion: 0 psf Phi: 20 ° Phi: 25 ° Phi: 22 ° Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Name: Organic Clay (Drained) Model: Mohr-Coulomb Name: Clay (Drained)

Directory: Z: Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 2 ft Levee Rev 1.gsz

Figure B.25: Output from slope stability analysis on the landside of the 2.6 levee in Soil Areas 4 to 7 at seismic loading by GeoStudio 2007 SLOPE/W.

Phi: 0° Phi: 15 ° Phi: 0° Cohesion: 200 psf Phi: 32 ° Name: Levee Fill (Undrained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 200 psf Unit Weight: 110 pcf Cohesion: 300 psf Phi: 32° Cohesion: 0 psf Name: Organic Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 85 pcf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Unit Weight: 120 pcf Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Clay (Undrained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 4 ft Levee Rev 1.gsz

Figure B.26: Output from slope stability analysis on the landside of the 4.9 ft levee in Soil Areas 4 to 7 at the end of construction by GeoStudio 2007 SLOPE/W

2. Case II: Steady State Seepage

K-Function: Levee Fill Vol. WC. Function: VWC - Levee Fill Model: Saturated Only K-Sat: 3.6e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Volumetric Water Content: 0 ft³/ft³ Vol. WC. Function: VWC - Drain K-Sat: 1.66e-005 ft/sec K-Function: Drain Name: Levee Fill (Undrained) Model: Saturated / Unsaturated Model: Saturated Only Model: Saturated / Unsaturated Model: Saturated Only Name: Organic Clay (Undrained) Name: Clay (Undrained) Name: Structural Fill Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 4 ft Levee Rev 1.gsz

Figure B.27: Output from seepage analysis for the 4.9 ft levee in Soil Areas 4 to 7 at steady state with full flood stage by GeoStudio 2007 SEEP/W

Phi: 20 ° Phi: 25 ° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Phi: 32 ° Cohesion: 0 psf Cohesion: 0 psf Name: Organic Clay (Drained) Model: Mohr-Coulomb Unit Weight: 85 pcf Model: Mohr-Coulomb Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Drained) Name: Structural Fill Name: Drain

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 4 ft Levee Rev 1.gsz

Figure B.28: Output from slope stability analysis on the landside of the 4.9 ft levee in Soil Areas 4 to 7 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W

Phi: 20 ° Phi: 25 ° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Organic Clay (Drained) Model: Mohr-Coulomb Unit Weight: 85 pcf Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Phi: 32 ° Cohesion: 0 psf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Drained) Name: Structural Fill Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 4 ft Levee Rev 1.gsz

Figure B.29: Output from slope stability analysis on the riverside of the 4.9 ft levee in Soil Areas 4 to 7 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W

Phi: 20 ° Phi: 25 ° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32° Name: Organic Clay (Drained) Model: Mohr-Coulomb Unit Weight: 85 pcf Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Phi: 32° Cohesion: 0 psf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Drained) Name: Structural Fill Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 4 ft Levee Rev 1.gsz

Figure B.30: Output from slope stability analysis on the landside of the 4.9 ft levee in Soil Areas 4 to 7 at seismic loading by GeoStudio 2007 SLOPE/W.

1. Stability Landside (Case I: End of Construction)

Phi: 0° Phi: 15° Phi: 0° Cohesion: 200 psf Cohesion: 200 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 300 psf Phi: 32 ° Cohesion: 0 psf Name: Organic Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 85 pcf Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Name: Levee Fill (Undrained) Model: Mohr-Coulomb Unit Weight: 120 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Undrained) Name: Structural Fill Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 6 ft Levee Rev 1.gsz

Figure B.31: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at the end of construction by GeoStudio 2007 SLOPE/W

2. Case II: Steady State Seepage

K-Function: Levee Fill Vol. WC. Function: VWC - Levee Fill Name: Organic Clay (Undrained) Model: Saturated Only K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Volumetric Water Content: 0 ft³/ft³ Volumetric Water Content: 0 ft³/ft³ Vol. WC. Function: VWC - Drain K-Sat: 3.3e-006 ft/sec K-Sat: 1.66e-005 ft/sec K-Function: Drain Name: Levee Fill (Undrained) Model: Saturated / Unsaturated Model: Saturated Only Name: Drain Model: Saturated / Unsaturated Model: Saturated Only Name: Clay (Undrained) Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 6 ft Levee Rev 1.gsz

Figure B.32: Output from seepage analysis for the 7.2 ft levee in Soil Areas 4 to 7 at steady state with full flood stage by GeoStudio 2007 SEEP/W.

2. Stability Landside (Case II: Steady State)

Phi: 20° Phi: 25° Phi: 22 ° Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 85 pcf Model: Mohr-Coulomb Name: Organic Clay (Drained) Name: Clay (Drained)

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 6 ft Levee Rev 1.gsz

Figure B.33: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Phi: 20° Phi: 25° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 85 pcf Name: Organic Clay (Drained) Model: Mohr-Coulomb Name: Structural Fill Name: Clay (Drained)

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 6 ft Levee Rev 1.gsz

Figure B.34: Output from slope stability analysis on the riverside of the 7.2 ft levee in Soil Areas 4 to 7 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W

4. Stability Landside (Case IV: Seismic Loading)

Phi: 20 ° Phi: 25 ° Phi: 22 ° Name: Structural Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Unit Weight: 85 pcf Model: Mohr-Coulomb Unit Weight: 110 pcf Name: Organic Clay (Drained) Model: Mohr-Coulomb Name: Clay (Drained)

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 6 ft Levee Rev 1.gsz

Figure B.35: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at seismic loading by GeoStudio 2007 SLOPE/W.

1. Stability Landside (Case I: End of Construction)

Phi: 0° Phi: 15 ° Phi: 0° Cohesion: 200 psf Name: Levee Fill (Undrained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 200 psf Phi: 32 ° Cohesion: 300 psf Phi: 32 ° Cohesion: 0 psf Name: Organic Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 85 pcf Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Model: Mohr-Coulomb Unit Weight: 110 pcf Unit Weight: 120 pcf Model: Mohr-Coulomb Name: Clay (Undrained) Name: Structural Fill Name: Drain

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 8 ft Levee Rev 1.gsz

Figure B.36: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at the end of construction by GeoStudio 2007 SLOPE/W
2. Case II: Steady State Seepage

K-Function: Levee Fill Vol. WC. Function: VWC - Levee Fill Name: Organic Clay (Undrained) Model: Saturated Only K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ K-Sat: 3.3e-006 ft/sec Volumetric Water Content: 0 ft³/ft³ Volumetric Water Content: 0 ft³/ft³ K-Function: Drain Vol. WC. Function: VWC - Drain K-Sat: 1.66e-005 ft/sec Name: Levee Fill (Undrained) Model: Saturated / Unsaturated Model: Saturated Only Model: Saturated / Unsaturated Model: Saturated Only Name: Clay (Undrained) Name: Structural Fill Name: Drain

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 8 ft Levee Rev 1.gsz

Figure B.37: Output from seepage analysis for the 7.2 ft levee in Soil Areas 4 to 7 at steady state with full flood stage by GeoStudio 2007 SEEP/W

2. Stability Landside (Case II: Steady State)

Phi: 20 ° Phi: 25 ° Name: Clay (Drained) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Phi: 22 ° Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Name: Organic Clay (Drained) Model: Mohr-Coulomb Unit Weight: 85 pcf Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Name: Structural Fill

Directory: Z:/Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 8 ft Levee Rev 1.gsz

Figure B.38: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at steady seepage with full flood stage by GeoStudio 2007 SLOPE/W.

3. Stability (Case III: Rapid Drawdown)

Cohesion: 0 psf Phi: 20 $^{\circ}$ Phi: 25° Phi: 22 ° Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion: 0 psf Unit Weight: 85 pcf Model: Mohr-Coulomb Name: Levee Fill (Drained) Model: Mohr-Coulomb Model: Mohr-Coulomb Name: Organic Clay (Drained) Name: Clay (Drained) Name: Structural Fill

Directory: Z:/Meadow/ands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 8 ft Levee Rev 1.gsz

Figure B.39: Output from slope stability analysis on the riverside of the 7.2 ft levee in Soil Areas 4 to 7 at rapid drawdown from full flood stage by GeoStudio 2007 SLOPE/W.

4. Stability Landside (Case IV: Seismic Loading)

Phi: 20 ° Phi: 25° Phi: 22 ° Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Name: Levee Fill (Drained) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Name: Drain Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 32 ° Cohesion: 0 psf Unit Weight: 85 pcf Model: Mohr-Coulomb Unit Weight: 110 pcf Model: Mohr-Coulomb Name: Organic Clay (Drained) Name: Clay (Drained) Name: Structural Fill

Directory: Z:Meadowlands/Feasibility Analysis for Flood Protection/Levee/Seepage and Slope Stability - Zone 4 to 7/File Name: Zone 4 to 7 - 8 ft Levee Rev 1.gsz

Figure B.40: Output from slope stability analysis on the landside of the 7.2 ft levee in Soil Areas 4 to 7 at seismic loading by GeoStudio 2007 SLOPE/W.

Appendix C1-C

Details of Consolidation Settlement Analysis for Levees

Appendix C1-D

Output of Sheet Pile Analysis for 7.2 and 9.8 ft Levees in Soil Areas 4 to 7 from Shoring Suite

New Meadowlands - Sheet Pile for Levee Zone 4 to 7 - Sheet Pile for 6 ft Levee

EXTERN	NAL FORCE ACTING ON	WALL (Pusing on	(Pusing on Wall - Positive; Against Wall - Negative)					
No.	Z force	Force	Angle	Spacing				
1	4.00	8.57	0.0	1.00				
2	5.33	-0.63	0.0	1.00				

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

New Meadowlands - Sheet Pile for Levee Zone 4 to 7 - Sheet Pile for 6 ft Levee

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 1.0 foot or meter

User Input Pile, AZ17: E (ksi)=29000.0, I (in4)/foot=231.3

rlands\Feasibility Analysis for Flood Protection\Levee\Seepage and Slope Stability - Zone 4 to 7\Sheet Pile for 6 ft Levee - CT Shoring\Zone 4 to 7 - Sheet Pile for 6

ShoringSuite> CIVILTECH SOFTWARE USA www.civiltechsoftware.com

EXTERN	NAL FORCE ACTING (ON WALL (Pusing on \	(Pusing on Wall - Positive; Against Wall - Negative)					
No.	Z force	Force	Angle	Spacing				
1	5.35	10.60	0.0	1.00				
2	7.10	-1.13	0.0	1.00				

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

New Meadowlands - Sheet Pile for Levee Zone 4 to 7 - Sheet Pile for 8 ft Levee

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 1.0 foot or meter

User Input Pile, AZ19: E (ksi)=29000.0, I (in4)/foot=270.8

rlands\Feasibility Analysis for Flood Protection\Levee\Seepage and Slope Stability - Zone 4 to 7\Sheet Pile for 6 ft Levee - CT Shoring\Zone 4 to 7 - Sheet Pile for 6

Plots of Lateral Deflection, Bending Moment and Shear Force versus Depth of Sheet Pile from PYWall

Figure E.1: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft Double Sheet Pile Wall at No Flood Condition for Zone 4 to 7.

Figure E.2: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft Double Sheet Pile Wall at Full Flood Stage for Zone 4 to 7.

Figure A.3: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft Double Sheet Pile Wall at Rapid Drawdown from Full Flood Stage for Zone 4 to 7.

Figure E.4: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft Double Sheet Pile Wall at Seismic Loading for Zone 4 to 7.

Figure E.5: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft Double Sheet Pile Wall at No Flood Condition for Zone 4 to 7.

Figure E.6: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft Double Sheet Pile Wall at No Flood Condition for Zone 4 to 7.

Figure E.7: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft Double Sheet Pile Wall at Rapid Drawdown from Full Flood Stage for Zone 4 to 7.

Figure E.8: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft Double Sheet Pile Wall at Seismic Loading for Zone 4 to 7.

Appendix C1-F

Output from PYWall Analysis for 8 ft Double Sheet Pile Wall in Soil Area 4

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o _____ _____ PYWALL for Windows, Version 2015.5.4 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved _____ This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Z:\Meadowlands\Feasibility Anarysis is is is a second stage priles\PYWall Analysis & ft Full Flood Stage Priles\PYWall Analysis & ft Full Flood Stage is zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5d Name of output file : Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5p is zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5p Time and Date of Analysis _____ _____ Date: December 23, 2016 Time: 15:56:06 New Meadowlands_Zone4_6ft_Braced_Wall_Full_Flood_Stage PROGRAM CONTROL PARAMETERS ._ ************* *********************** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0 NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1GENERATE EARTH PRESSURE INTERNALLY = GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 1 1 0 0 NUMBER OF INCREMENTS INCREMENT LENGTH = 75 6.000 IN = FREE HEIGHT OF WALL MAXIMUM ALLOWABLE DEFLECTION 96.000 IN = 10.000 IN = DEFLECTION CLOSURE TOLERANCE = 0.00001 IN****** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. T = TORQUE,
 T = TORQUE,
 T = TORQUE,
 T = AXIAL LOAD P - AXIAL LOAD R - STIFFNESS OF TORSIONAL RESISTANCE. s' FROM TO CONTD ΕI Q т R Ρ LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS 1 BS LBS-IN⁻² LBS LBS/IN IN-LBS IN-LBS LBS 0.583E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.583E+11 0.000E+00 0.184E+05 0.000E+00 0.000E+00 0.000E+00 0.583E+11 0.000E+00 0.356E+05 0.000E+00 0.000E+00 0.000E+00 75 0 0 4 4 0 12 12 0 ******* WALL INFORMATION FREE HEIGHT OF WALL = 0.960E+02 IN WIDTH FOR EARTH PRESSURE, WA = 0.551E+02 IN WIDTH FOR SOIL RESISTANCÉ, WP = 0.551E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.000E+00 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py50 UNIT WEIGHT OF WATER = 0.360E-01 LBS/IN**3 SLOPE OF THE BACKFILL (deg.) = 0.000E+00 MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 UNIFORM SURFACE PRESSURE = 0.000E+00 LBS/IN**2 ****** * SOIL INFORMATION * *
 TOTAL
 TOTAL UNIT

 LAYER
 THICKNESS
 COHESION
 PHI
 WEIGHT
 DRAINED
 ZTOP

 NO.
 IN
 PSI
 DEG
 PCI
 T OR F
 IN

 1
 96.0
 0.0
 32.0
 0.069
 T
 0.00

 2
 144.0
 0.0
 20.0
 0.049
 T
 96.00

 3
 636.0
 0.0
 22.0
 0.064
 T
 240.00
 * EFFECTIVE OVERBURDEN STRESS * DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.000E+00 0.960E+02 0.321E+01 0.240E+03 0.511E+01 ****** * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * ***** ACTIVE EARTH PASSIVE EARTH COEFFICIENT COEFFICIENT 0.307E+00 0.325E+01 LAYER NO. 0.307E+00 1 1 2 3 0.490E+00 0.204E+01 0.455E+00 0.220E+01 × ACTIVE EARTH PRESSURE OF EACH LAYER * AYER PA1 Z1 PA2 Z2 PA3 Z3 PA4 NO LBS/IN**2 IN LBS/IN**2 IN LBS/IN**2 IN LBS/IN**2 LAYER PA1 0.00 48.00 47.35 64.00 0.00 0.00 0.00 1 ******* * ACTIVE WATER PRESSURE OF EACH LAYER * LAYER PW1 Z1 PW2 Z2 NO 1 0.00 48.00 165.89 64.00 DEPTH ACTIVE EARTH PRESSURE LBS/IN IN _____ _____
 0.000E+00
 0.000E+00

 0.600E+01
 0.672E+02

 0.120E+02
 0.134E+03

 0.180E+02
 0.179E+03

 0.240E+02
 0.179E+03

 0.300E+02
 0.179E+03

	<pre>Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o</pre>
0.360E+02	0.179E+03
0.420E+02	0.179E+03
0.480E+02	0.179E+03
0.5402+02 0.600F+02	0 1795+03
0.660E+02	0.179E+03
0.720E+02	0.179E+03
0.780E+02	0.179E+03
0.840E+02	0.134E+03
0.900E+02 0.960E+02	0.00525402
0.101E+03	0.865E+02
0.107E+03	0.865E+02
0.113E+03	0.865E+02
0.119E+03	0.865E+02
0.125E+03 0.131E+03	0.865E+02
0.137E+03	0.865E+02
0.143E+03	0.865E+02
0.149E+03	0.865E+02
0.155E+03	0.865E+02
0.101E+03 0 167E+03	0.865E+02
0.173F+03	0-865E+02
0.179E+03	0.865E+02
0.185E+03	0.865E+02
0.191E+03	0.865E+02
0.19/E+03	0.865E+02
0.209E+03	0.865E+02
0.215E+03	0.865E+02
0.221E+03	0.865E+02
0.227E+03	0.865E+02
0.233E+03	0.865E+02
0.235E+03 0.245E+03	0.805E+02
0.251E+03	0.805E+02
0.257E+03	0.805E+02
0.263E+03	0.805E+02
0.269E+03 0.275E+03	0.805E+02
0.281F+03	0.805F+02
0.287E+03	0.805E+02
0.293E+03	0.805E+02
0.299E+03	0.805E+02
0.305E+03 0 311F+03	0.805E+02 0.805E+02
0.317E+03	0.805E+02
0.323E+03	0.805E+02
0.329E+03	0.805E+02
0.335E+03	0.805E+02
0.341E+03 0.347F+03	0.805E+02 0.805E+02
0.353E+03	0.805E+02
0.359E+03	0.805E+02
0.365E+03	0.805E+02
0.371E+03 0.277E+03	0.805E+02
0.383F+03	0.805E+02 0.805E+02
0.389E+03	0.805E+02
0.395E+03	0.805E+02
0.401E+03	0.805E+02
0.407E+03 0.413E+03	0.805E+02
0.419E+03	0.805E+02
0.425E+03	0.805E+02
0.431E+03	0.805E+02
0.437E+03	0.805E+02
0.443E+03 0 449F±03	0.805E+02 0.805E+02
014492403	0.0052102
****	*****
*	ITI LAYERS AND STRENGTH DATA
3C *******	*******

X AT THE SURFACE OF EXCAVATION SIDE

= 96.00 IN

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py50 2 LAYER(S) OF SOIL LAYER 1 THE SOIL IS A SILT LAYER 2 THE SOIL IS A SILT

DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH 4 POINTS

X,IN	WEIGHT,LBS/IN**3
96.0ÓOO	0.1319D-01
240.0000	0.1319D-01
240.0000	0.2766D-01
876.0000	0.2766D-01

DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH $\ensuremath{4}$ POINTS

X,IN	S,LBS/IN**2	PHI, DEGREES	E50
96.00	0.0000D+00	20.000	0.2000D-01
240.00	0.0000D+00	20.000	0.2000D-01
240.00	0.0000D+00	22.000	0.2000D-01
462.00	0.0000D+00	22.000	0.2000D-01

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH IN	DIAM IN	PHI	GAMMA A LBS/IN*	VG *3	А		В	Puc	Puí	
0.10	55.12	20.0	0.132E-	01	2.83	2.	.14 0	.727E-01	0.192E+0)
	Ρ	-Multipl	Y 0.000E 0.766E 0.153E 0.30E 0.30E 0.383E 0.459E 0.689E 0.689E 0.766E 0.919E 0.207E 0.207E 0.112E 0.167E	N +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +	- - - - - - - - - - - - - - - - - - -	LBS 0.868f 0.865f 0.864f 0.864f 0.864f 0.864f 0.863f 0.865	5/IN +02 +02 +02 +02 +02 +02 +02 +02 +02 +02	• 0.100E-	-01	

AT THE BACKFILL SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
96.10	55.12	20.0	0.132E-01	1.62	1.16	0.699E+02	0.184E+03
			Y		Р		
			IN		LBS/IN	N	
			0.000E+00	(0.868E+02	2	
			0.766E-01	().244E+03	3	
			0.153E+00	().272E+0	3	
			0.230E+00	().291E+0	3	
			0.306E+00	().305E+03	3	
			0.383E+00	ĺ).317E+0	3	
			0.459E+00	ĺ).327E+0	3	

Page 4
	Zone4_i	8ft_Braced_Sheet_Pil 0.536E+00 0.612E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03	e_Wall_Ful 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1_F1ood_S 336E+03 345E+03 352E+03 359E+03 365E+03 456E+03 456E+03 456E+03 456E+03	tage_Fir	nal_Total35ft.py5	C
	P-	Multiplier = 0.100	E+01 Y-Mult	iplier =	0.100E	E+01	
AT T	THE EXCAVATI	CON SIDE					
DEPTH TN	DIAM TN	PHI GAMMA AVG	А	В	Puc	Puí	
36.00	55.12	20.0 0.132E-01	2.37	1.74 0	.262E+02	2 0.690E+02	
		$\begin{array}{c} & Y \\ & IN \\ 0.000E+00 \\ 0.766E-01 \\ 0.153E+00 \\ 0.230E+00 \\ 0.306E+00 \\ 0.383E+00 \\ 0.383E+00 \\ 0.536E+00 \\ 0.536E+00 \\ 0.612E+00 \\ 0.689E+00 \\ 0.689E+00 \\ 0.689E+00 \\ 0.682E+00 \\ 0.842E+00 \\ 0.919E+00 \\ 0.572E+01 \\ 0.572E+01 \\ 0.572E+02 \\ 0.112E+03 \\ 0.167E+03 \end{array}$		P LBS/IN 868E+02 539E+01 187E+02 261E+02 322E+02 374E+02 420E+02 420E+02 499E+02 533E+02 535E+02 535E+02 595E+02 103E+03 103E+03 103E+03			
	P-	Multiplier = 0.1000	E+01 Y-Mult	iplier =	0.100E	E+01	
AT T	THE BACKFILL	SIDE					
DEPTH	DIAM	PHI GAMMA AVG	А	В	Puc	Puí	
132.00	55.12	20.0 0.132E-01	1.28	0.90 0	.960E+02	2 0.253E+03	
		Y IN 0.000E+00 0.766E-01 0.153E+00 0.230E+00 0.306E+00 0.383E+00 0.536E+00 0.612E+00 0.689E+00 0.689E+00 0.689E+00 0.842E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03		P LBS/IN 868E+02 265E+03 319E+03 336E+03 349E+03 361E+03 371E+03 380E+03 389F+03 404E+03 404E+03 507E+03 507E+03 507E+03 507E+03			

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
IN	IN		LBS/IN**3				

Page 5

	Zone4_8	ft_Braced_Sheet_Pile_	_Wall_Full_Flood_Stage_Fina	ll_Total35ft.py5o
72.00	55.12	20.0 0.132E-01	1.90 1.37 0.523E+02	0.138E+03
		Y	P _	
		IN	LBS/IN	
		0.000E+00	-0.868E+02	
		0.766E-01	0.473E+02	
		0.153E+00	0.713E+02	
		0.230E+00	0.873E+02	
		0.306E+00	0.996E+02	
		0.383E+00	0.110F+03	
		0.459E+00	0.118F+03	
		0.536E+00	0.126F+03	
		0.612E+00	0 133F+03	
		0.689E+00	0.139E+03	
		0.766E+00	0.145E+03	
		0.842E+00	0.150E+03	
		0.0122+00	0.155E+03	
		0.3132+00	0.2275+02	
			0.227 ± 0.00	
		0.372E+02		
		0.112E+03	0.227E+03	
		0.16/E+03	0.22/E+03	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG	А	В	Puc	Puí
168.00	55.12	20.0	0.132E-01	1.05	0.70	0.122E+03	0.322E+03
			Y IN 0.000E+00 0.766E-01 0.153E+00 0.306E+00 0.383E+00 0.459E+00 0.612E+00 0.689E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03		P LBS/IN 868E+02 269E+03 305E+03 329E+03 348E+03 364E+03 377E+03 400E+03 410E+03 410E+03 410E+03 410E+03 410E+03 548E+03 548E+03 548E+03	N 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

108.00 55.12 20.0 0.132E-01 1.50 1.07 0.785E+02 0.207E+0 Y P IN LBS/IN 0.000E+00 -0.868E+02 0.766E-01 0.780E+02 0.153E+00 0.108E+03 0.230E+00 0.143E+03 0.306E+00 0.143E+03 0.383E+00 0.156E+03 0.459E+00 0.167E+03 0.536E+00 0.176E+03 0.612E+00 0.185E+03	DEPTH TN		PHI	GAMMA AVG	А	В	Puc	Puí
$\begin{array}{ccccc} Y & P \\ IN & LBS/IN \\ 0.000E+00 & -0.868E+02 \\ 0.766E-01 & 0.780E+02 \\ 0.153E+00 & 0.108E+03 \\ 0.230E+00 & 0.128E+03 \\ 0.306E+00 & 0.143E+03 \\ 0.383E+00 & 0.156E+03 \\ 0.383E+00 & 0.167E+03 \\ 0.536E+00 & 0.176E+03 \\ 0.536E+00 & 0.185E+03 \\ 0.612E+00 & 0.185E+03 \\ 0.69E+00 & 0.185E+00 \\ 0$	108.00	55.12	20.0	0.132E-01	1.50	1.07	0.785E+02	0.207E+03
0.766E+00 0.842E+00 0.919E+03 0.919E+00 0.213E+03 0.207E+01 0.303E+03 0.572E+02 0.303E+03				Y IN 0.000E+00 0.766E-01 0.153E+00 0.30E+00 0.306E+00 0.459E+00 0.612E+00 0.612E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02		P LBS/It -0.868E+02 0.780E+02 0.108E+02 0.128E+03 0.128E+03 0.156E+03 0.176E+03 0.176E+03 0.176E+03 0.193E+03 0.200E+03 0.207E+03 0.203E+03 0.303E+03	N 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

Page 6

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o 0.112E+03 0.303E+03 0.167E+03 0.303E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH	DIAM	PHI	GAMMA AVG	A	В	Puc	Puí
204.00	55.12	20.0	0.132E-01	0.95	0.58	0.148E+03	0.391E+03
			Y		Р		
			IN		LBS/IN	1	
			0.000E+00	0	.868E+02	2	
			0.766E-01	0	.264E+03	3	
			0.153E+00	0	.306E+03	3	
			0.230E+00	0	.334E+03	3	
			0.306E+00	0	.357E+03	3	
			0.383E+00	Ō	.376E+0	3	
			0.459E+00	Ō	.392E+0	3	
			0.536E+00	Ō	407E+0	3	
			0.612F+00	0	420F+0	3	
			0.689F+00	ŏ	432F+0	ŝ	
			0.766F+00	ŏ	443F+0	ŝ	
			0.842F+00	ŏ	454F+0	ŝ	
			0.919F+00	ŏ	463F+0	ŝ	
			0.207 ± 01	ŏ	606F+0	Ś	
			0.572E+02	ő	606F+03	Ś	
			0.112E+02	0	606F+03	ź	
			0.167E+03	0	606E+03	2	
			0.10/E+03	0	.000E+0:)	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA	AVG	А	В	Puc	Puí
143.90	55.12	20.0	0.132E	-01 1.	.19	0.83	0.105E+03	0.276E+03
			0.000 0.766 0.153 0.230 0.383 0.459 0.536 0.612 0.689 0.766 0.842 0.766 0.842 0.919 0.207 0.572 0.572 0.112 0.167	Y IN E+00 E+01 E+00 E+00 E+00 E+00 E+00 E+00	L -0.86 0.95 0.12 0.15 0.16 0.18 0.20 0.21 0.22 0.23 0.23 0.23 0.24 0.34 0.34	P BS/IN 88E+02 3E+02 9E+03 1E+03 8E+03 2E+03 5E+03 5E+03 5E+03 5E+03 5E+03 5E+03 7E+03 7E+03 7E+03 7E+03	N 22 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	F	-Multip	lier =	0.100E+01	Y-Multip	lier	= 0.100E	+01

AT THE BACKFILL SIDE

DEPTH IN	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	Puc	Puí
239.90	55.12	20.0	0.132E-01	0.89	0.52	0.174E+03	0.460E+03
			Y		Р		
			IN	L	BS/I	N	
			0.000E+00	0.86	68E+02	2	
			0.766E-01	0.26	58E+0	3	
			0.153E+00	0.31	.5E+0	3	
			0.230E+00	0.34	17E+0	3	

Page 7

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o 0.306E+00 0.374E+03 0.383E+00 0.396E+03 0.459E+00 0.415E+03 0.536E+00 0.448E+03 0.612E+00 0.446E+03 0.766E+00 0.476E+03 0.766E+00 0.488E+03 0.919E+00 0.500E+03 0.919E+00 0.500E+03 0.207E+01 0.672E+03 0.572E+02 0.672E+03 0.112E+03 0.672E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
144.10	55.12	22.0	0.132E-01	1.34	0.94	0.105E+03	0.301E+03
			Y IN 0.000E+00 0.766E-01 0.153E+00 0.306E+00 0.383E+00 0.459E+00 0.612E+00 0.612E+00 0.689E+00 0.689E+00 0.842E+00 0.919E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03		P LBS/II -0.805E+02 0.131E+0 0.170E+02 0.217E+02 0.234E+00 0.248E+00 0.248E+00 0.248E+00 0.292E+00 0.292E+00 0.309E+02 0.429E+02 0.429E+02 0.429E+02	N 22 33 33 33 33 33 33 33 33 33 33 33 33 3	
	Р	-Multip	lier = 0.10	00E+01 Y-	Multiplier	= 0.100E	+01
AT	THE BACKFIL	L SIDE					
DEPTH TN	DIAM TN	PHI	GAMMA AVG	А	В	Puc	Puí
240.10	55.12	22.0	0.132E-01	0.90	0.53	0.175E+03	0.502E+03
	Ρ	-Multip	Y IN 0.000E+00 0.766E-01 0.153E+00 0.30E+00 0.306E+00 0.383E+00 0.459E+00 0.612E+00 0.612E+00 0.642E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03	00E+01 Y-	P LBS/II 0.805E+00 0.271E+00 0.321E+00 0.325E+00 0.408E+00 0.408E+00 0.445E+00 0.445E+00 0.445E+00 0.445E+00 0.521E+00 0.521E+00 0.707E+00 0.707E+00 0.707E+00 Multiplier	N 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
199.50	55.12	22.0	0.172E-01	1.01	0.66	0.189E+03	0.544E+03
			Y IN 0.000E+00 0.766E-01 0.153E+00 0.230E+00 0.383E+00 0.459E+00 0.536E+00 0.612E+00 0.689E+00 0.766E+00 0.766E+00 0.766E+00 0.919E+01 0.572E+02 0.112E+03 0.167E+03	-	P LBS/IN -0.805E+02 0.191E+03 0.250E+03 0.290E+03 0.321E+03 0.370E+03 0.370E+03 0.390E+03 0.408E+03 0.408E+03 0.467E+03 0.661E+03 0.661E+03		

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH TN	DIAM	PHI	GAMMA AVG LBS/TN**3	А	В	Puc	Puí
295.50	55.12	22.0	0.172E-01	0.88	0.50	0.280E+03	0.806E+03
			Y		Р		
			IN		LBS/IN		
			0.000E+00	0	.805E+02		
			0.766E-01	0	.361E+03		
			0.153E+00	0	.440E+03		
			0.230E+00	0	.496E+03		
			0.306E+00	0	.541E+03		
			0.383E+00	0	.580E+03		
			0.459E+00	0	.614E+03		
			0.536E+00	0	.644E+03		
			0.612E+00	0	.671E+03		
			0.689E+00	0	.697E+03		
			0.766E+00	0	.721E+03		
			0.842E+00	0	.743E+03		
			0.919E+00	0	.764E+03		
			0.207E+01	0	.107E+04		
			0.572E+02	0	.107E+04		
			0.112E+03	0	.107E+04		
			0.167E+03	0	.107E+04		

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
255.00	55.12	22.0	0.195E-01	0.89	0.52	0.274E+03	0.787E+03
			Y		P		
				0		N	
			0.000E+00 0.766E-01	-0	211E+02	2	
			0.700E-01 0.153E+00	0	2905-03	2	
			0.230E+00	0	345F+0	3	
			0.306E+00	ŏ	389E+0	ŝ	
			0.383E+00	0	426E+0	3	
			0.459E+00	0	459E+03	3	
			0.536E+00	0	488E+03	3	
			0.612E+00	0	.515E+03	3	
			0.689E+00	0	540E+0	3	
			0.766E+00	0	.562E+0.	3	
			0.842E+00	0	.584E+0.	3	
					-		

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py50

0.604E+03
0.898E+03
0.898E+03
0.898E+03
0.898E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	Puc	Puí
351.00	55.12	22.0	0.195E-01	0.88	0.50	0.377E+03	0.108E+04
			Y		Ρ,		
			IN		LBS/IN	1	
			0.000E+00	0.8	05E+02	2	
			0.766E-01	0.4	58E+03	3	
			0.153E+00	0.5	64E+03	3	
			0.230E+00	0.6	40E+03	3	
			0.306E+00	0.7	00E+03	3	
			0.383E+00	0.7	52F+0	3	
			0.459E+00	0.7	97F+0	ŝ	
			0.536F+00	0.8	38F+0	ŝ	
			0.612E+00	0.8	75E+0	3	
			0.689E+00	0.9	09E+0	3	
			0.766E+00	0.9	41E+0	3	
			0.842E+00	0.9	71E+0	3	
			0.919E+00	0.1	00E+04	1	
			0.207F+01	0.1	41F+04	1	
			0.572E+02	0 1	41F+04	1	
			0 112 E + 02	0.1	41 = + 0/	1	
			0.167 ± 0.03	0.1	11E 10	т 1	
			0.10/E+03	0.1	.416+04	t	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG	A	В	Puc	Puí
310.50	55.12	22.0	0.209E-01	0.88	0.50	0.359E+03	0.103E+04
			Y IN 0.000E+00 0.766E-01 0.153E+00 0.306E+00 0.383E+00 0.459E+00 0.638E+00 0.612E+00 0.642E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03	-0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	P LBS/IN 805E+02 278E+03 379E+03 451E+03 509E+03 558E+03 601E+03 640E+03 708E+03 708E+03 708E+03 703E+04 119E+04 119E+04 119E+04	N 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

AT THE BACKFILL SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
406.50	55.12	22.0	0.209E-01	0.88	0.50	0.469E+03	0.135E+04
			Y		P .		
			IN 0.000E+00	0.8	LBS/IN 805E+02		

	Zone4_8	ft_Brac	<pre>ced_Sheet_Pil 0.766E-01 0.153E+00 0.230E+00 0.306E+00 0.459E+00 0.612E+00 0.612E+00 0.6842E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03 ier = 0.100</pre>	e_wall_Fu E+01 Y-Mu	J1]_Flood_S 0.550E+03 0.682E+03 0.776E+03 0.916E+03 0.973E+03 0.102E+04 0.107E+04 0.115E+04 0.115E+04 0.122E+04 0.174E+04 0.174E+04 0.174E+04 0.174E+04	tage_Fina 0.100E-	al_Total35ft.py5c ⊦01			
AT 1	THE EXCAVATI	ON SIDE				012002				
DEPTH IN 365.90	DIAM IN 55.12	PHI 22.0	GAMMA AVG LBS/IN**3 0.220E-01	A 0.88	в 0.50 О	Puc .443E+03	Puí 0.127E+04			
	Ρ-	Multipl	Y IN 0.000E+00 0.766E-01 0.153E+00 0.306E+00 0.383E+00 0.459E+00 0.612E+00 0.689E+00 0.689E+00 0.689E+00 0.766E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03	- Е+01 Ү-Ми	P LBS/IN 0.805E+02 0.362E+03 0.487E+03 0.576E+03 0.708E+03 0.708E+03 0.708E+03 0.809E+03 0.809E+03 0.931E+03 0.931E+03 0.996E+03 0.999E+03 0.148E+04 0.148E+04 0.148E+04 0.148E+04	0.100E-	+01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
DEPTH IN 461.90	DIAM IN 55.12	PHI 22.0	GAMMA AVG LBS/IN**3 0.220E-01	A 0.88	в 0.50 О	Puc .559E+03	Puí 0.161E+04			
			Y IN 0.000E+00 0.766E-01 0.153E+00 0.306E+00 0.383E+00 0.459E+00 0.612E+00 0.689E+00 0.766E+00 0.842E+00 0.842E+00 0.919E+00 0.207E+01 0.572E+02 0.112E+03 0.167E+03		P LBS/IN 0.805E+02 0.640E+03 0.797E+03 0.910E+04 0.100E+04 0.114E+04 0.120E+04 0.126E+04 0.136E+04 0.136E+04 0.140E+04 0.144E+04 0.205E+04 0.205E+04 0.205E+04					

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

```
Page 11
```

Zone4_8ft_Braced_Sheet_Pile_Wall_Full_Flood_Stage_Final_Total35ft.py5o New Meadowlands_Zone4_6ft_Braced_Wall_Full_Flood_Stage

RESULTS -- ITERATION 5

STA I	X	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA	
		1N 		LR2-IN			TR2-IN**5
0	0.000E+00	0.306E+00	-0.134E-02	-0.449E-07	-0.749E-08	0.000E+00	0.292E+11
1	0.600E+01 0.120E+02	0.297E+00	-0.134E-02	-0.899E-07	0.202E+03	0.403E+03	0.583E+11
3	0.120E+02 0.180E+02	0.289E+00 0.281E+00	-0.134E-02	0.242E+04 0.968E+04	0.175E+04	0.107E+03	0.583E+11
4	0.240E+02	0.273E+00	-0.134E-02	0.234E+05	0.302E+03	-0.397E+04	0.583E+11
5	0.300E+02	0.265E+00	-0.133E-02	0.133E+05	-0.114E+04	0.107E+04	0.583E+11
0 7	0.360E+02 0 420F+02	0.237E+00 0.249F+00	-0.133E-02	0.968E+04 0 125F+05	-0.002E+02 0 101F+04	0.107E+04 0 107F+04	0.583E+11
8	0.480E+02	0.241E+00	-0.133E-02	0.218E+05	0.208E+04	0.107E+04	0.583E+11
9	0.540E+02	0.233E+00	-0.133E-02	0.375E+05	0.316E+04	0.107E+04	0.583E+11
11	0.600E+02 0.660E+02	0.225E+00 0.218F+00	-0.132E-02	0.596E+05 0.882F+05	0.423E+04 0.531F+04	0.107E+04 0 107F+04	0.583E+11 0.583F+11
12	0.720E+02	0.210E+00	-0.130E-02	0.123E+06	0.265E+04	-0.640E+04	0.583E+11
13	0.780E+02	0.202E+00	-0.129E-02	0.120E+06	-0.143E+02	0.107E+04	0.583E+11
14 15	0.840E+02 0.900F+02	0.194E+00 0.187E+00	-0.128E-02	0.123E+06 0.131F+06	0.927E+03 0.153F+04	0.807E+03 0.403E+03	0.583E+11
16	0.960E+02	0.179E+00	-0.125E-02	0.142E+06	0.186E+04	0.259E+03	0.583E+11
17	0.102E+03	0.172E+00	-0.124E-02	0.153E+06	0.220E+04	0.421E+03	0.583E+11
19	0.108E+03 0.114F+03	0.164E+00 0.157E+00	-0.122E-02	0.188E+06 0.184E+06	0.238E+04	0.323E+03 0.231E+03	0.583E+11
20	0.120E+03	0.150E+00	-0.118E-02	0.202E+06	0.304E+04	0.139E+03	0.583E+11
21	0.126E+03	0.143E+00	-0.116E-02	0.221E+06	0.313E+04	0.508E+02	0.583E+11
22	0.132E+03 0.138E+03	0.136E+00 0.129E+00	-0.114E-02 -0.111E-02	0.240E+06 0.259E+06	0.314E+04 0.308F+04	-0.349E+02 -0.864E+02	0.583E+11 0.583E+11
24	0.144E+03	0.122E+00	-0.108E-02	0.277E+06	0.297E+04	-0.137E+03	0.583E+11
25	0.150E+03	0.116E+00	-0.105E-02	0.294E+06	0.281E+04	-0.185E+03	0.583E+11
26	0.156E+03 0.162E+03	0.110E+00 0 104E+00	-0.102E-02	0.310E+06 0.325E+06	0.260E+04 0.234F+04	-0.233E+03 -0.279E+03	0.583E+11 0.583E+11
28	0.168E+03	0.979E-01	-0.956E-03	0.339E+06	0.204E+04	-0.324E+03	0.583E+11
29	0.174E+03	0.923E-01	-0.921E-03	0.350E+06	0.171E+04	-0.345E+03	0.583E+11
30 31	0.180E+03 0.186E±03	0.869E-01 0.817E-01	-0.884E-03	0.359E+06 0.366E±06	0.135E+04 0.975E±03	-0.366E+03 -0.387E±03	0.583E+11 0.583E+11
32	0.192E+03	0.767E-01	-0.809E-03	0.371E+06	0.578E+03	-0.407E+03	0.583E+11
33	0.198E+03	0.720E-01	-0.771E-03	0.373E+06	0.185E+03	-0.379E+03	0.583E+11
34 35	0.204E+03 0.210E+03	0.675E-01 0.632E-01	-0./32E-03	0.3/3E+06 0.371E+06	-0.180E+03 -0.509E+03	-0.350E+03 -0.309E+03	0.583E+11 0.583E+11
36	0.216E+03	0.591E-01	-0.656E-03	0.367E+06	-0.798E+03	-0.269E+03	0.583E+11
37	0.222E+03	0.553E-01	-0.619E-03	0.361E+06	-0.105E+04	-0.230E+03	0.583E+11
38	0.228E+03	0.51/E-01 0.483E-01	-0.582E-03	0.354E+06	-0.126E+04 -0.143E+04	-0.193E+03	0.583E+11
40	0.240E+03	0.451E-01	-0.511E-03	0.337E+06	-0.158E+04	-0.123E+03	0.583E+11
41	0.246E+03	0.422E-01	-0.477E-03	0.327E+06	-0.170E+04	-0.118E+03	0.583E+11
42 43	0.252E+03 0.258E+03	0.394E-01 0.369E-01	-0.443E-03 -0.411E-03	0.317E+06 0.306E+06	-0.181E+04 -0.192F+04	-0.111E+03 -0.104E+03	0.583E+11 0.583F+11
44	0.264E+03	0.345E-01	-0.381E-03	0.294E+06	-0.202E+04	-0.953E+02	0.583E+11
45	0.270E+03	0.323E-01	-0.351E-03	0.281E+06	-0.211E+04	-0.866E+02	0.583E+11
46 47	0.276E+03 0.282E+03	0.303E-01 0.284F-01	-0.323E-03	0.268E+06 0.255E+06	-0.219E+04 -0.226E+04	-0.777E+02 -0.689E+02	0.583E+11 0.583F+11
48	0.288E+03	0.267E-01	-0.270E-03	0.241E+06	-0.233E+04	-0.605E+02	0.583E+11
49	0.294E+03	0.252E-01	-0.246E-03	0.227E+06	-0.239E+04	-0.526E+02	0.583E+11
50 51	0.306E+03	0.225E-01	-0.202E-03	0.213E+06 0.198E+06	-0.242E+04	-0.264E+02	0.583E+11
52	0.312E+03	0.214E-01	-0.183E-03	0.183E+06	-0.243E+04	0.189E+02	0.583E+11
53	0.318E+03	0.203E-01	-0.165E-03	0.169E+06	-0.240E+04	0.383E+02	0.583E+11
55	0.324E+03	0.194E-01 0.185E-01	-0.133E-03	0.133E+00	-0.229E+04	0.714E+02	0.583E+11
56	0.336E+03	0.178E-01	-0.119E-03	0.127E+06	-0.221E+04	0.853E+02	0.583E+11
57	0.342E+03	0.171E-01	-0.107E-03	0.114E+06	-0.212E+04	0.977E+02	0.583E+11
50 59	0.348E+03	0.165E-01 0.160E-01	-0.857E-04	0.102E+06 0.897E+05	-0.202E+04 -0.191F+04	0.109E+03 0.119E+03	0.583E+11
60	0.360E+03	0.155E-01	-0.770E-04	0.787E+05	-0.179E+04	0.121E+03	0.583E+11
61	0.366E+03	0.150E-01	-0.694E-04	0.683E+05	-0.166E+04	0.122E+03	0.583E+11
63	0.378E+03	0.143E-01	-0.573E-04	0.498E+05	-0.142E+04	0.124E+03	0.583E+11
64	0.384E+03	0.140E-01	-0.526E-04	0.417E+05	-0.129E+04	0.124E+03	0.583E+11
65	0.390E+03	0.137E-01	-0.487E-04	0.343E+05	-0.117E+04	0.124E+03	0.583E+11
67	0.402E+03	0.131E-01	-0.430E-04	0.217E+05	-0.925E+04	0.123E+03	0.583E+11
68	0.408E+03	0.129E-01	-0.410E-04	0.165E+05	-0.803E+03	0.122E+03	0.583E+11
69	0.414E+03	0.126E-01	-0.395E-04	0.121E+05	-0.682E+03	0.120E+03	0.583E+11

	Zo	ne4_8ft_Brac	ed_Sheet_Pil	e_Wall_Full_	_Flood_Stage_	Final_Total3	5ft.py5o
70	0.420E+03	0.124E-01	-0.385E-04	0.834E+04	-0.563E+03	0.117E+03	0.583E+11
71	0.426E+03	0.122E-01	-0.378E-04	0.531E+04	-0.447E+03	0.115E+03	0.583E+11
72	0.432E+03	0.119E-01	-0.374E-04	0.298E+04	-0.333E+03	0.113E+03	0.583E+11
73	0.438E+03	0.117E-01	-0.371E-04	0.132E+04	-0.221E+03	0.112E+03	0.583E+11
74	0.444E+03	0.115E-01	-0.371E-04	0.328E+03	-0.110E+03	0.110E+03	0.583E+11
75	0.450E+03	0.113E-01	-0.370E-04	0.000E+00	-0.273E+02	0.546E+02	0.292E+11

END OF ANALYSIS

Details of Bearing Capacity Calculations for Flood Walls in Soil Areas 1 to 3

Details of Primary Consolidation Settlement Analysis for Flood Walls in Soil Areas 1 to 3

New Medowland	s Flood Pr	otection	
Bergen Coun	ty, New Je	rsey	
Calculated by: LC Date: 11/22/2016	Date: 11/22/2016 CHECKED		
Floodwall base, B =	2.5	ft	
Depth from ground to base, D =	3.5	ft	
Groundwater table, U =	5	ft (below ground surface)	
Width of top wall, t =	0.833	ft	
Wall height, H=	4.5	ft	
Base height, h =	1	ft	
Total unit weight of origional soil, $\gamma =$	110	pcf	
Total unit weight of compacted soil	120	pcf	
Total unit weight of concrete, $\gamma_c =$	150	pcf	
Total weight of concrete, $W_c =$	937	lb	
Total weight of compacted soil over base, $W_s =$	500	lb	
Existing soil pressure	385	psf	
Contact pressure	575	psf	
Additional pressure	190	psf	
H Wc Ws Ws B	h i		

Additional Stress Calculation for Flo	oodwall with 4	' Height in Soil Area 3				
New Medowland	ls Flood Protect	ion				
Bergen Coun	ty, New Jersey					
Calculated by: LC Date: 11/22/2016	CHE	CKED BY: MS				
Floodwall base, B =	4	ft				
Depth from ground to base, D =	3.5	ft				
Groundwater table, U =	3	ft (below ground surface)				
Width of top wall, t =	1	ft				
Wall height, H=	6.5	ft				
Base height, h =	1	ft				
Total unit weight of origional soil, $\gamma =$	110	pcf				
Total unit weight of compacted soil	120	pcf				
Total unit weight of concrete, $\gamma_c =$	150	pcf				
Total weight of concrete, $W_c =$	1450	lb				
Total weight of compacted soil over base, W_s =	900	lb				
Existing soil pressure	354	psf				
Contact pressure	588	psf				
Additional pressure	234	psf				
	Vs h					

Additional Stress Calculation for Flo	oodwall with 6	' Height in Soil Area 3
New Medowland	ls Flood Protect	ion
Bergen Coun	ty, New Jersey	
Calculated by: LC Date: 11/22/2016	CHE	CKED BY: MS
Floodwall base, B =	8	ft
Depth from ground to base, D =	4	ft
Groundwater table, U =	1	ft (below ground surface)
Width of top wall, t =	1.5	ft
Wall height, H=	8.5	ft
Base height, h =	1.5	ft
Total unit weight of origional soil, $\gamma =$	110	pcf
Total unit weight of compacted soil	120	pcf
Total unit weight of concrete, $\gamma_c =$	150	pcf
Total weight of concrete, $W_c =$	2823	lb
Total weight of compacted soil over base, W_s =	1342	lb
Existing soil pressure	253	psf
Contact pressure	521	psf
Additional pressure	268	psf
	Ws	

Additional Stress Calculation for Flo	oodwall with 8	' Height in Soil Area 3
New Medowland	ls Flood Protect	ion
Bergen Coun	ty, New Jersey	
Calculated by: LC Date: 11/22/2016	CHE	CKED BY: MS
Floodwall base, B =	12	ft
Depth from ground to base, D =	4	ft
Groundwater table, U =	1	ft (above ground surface)
Width of top wall, t =	1.5	ft
Wall height, H=	10.5	ft
Base height, h =	1.5	ft
Total unit weight of origional soil, $\gamma =$	110	pcf
Total unit weight of compacted soil	120	pcf
Total unit weight of concrete, $\gamma_c =$	150	pcf
Total weight of concrete, $W_c =$	3612	lb
Total weight of compacted soil over base, W_s =	1512	lb
Existing soil pressure	190	psf
Contact pressure	427	psf
Additional pressure	237	psf

		Top of Wall El.	+8 ft						Compression Settlement (in)	0.254	0.119	0.068	0.044	0.031	0.023	0.018	0.015	0.012	0.010	0.008	0.007	0.006	0.006	0.005	
		Groundwater Table El.	+1 ft						Recompression Settlement (in)	0.093	0.060	0.047	0.040	0.034	0.030	0.027	0.024	0.022	0.020	0.019	0.017	0.016	0.015	0.014	
		Ground surface El.	+6 ft						Fianl Stress o'f (psf)	662	712	775	854	940	1029	1121	1213	1306	1399	1493	1587	1681	1775	1869	in
		Consoildation	Normal	ertical Strip Load	26)]		und surface) und surface)		Increase stress, $\Delta \sigma_{z \ (pst)}$	167	91	58	42	33	27	23	20	18	16	14	13	12	11	10	1.10
	l Parameters	Cr	0.012	Soil due to Ve	3 cos(β +	fî psf	ft (below grou ft (below grou		Preconstruct ion stress, o'p (psf)	495.0	621.4	716.6	811.8	907.0	1002.2	1097.4	1192.6	1287.8	1383.0	1478.2	1573.4	1668.6	1763.8	1859.0	
וכוצוור די	Soi	Cc	0.17	l Stress in	+ sin f	2.5 190	3.5 5		Q	2.2	2.7	2.9	3.0	3.0	3.0	3.0	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
7		Void Ratio, e ₀	1.03	Increase in Vertica	$\Delta \sigma_2 = \frac{q}{\pi} [\beta$	Footing Width B= Surcharge q=	surcharge q= -ooting Depth D= GW Table Depth=	Settlement	β	1.8	0.8	0.5	0.4	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
		Thickness (ft)	70	ad per unit area	Ţ	8			Initial stress, $\sigma'_{0(psf)}$	110	236	332	427	522	617	712	808	903	998	1093	1188	1284	1379	1474	ry Settlement
		Unit Weight (pcf)	110	q = lc		8			Depth (ft)	4.5	6.5	8.5	10.5	12.5	14.5	16.5	18.5	20.5	22.5	24.5	26.5	28.5	30.5	32.5	Total Prima
		Soil	Clay & Silt	B	+	1	+	2	Thickness Hc (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
		Layer No.	1	<u>+</u>					Sub Layer No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	

SETTLEMENT CALCULATION -NEW MEADOWLAND 2' Height 2.5' Width Soil Area 3

		Top of Wall El.	+8 ft						Compression Settlement (in)	0.388	0.239	0.146	0.097	0.069	0.051	0.040	0.032	0.026	0.021	0.018	0.015	0.013	0.012	0.010	
		Groundwater Table El.	+1 ft						Recompression Settlement (in)	0.131	0.077	0.056	0.045	0.037	0.032	0.028	0.025	0.022	0.020	0.019	0.017	0.016	0.015	0.014	
		Ground surface El.	+4 ft						Fianl Stress o'f (psf)	626	653	700	768	846	930	1018	1107	1198	1289	1382	1474	1568	1661	1755	in
		Consoildation	Normal	rtical Strip Load	26)]		und surface) und surface)		Increase stress, $\Delta \sigma_{z}$ (pst)	225	156	108	81	64	53	45	39	35	31	28	26	24	22	20	1.73
	l Parameters	Cr	0.012	Soil due to Ve	$\cos(\beta +$	fî psf	ft (below groi ft (below groi		Preconstruct ion stress, σ'p (psf)	401.4	496.6	591.8	687.0	782.2	877.4	972.6	1067.8	1163.0	1258.2	1353.4	1448.6	1543.8	1639.0	1734.2	
	Soi	c	0.17	l Stress in 9	+ sin β	4 234	3.5 3		Q	2.0	2.6	2.8	2.9	2.9	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.1	3.1	
7		Void Ratio, e ₀	1.03	Increase in Vertica	$\Delta \sigma_2 = \frac{q}{\pi} [\beta$	Footing Width B= Surcharge q=	Footing Depth D= GW Table Depth=	Settlement	ß	2.2	1.2	0.8	0.6	0.4	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.1	
		Thickness (ft)	70	ad per unit area		8			Initial stress, $\sigma'_{0(psf)}$	48	143	238	333	428	524	619	714	809	904	1000	1095	1190	1285	1380	ry Settlement
		Unit Weight (pcf)	110	a = lo			*		Depth (ft)	4.5	6.5	8.5	10.5	12.5	14.5	16.5	18.5	20.5	22.5	24.5	26.5	28.5	30.5	32.5	Total Prima
		Soil	Clay & Silt			/	•	2 🛉	Thickness Hc (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
		Layer No.	1						Sub Layer No.	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	

SETTLEMENT CALCULATION -NEW MEADOWLAND 4' Height 4' Width Soil Area 3

	Top of Wall El.	+8 ft						Compression Settlement (in)	0.554	0.414	0.296	0.213	0.157	0.120	0.094	0.075	0.061	0.051	0.043	0.037	0.032	0.028	0.024	
	Groundwater Table El.	+1 ft						Recompression Settlement (in)	0.114	0.063	0.045	0.035	0.029	0.024	0.021	0.019	0.017	0.015	0.014	0.013	0.012	0.011	0.010	
	Ground surface El.	+2 ft						Fianl Stress o'f (psf)	567	636	689	748	816	891	970	1054	1139	1227	1316	1406	1496	1588	1680	in
	Consoildation	Normal	rtical Strip Load	28)]		und surface) und surface)		Increase stress, $\Delta \sigma_{z}$ (psf)	266	240	198	162	135	114	99	87	77	70	63	58	54	50	46	2.64
l Parameters	Cr	0.012	Soil due to Ve	$3\cos(\beta +$	fî psf	ft (below grou ft (below grou		Preconstruct ion stress, o'p (psf)	300.4	395.6	490.8	586.0	681.2	776.4	871.6	966.8	1062.0	1157.2	1252.4	1347.6	1442.8	1538.0	1633.2	
Soi	c	0.17	l Stress in :	+ $\sin \beta$	8 268	7 7		Ś	1.8	2.2	2.5	2.6	2.7	2.8	2.8	2.9	2.9	2.9	3.0	3.0	3.0	3.0	3.0	
	Void Ratio, e ₀	1.03	Increase in Vertica	$\Delta \sigma_2 = \frac{q}{\pi} [\beta$	Footing Width B= Surcharge q=	Footing Depth D= GW Table Depth=	Settlement	ß	2.7	1.9	1.3	1.0	0.8	0.7	0.6	0.5	0.5	0.4	0.4	0.3	0.3	0.3	0.3	
	Thickness (ft)	70	ad per unit area	Ī	8			Initial stress, $\sigma'_{0 (pst)}$	48	143	238	333	428	524	619	714	809	904	1000	1095	1190	1285	1380	ury Settlement
	Unit Weight (pcf)	110	q = lc					Depth (ft)	5	7	6	11	13	15	17	19	21	23	25	27	29	31	33	Total Prima
	Soil	Clay & Silt		- r +	/	•	2	Thickness Hc (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
	Layer No.	1	<u>+</u>					Sub Layer No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	

SETTLEMENT CALCULATION -NEW MEADOWLAND 6' Height 8' Width Soil Area 3

					Soi	il Parameters				
	Soil	Unit Weight (pcf)	Thickness (ft)	Void Ratio, e ₀	C_c	Cr	Consoildation	Ground surface El.	Groundwater Table El.	Top of Wall El.
	Clay & Silt	110	70	1.03	0.17	0.012	Normal	0.0 ft	+1 ft	+8 ft
	B		oad per unit area	Increase in Vertica	ll Stress in	Soil due to Ve	tical Strip Load			
1	the state of the s		Ī	$\Delta \sigma_2 = \frac{q}{\pi} [\beta$	+ sin <i>f</i>	$3\cos(\beta +$	26)]			
	/	8	8	Footing Width B= Surcharge q=	12 237	ft psf				
	↓			Footing Depth D= GW Table Depth=	4 L	ft (below grou ft (above grou	und surface) und surface)			
	2 ^ 2			Settlement						
'er	Thickness Hc (ft)	Depth (ft)	Initial stress, $\sigma'_{0 \ (psf)}$	Į	Ş	Preconstruct ion stress, $\sigma'p~(psf)$	Increase stress, $\Delta \sigma_{z}$ (psf)	Fianl Stress o'f (psf)	Recompression Settlement (in)	Compression Settlement (in)
1	2	5	48	2.8	1.7	238.0	237	475	0.099	0.602
	2	7	143	2.2	2.0	333.2	227	561	0.052	0.454
	2	9	238	1.8	2.3	428.4	206	635	0.036	0.343
	2	11	333	1.4	2.4	523.6	181	705	0.028	0.260
	2	13	428	1.2	2.6	618.8	158	777	0.023	0.199
	2	15	524	1.0	2.6	714.0	139	853	0.019	0.155
	2	17	619	6.0	2.7	809.2	123	932	0.017	0.123
	2	19	714	0.8	2.8	904.4	109	1014	0.015	0.100
	2	21	809	0.7	2.8	9.99.6	99	1098	0.013	0.082
	2	23	904	0.6	2.8	1094.8	89	1184	0.012	0.069
	2	25	1000	0.6	2.9	1190.0	82	1272	0.011	0.058
	2	27	1095	0.5	2.9	1285.2	75	1361	0.010	0.050
	2	29	1190	0.5	2.9	1380.4	70	1450	0.009	0.043
	2	31	1285	0.4	2.9	1475.6	65	1541	0.009	0.038
	2	33	1380	0.4	2.9	1570.8	61	1632	0.008	0.033
		Total Prima	ury Settlement				2.97	in		

SETTLEMENT CALCULATION -NEW MEADOWLAND 8' Height 12' Width Soil Area 3

Appendix C1-I

Details of Seepage Analysis Results for T-walls for Zones 1 to 3 from GeoStudio

AFCOM

Name: Concrete Wall Model: Saturated Only K-Sat: 1e-015 ft/sec K-Sat: 6.6e-006 ft/sec K-Sat: 1.3e-007 ft/sec Model: Saturated Only Model: Saturated Only Name: Clay & Silt Name: Bedrock

Exit Gradient

2'-0" HT CONCRETE FLOOD WALL SEEPAGE ANALYSIS

DATE: 11/23/16 SUBJECT : Seepage Analysis BY: LC

A:\Meadowlands\Feasibility Analysis for Flood Protection\Floodwall\Seepage ana; sis zone 1-3\Seepage analysis for floodwall at Zone-3.doc CHKD. BY: NP DATE: 11/23/16

JOB NO. : 60481054 SHEET 7 OF 10

Name: Concrete Wall Model: Saturated Only K-Sat: 1e-015 ft/sec K-Sat: 6.6e-006 ft/sec K-Sat: 1.3e-007 ft/sec Model: Saturated Only Model: Saturated Only Name: Clay & Silt Name: Bedrock

Exit Gradient

4'-0" HT CONCRETE FLOOD WALL SEEPAGE ANALYSIS

DATE: 11/23/16 SUBJECT : Seepage Analysis BY: LC

A:\Meadowlands\Feasibility Analysis for Flood Protection\Floodwall\Seepage ana; sis zone 1-3\Seepage analysis for floodwall at Zone-3.doc CHKD. BY: NP DATE: 11/23/16

JOB NO. : 60481054 SHEET 8 OF 10

Name: Concrete Wall Model: Saturated Only K-Sat: 1e-015 ft/sec K-Sat: 6.6e-006 ft/sec K-Sat: 1.3e-007 ft/sec Model: Saturated Only Model: Saturated Only Name: Clay & Silt Name: Bedrock

6'-0" HT CONCRETE FLOOD WALL SEEPAGE ANALYSIS

DATE: 11/23/16 SUBJECT : Seepage Analysis BY: LC

A:\Meadowlands\Feasibility Analysis for Flood Protection\Floodwall\Seepage ana; sis zone 1-3\Seepage analysis for floodwall at Zone-3.doc CHKD. BY: NP DATE: 11/23/16

JOB NO. : 60481054 SHEET 9 OF 10

Name: Concrete Wall Model: Saturated Only K-Sat: 1e-015 ft/sec K-Sat: 6.6e-006 ft/sec K-Sat: 1.3e-007 ft/sec Model: Saturated Only Model: Saturated Only Name: Clay & Silt Name: Bedrock

8'-0" HT CONCRETE FLOOD WALL SEEPAGE ANALYSIS

CHKD. BY: NP DATE: 11/23/16 **DATE** : 11/23/16 SUBJECT : Seepage Analysis BY: LC

A:\Meadowlands\Feasibility Analysis for Flood Protection\Floodwall\Seepage ana; ysis zone 1-3\Seepage analysis for floodwall at Zone-3.doc SHEET 10 OF 10 **JOB NO.** : 60481054

Appendix C1-J

Plots of Lateral Deflection, Bending Moment and Shear Force versus Embedded Depth of I-walls from PYWall

Appendix C1-K

Output from PYWall Analysis for 2 ft I-wall in Soil Area 4

zone4_2ft_I_wall_Az12.py5o _____ PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ : Q:\Geotechnical\Meadowlands\Calculations for New Path to file locations Alternatives\I-Wall\2 ft I-Wall\ Name of input data file : Zone4_2ft_I_wall_AZ12.py5d Name of output file : Zone4_2ft_I_wall_AZ12.py5o Name of plot output file : Zone4_2ft_I_wall_AZ12.py5p _____ Time and Date of Analysis _____ _____ Date: October 16, 2017 Time: 17:24:46 New Meadowlands_zone4_2ft_I_Wall PROGRAM CONTROL PARAMETERS NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0 NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1 GENERATE EARTH PRESSURE INTERNALLY 1 = GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY 1 = NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES 0 = NUMBER OF INCREMENTS = 28 6.000 IN INCREMENT LENGTH = FREE HEIGHT OF WALL 24.000 IN = = 3.000 IN = 1.000E-05 IN MAXIMUM ALLOWABLE DEFLECTION DEFLECTION CLOSURE TOLERANCE *************** STIFFNESS AND LOAD DATA EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD, S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, R - STIFFNÉSS OF TORSIONAL RESISTANCE. s' FROM TO CONTD Q Т R Ρ ET

Zone4_2ft_I_wall_AZ12.py5o LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 28 0.230E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 0 * * WALL INFORMATION FREE HEIGHT OF WALL = 0.240E+02 IN WIDTH FOR EARTH PRESSURE, WA = 0.606E+02 IN WIDTH FOR SOIL RESISTANCE, WP = 0.606E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = DEPTH TO THE WATER TABLE AT EXCAVATION = 0.000E+00 IN 0.240E+02 IN 0.360E-01 LBS/IN**3 UNIT WEIGHT OF WATER = SLOPE OF THE BACKFILL (deg.) = 0.000E+00MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01* SURCHARGE INFORMATION * UNIFORM SURFACE PRESSURE = 0.000E+00 LBS/IN**2 * SOIL INFORMATION * * TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP NO. IN PSI DEG PCI T OR F IN 0.00 24.0 0.0 0.036 Т 1 0.0 0.0 20.0 2 216.0 0.049 Т 24.00 3 0.0 22.0 0.064 240.00 636.0 Т * EFFECTIVE OVERBURDEN STRESS * DEPTH STRESS LBS/IN**2 ΤN 0.000E+00 0.000E+00 0.240E+02 0.406E-02 0.240E+03 0.285E+01 * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * ACTIVE EARTH PASSIVE EARTH LAYER OPTIONAL EARTH COEFFICIENT COEFFICIENT COEFFICIENT NO. 1 0.100E+01 0.100E+01 0.000E+00 0.204E+01 2 0.490E+00 0.000E+00 3 0.455E+00 0.220E+01 0.000E+00

zone4_2ft_I_wall_Az12.py5o

LAYER PA1 Z1 PA2 Z2 PA3 Z3 PA4 NO LBS/IN**2 IN LBS/IN**2 IN LBS/IN**2 IN LBS/IN**2 1 0.00 12.00 0.00 16.00 0.00 18.74 0.02
1 0.00 12.00 0.00 16.00 0.00 18.74 0.02 ************************************
ACTIVE WATER PRESSURE OF EACH LAYER * LAYER PW1 Z1 PW2 Z2 1 0.00 12.00 10.37 16.00 DEPTH ACTIVE EARTH PRESSURE IN LBS/IN
LAYER PW1 Z1 PW2 Z2 1 0.00 12.00 10.37 16.00 DEPTH ACTIVE EARTH PRESSURE LBS/IN
1 0.00 12.00 10.37 16.00 DEPTH ACTIVE EARTH PRESSURE IN LBS/IN
DEPTH ACTIVE EARTH PRESSURE IN LBS/IN
· · · · · · · · · · · · · · · · · · ·
0.000E+00 0.000E+00 0.600E+01 0.131E+02 0.120E+02 0.262E+02 0.300E+02 0.526E+02 0.300E+02 0.121E+00 0.40E+02 0.121E+00 0.480E+02 0.121E+00 0.540E+02 0.121E+00 0.660E+02 0.121E+00 0.720E+02 0.121E+00 0.720E+02 0.121E+00 0.730E+02 0.121E+00 0.900E+02 0.121E+00 0.900E+02 0.121E+00 0.900E+02 0.121E+00 0.102E+03 0.121E+00 0.114E+03 0.121E+00 0.126E+03 0.121E+00 0.138E+03 0.121E+00 0.136E+03 0.121E+00 0.136E+03 0.121E+00 0.144E+03 0.121E+00 0.144E+03 0.121E+00 0.156E+03 0.121E+00 0.168E+03 0.121E+00 0.168E+03 0.121E+00 0.168E+03 0.121E+00

X AT THE SURFACE OF EXCAVATION SIDE = 24.00 IN

LAYER 1 THE SOIL IS A SILT

DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH 4 POINTS

X,IN	WEIGHT, LBS/IN**3
24.0000	0.1319D-01
240.0000	0.1319D-01
240.0000	0.2766D-01
876.0000	0.2766D-01

DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH 2 POINTS

X.IN	S.LBS/IN**2	PHI.DEGREES	E50
24.00	0.0000D+00	20.000	0.2000D-01
180.00	0.0000D+00	20.000	0.2000D-01

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH		PHI	GAMMA AVG	А	В	Puc	Puí
0.10	60.62	20.0	0.132E-01	2.83	2.14	0.800E-01	0.211E+00
			Y IN 0.000E+00 0.842E-01 0.168E+00	-0 0 0	P LBS/IN .121E+00 .245E-01 .714E-01	N D L L	
			0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.589E+00	0 0 0 0 0	.106E+00 .134E+00 .157E+00 .179E+00 .198E+00))))	
			0.674E+00 0.758E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01	0 0 0 0 0 0	.216E+00 .232E+00 .247E+00 .262E+00 .276E+00 .476E+00))))	
			0.326E+02 0.629E+02 0.932E+02	0 0 0	.476E+00 .476E+00 .476E+00)))	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH	DIAM	PHI GAMMA AVG	А	В	Puc	Puí
IN	IN	LBS/IN**3		1 00 0	100- 00	0 500- 00
24.10	60.62	20.0 0.132E-01	2.55	1.89 0	.193E+02	0.508E+02
		Page	4			
			•			

Zone4_2ft_I_wall_Az12.py5o

Y	Р
IN	LBS/IN
0.000E+00	0.121E+00
0.842E-01	0.470E+02
0.168E+00	0.573E+02
0.253E+00	0.643E+02
0.337E+00	0.698E+02
0.421E+00	0.744E+02
0.505E+00	0.784E+02
0.589E+00	0.819E+02
0.674E+00	0.851E+02
0.758E+00	0.880E+02
0.842E+00	0.907E+02
0.926E+00	0.932E+02
0.101E+01	0.956E+02
0.227E+01	0.130E+03
0.326E+02	0.130E+03
0.629E+02	0.130E+03
0.932E+02	0.130E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
39.00	60.62	20.0	0.132E-01	2.37	1.75	0.312E+02	0.822E+02
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.589E+00 0.674E+00 0.674E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.326E+02 0.629E+02 0.932E+02	-0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	P LBS/IN 121E+00 914E+02 106E+02 115E+02 122E+02 132E+02 133E+02 133E+02 142E+02 142E+02 1442E+02 152E+02 154E+02 195E+02 195E+02 195E+02	N 22 33 33 33 33 33 33 33 33 33 33 33 33	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
63.00	60.62	20.0	0.132E-01	2.08	1.52	0.504E+02	0.133E+03
			Y		Р		
			IN		LBS/IN		
			Page	2 5			

Zone4_	_2ft_	I_Wall	_AZ12.	py5o
--------	-------	--------	--------	------

~~~	///ET_ZIC_I_Wall_	_AZIZ. DYJU
	0.000E+00	0.121E+00
	0.842E-01	0.159E+03
	0.168E+00	0.214E+03
	0.253E+00	0.221E+03
	0.337E+00	0.227E+03
	0.421E+00	0.231E+03
	0.505E+00	0.235E+03
	0.589E+00	0.238E+03
	0.674E+00	0.241E+03
	0.758E+00	0.243E+03
	0.842E+00	0.246E+03
	0.926E+00	0.248E+03
	0.101E+01	0.250E+03
	0.227E+01	0.277E+03
	0.326E+02	0.277E+03
	0.629E+02	0.277E+03
	0.932E+02	0.277E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG	А		В	Puc	Puí
78.00	60.62	20.0	0.132E-01	1.91	1	. 39	0.624E+02	0.164E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.589E+00 0.674E+00 0.674E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.326E+02 0.629E+02 0.932E+02	-0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	LB3 1211 3021 3031 3051 3051 3051 3051 3051 3051 305	P S/IN E+00 E+03 E+03 E+03 E+03 E+03 E+03 E+03	N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH IN	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	Puc	Puí
102.00	60.62	20.0	0.132E-01	1.66	1.19	0.816E+02	0.215E+03
			Y		Р		
			IN		LBS/IN		
			0.000E+00		0.121E+00		
			0.842E-01		0.258E+03		
			0.168E+00		0.341E+03		
			Page	6			

	Zone4_	_2ft_I	_wall_	_AZ12.	oy5o
--	--------	--------	--------	--------	------

2011C 1_21 C_1_0a1 1_/	(CTC - P) 50
0.253E+00	0.355E+03
0.337E+00	0.364E+03
0.421E+00	0.372E+03
0.505E+00	0.379E+03
0.589E+00	0.384E+03
0.674E+00	0.389E+03
0.758E+00	0.393E+03
0.842E+00	0.397E+03
0.926E+00	0.401E+03
0.101E+01	0.404E+03
0.227E+01	0.356E+03
0.326E+02	0.356E+03
0.629E+02	0.356E+03
0.932E+02	0.356E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH		PHI	GAMMA AVG	A	В	Puc	Puí
117.00	60.62	20.0	0.132E-01	1.52	1.08	0.935E+02	0.247E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.589E+00 0.674E+00 0.674E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.326E+02 0.629E+02 0.932E+02		P LBS/IN 121E+00 295E+0 352E+0 375E+0 391E+0 405E+0 417E+0 426E+0 435E+0 435E+0 435E+0 435E+0 457E+0 457E+0 374E+0 374E+0 374E+0	N D D D D D D D D D D D D D	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH		PHI	GAMMA AVG	А	В	Puc	Puí
141.00	60.62	20.0	0.132E-01	1.32	0.93	0.113E+03	0.297E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00	7	P LBS/IN 0.121E+00 0.308E+03 0.364E+03 0.401E+03 0.429E+03 0.453E+03		
			Fage	1			

### zone4_2ft_I_wall_Az12.py50___

0.505E+00	0.473E+03
0.589E+00	0.491E+03
0.674E+00	0.507E+03
0.758E+00	0.521E+03
0.842E+00	0.535E+03
0.926E+00	0.547E+03
0.101E+01	0.559E+03
0.227E+01	0.391E+03
0.326E+02	0.391E+03
0.629E+02	0.391E+03
0.932E+02	0.391E+03

## P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
155.90	60.62	20.0	0.132E-01	1.21	0.84	0.125E+03	0.329E+03
			Y		P į		
			IN		LBS/IN	1	
			0.000E+00	-	0.121E+00	)	
			0.842E-01		0.303E+03	3	
			0.168E+00		0.369E+03	3	
			0.253E+00		0.415E+03	3	
			0.337E+00		0.450E+03	3	
			0.421F+00		0.480F+0	3	
			0.505F+00		0.506F+0	ŝ	
			0 589E+00		0 529F+0	Ś	
			0.674F+00		0.550F+0	ŝ	
			0.758E+00		0 568F+0	Ś	
			$0.842 E \pm 00$		0.586F+03	Ś	
			0 9265+00		$0.602 \pm 03$		
			0.5202+00		0.6022+03	2	
			0.1010+01 0.2270+01		0.017E+0.03	2	
			0.2265.02		0.3300000	)	
			0.326E+02		0.390E+U:		
			0.629E+02		U.396E+U:	5	
			0.932E+02		U.396E+0:	5	

## P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH		PHI	GAMMA AVG	А	В	Puc	Puí
179.90	60.62	20.0	0.132E-01	1.07	0.72	0.144E+03	0.379E+03
			Y		Р		
			IN		LBS/IN	1	
			0.000E+00		0.121E+00	)	
			0.842E-01		0.303E+03	}	
			0.168E+00		0.385E+03	}	
			0.253E+00		0.442E+03	}	
			0.337E+00		0.488E+03	}	
			0.421E+00		0.527E+03		
			0.505F+00		0.561F+03		
			0.589E+00		$0.592 \pm 03$		
			0.674F+00		0.620F+03		
			Daug	8	010202103	•	
			Fage	0			

<pre>zone4_2ft_I_wall_</pre>	AZ12.py5o
0.758E+00	0.645E+03
0.842E+00	0.669E+03
0.926E+00	0.692E+03
0.101E+01	0.713E+03
0.227E+01	0.406E+03
0.326E+02	0.406E+03
0.629E+02	0.406E+03
0.932E+02	0.406E+03

## P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

New Meadowlands_Zone4_2ft_I_Wall

RESULTS -- ITERATION 3

STA I	Х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA
	IN	IN		LBS-IN	LBS	LBS
LBS-IN**2						
0 0	.000e+00	0.386E-01	-0.341E-03	0.000E+00	0.000E+00	0.000E+00
0.115E+11 1 0.	.600E+01	0.366E-01	-0.341E-03	0.000E+00	0.393E+02	0.786E+02
0.230E+11 2 0.	.120E+02	0.345E-01	-0.341E-03	0.471E+03	0.157E+03	0.157E+03
0.230E+11 3 0.	180F+02	0.325E-01	-0.341F-03	0.189F+04	0.354F+03	0.236F+03
0.230E+11	2405+02	0 304E-01	-0 340E-03	0.472E+04	0 630E±03	0.316E+03
0.230E+11	2005.02	0.304E-01	-0.340E-03	0.4722+04	0.0302+03	0.3102+03
0.230E+11	. 300E+02	0.284E-01	-0.338E-03	0.945E+04	0.775E+03	-0.260E+02
6 0. 0.230E+11	.360E+02	0.264E-01	-0.335E-03	0.140E+05	0.738E+03	-0.486E+02
7 0. 0.230E+11	.420E+02	0.244E-01	-0.331E-03	0.183E+05	0.680E+03	-0.676E+02
8 0. 0 230F+11	.480E+02	0.224E-01	-0.326E-03	0.222E+05	0.604E+03	-0.829E+02
9 0.	.540E+02	0.205E-01	-0.319E-03	0.256E+05	0.516E+03	-0.947E+02
10  0.2300 + 11	.600E+02	0.186E-01	-0.312E-03	0.284E+05	0.417E+03	-0.103E+03
11 0.230E+11 0.010	.660E+02	0.167E-01	-0.305E-03	0.306E+05	0.311E+03	-0.108E+03
0.230E+11 12 0.	.720E+02	0.149E-01	-0.297E-03	0.321E+05	0.199E+03	-0.115E+03
0.230E+11 13 0.	.780E+02	0.132E-01	-0.288E-03	0.329E+05	0.822E+02	-0.118E+03
0.230E+11 14 0.	.840F+02	0.115E-01	-0.279E-03	0.331E+05	-0.355E+02	-0.117F+03
0.230E+11 15 0	900F+02	0 982E-02	-0 271E-03	0 325E+05	-0 150F+03	-0 113E+03
0.230E+11	0605102	0.8225-02		0.2125105		-0.1045+03
0.230E+11	1025.02	0.022E-02	-0.203E-03	0.3132+03	-0.2392+03	-0.104E+03
0.230E+11	. 102E+03	U.66/E-02	-U.255E-U3	U.294E+U5	-U.358E+U3	-U.929E+U2
18 0. 0.230E+11	.108E+03	0.516E-02	-0.247E-03	0.270E+05	-0.442E+03	-0.769E+02
19 0. 0.230E+11	.114E+03	0.370E-02	-0.241E-03	0.241E+05	-0.510E+03	-0.586E+02

	Zo	ne4_2ft_I_wa]	1_AZ12.py5o		
20 0.120E+03	0.227E-02	-0.235E-03	0.209E+05	-0.559E+03	-0.380E+02
0.230E+11					
21 0.126E+03	0.880E-03	-0.230E-03	0.174E+05	-0.585E+03	-0.152E+02
0.230E+11					
22 0.132E+03	-0.485E-03	-0.226E-03	0.138E+05	-0.587E+03	0.109E+02
0.230E+11					
23 0.138E+03	-0.183E-02	-0.223E-03	0.103E+05	-0.562E+03	0.399E+02
0.230E+11					
24 0.144E+03	-0.316E-02	-0.220E-03	0.710E+04	-0.507E+03	0.700E+02
0.230E+11					
25 0.150E+03	-0.447E-02	-0.219E-03	0.427E+04	-0.423E+03	0.986E+02
0.230E+11					
26 0.156E+03	-0.578E-02	-0.218E-03	0.203E+04	-0.310E+03	0.127E+03
0.230E+11					
27 0.162E+03	-0.709E-02	-0.218E-03	0.549E+03	-0.169E+03	0.155E+03
0.230E+11					
28 0.168E+03	-0.839E-02	-0.218E-03	0.554E-09	-0.457E+02	0.914E+02
0.115E+11					

END OF ANALYSIS

Details of Seepage Analysis Results for I-walls with Sheet Piles in Zones 4 to 7 from GeoStudio

















Details of Seepage Analysis Results for T-walls with Sheet Piles in Zones 4 to 7 from GeoStudio

















Appendix C1-N

Output from GROUP Analysis for 8 ft T-wall in Soil Areas 4 to 7

GROUP for windows, Version 2014.9.3

Serial Number : 208076662

Analysis of A Group of Piles subjected to Axial and Lateral Loading (c) Copyright ENSOFT, Inc., 1987-2014 All Rights Reserved  Time and Date of Analysis

Date: January 18, 2017 Time: 10:21:13

***** COMPUTATION RESULTS *****

6 Ft Floodwall

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : Load Case LOAD TYPE : Dead, DL * TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONCENTRATED LOAD AT ORIGIN *

HOR. LOAD Z, LBS	MOMENT Z,IN-LBS
0.00000	1.98036E+06
HOR. LOAD Y, LBS	MOMENT Y, IN-LBS
37750.0	0.00000
VERT. LOAD, LBS	MOMENT X , IN-LBS
23460.0	0.00000

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

HORIZONTAL Z,IN	ANGLE ROT. Z,RAD
-3.04885E-18	2.22889E-03
HORIZONTAL Y,IN	ANGLE ROT. Y,RAD
0.29516	-3.95063E-19
VERTICAL ,IN	ANGLE ROT. X, RAD
0.0107729	-3.59271E-20

THE GLOBAL STRUCTURAL COORDINATE SYSTEM

Zone 4 to 7 _ 8ft Flood Height _ HP Pile.gp9t

OP DISPLACEMENTS *	JP DISP, X, IN DI: ** *********** **** -6.9467E-02 9.1013E-02	-6.9467E-02 9.1013E-02 2	FOP REACTIONS *	JP FOR, X,LBS FOI ** **********************************	-1365.1 1.1 2 2.4825E+04 2.2	E COORDINATE SYSTEM	TOP DISPLACEMENTS *	JP DISP. X, IN DI: ** **********************************	-4.6521E-03 2 2.5143E-02	FOP REACTIONS *	JP AXIAL, LBS LA' ** **********************************	-5977.4 -1.3 2 3.0596E+04 1.3 1
	SP.Y,IN ******** 0.2952 0.2952	$\begin{array}{c} 0.2952 \\ 1 \\ 0.2952 \\ 1 \end{array}$		R. Y, LBS ******** 2608E+04 5142E+04	5142E+04 2 2608E+04 1	(LOCAL AXE		SP. y,IN ******** 0.3022 -0.3088	$^{-0.3088}_{\begin{array}{c}2\\0.3022\\1\end{array}}$		T. y, LBS ******** 3830E+04 3979E+04	3979E+04 2 3830E+04 1
	DISP. Z,IN ************************************	-4.3422E-18 1 -1.7555E-18 2		FOR. Z, LBS ********* 3.7312E-13 -3.7312E-13	-3.7312E-13 2 3.7312E-13 1	(SE)		DISP. z,IN ************************************	-3.4392E-17 2 -4.3422E-18 1		LAT. Z, LBS ********** 3.7312E-13 -1.4812E-12	-1.4812E-12 2 3.7312E-13 1
	ROT.X,RAD *********** -3.5927E-20 -3.5927E-20	-3.5927E-20 1 -3.5927E-20 1		MOM X,LBS-IN ********** 7.2175E-12 -3.4158E-11	-3.4158E-11 2 7.2175E-12 1			ROT. X,RAD ********* -1.5625E-19 1.7226E-19	-1.5625E-19 1 1.7226E-19 2		MOM X,LBS-IN ********** -7.7307E-12 8.4969E-12	-7.7307E-12 1 8.4969E-12 2
	ROT.Y,RAD ********** -3.9506E-19 -3.9506E-19	-3.9506E-19 1 -3.9506E-19 1		MOM Y, LBS-IN ********** -4.7230E-11 4.7206E-11	-4.7230E-11 1 4.7206E-11 2			ROT. Y.RAD *************** -3.6462E-19 6.4643E-19	-3.6462E-19 1 6.4643E-19 2		MOM y, LBS-IN ********* -4.7149E-11 1.3669E-10	-4.7149E-11 1.3669E-10 2
	ROT.Z,RAD ************************************	2.2289E-03 1 2.2289E-03 1		AOM Z,LBS-IN ********** 1.4548E+06 1.4684E+06	1.4548E+06 1 1.4684E+06 2			ROT. z,RAD ****** 2.2289E-03 -2.2289E-03	-2.2289E-03 2 2.2289E-03 1		AOM Z,LBS-IN ********** 1.4548E+06 -1.4684E+06	-1.4684E+06 2 1.4548E+06

TOTAL FLEX. RIG. FLEX. RIG. STRESS Z-DIR Y-DIR LBS/IN**2 LBS-IN**2 LBS-IN**2 SOIL REACT SOIL REACT y-DIR z-DIR LBS/IN LBS/IN SHEAR z-DIR LBS SHEAR y-DIR LBS MOMENT y-DIR LBS-IN

Page 2

MOMENT z-DIR LBS-IN

DISPL. z-DIR IN

DISPL. y-DIR IN

PILE

* EFFECTS FOR LATERALLY LOADED PILE *

1.3468E+04 2 1.4496E+04 1

MINIMUM Pile N. MAXIMUM Pile N.

STRESS,LBS/IN**2 *************** 1.4496E+04 1.3468E+04

PILE GROUP ********

71

* MINIMUM VALUES AND LOCATIONS *

PTLE TOP DISPLACEMENTS *

********* 7.5690E+09 0.0000 7.5690E+09 7.5690E+09	7.5690E+09 1		FLEX. RIG. V-DIR LBS-DIR LBS-LN**2 ********** 7.5690E+09 0.0000 7.5690E+09 0.0000 7.5690E+09
********** 2.1141E+10 0.0000 2.1141E+10 2.1141E+10	2.1141E+10 1		FLEX. RIG. = DIX=2 LBS=LIX=2 = L1X=2 = 1141E+10 0.0000 0.0000 2.1141E+10 0.0000 2.1141E+10 2.1141E+10
********** 1429.7 55.000 279.32 54.000	279.32 2		TOTAL STRESS LBS/TRS*2 LBS/TR**2 LBS/TR**2 1.4496E+04 0.0000 1.3468E+04 0.0000 1.4496E+04 1.4496E+04
gp9t s******** -2.0797E-15 26.000 -9.6049E-15 12.000	-9.6049E-15 2		SOIL REACT z-DIR LBS/JN LBS/JN 2.7222E-15 1.6395E-14 26.000 1.6395E-14 1.6395E-14
htHPPiJe ************************************	-81.017 2		SOIL REACT USDIR LB2DIR LB2DIR S0.531 22.000 23.000 23.000 80.531 1
t Flood Heig ********** -5.7564E-14 25.000 -1.4583E-12 0.0000	-1.3776E+04 -1.4583E-12 2		SHEAR z-DIR LEDR ********* 3.7712E-13 0.00000 2.39000-030 2.39000-030 3.7712E-13 3.7712E-13
4 to 7 _ 8f ************ -2614.6 26.000 -1.3776E+04			SHEAR Y-DIR Y-DIR ********* 1.3644E+04 0.0000 26.000 26.000 1.3644E+04 1.3644E+04
zone ************************************	-4.7149Е-11 1	AND LOCATIONS *	MOMENT Y-DIR LBS-IN +6238E-12 4.6238E-12 1.3669E-00 1.3669E-10 1.3669E-10
**************************************	-1.4548E+06 1		MOMENT 2 - DIR LBS-IN 2.8479E+05 1.4684E+06 1.4684E+06 0.0000 1.4684E+06
**************************************	-4.7886E-17 2		DISPL. z-DIR z-DIR z.s.****** 8.9706E-18 7.000 1.0468E-00 28.000 8.9706E-18
**************************************	-0.3485 2	XIMUM VALUES	DISPL. y-DIR y-DIR 0.3422 0.3422 4.4274E-03 30.000 0.3422 1
****** 1 x(FT) 2 x(FT)	Min. Pile N.	* MA	PILE ****** *(FT) *(FT) *(FT) *(FT) *(FT)

***** SUMMARY FOR LOAD CASES AND COMBINATIONS *****

* TABLE L * COMPUTATION ON PILE CAP

***** LOAD CASES RESULTS *****

LOAD CASE : 1

MOM Z,IN-LBS 1 980366±06		ROT Z,RAD	2.22889E-03
MOM Y, IN-LBS		ROT Y,RAD	-3.95063E-19
MOM X, IN-LBS	* NI	ROT X, RAD	-3.59271E-20
ORIGIN * LOAD Z,LBS O 00000	NDATION AT ORIG	DISP Z,IN	-3.04885E-18
VTRATED LOAD AT LOAD Y,LBS 37750 0	GROUPED PILE FOU	DISP Y, IN	0.29516
* EQUIVALENT CONCE LOAD X,LBS	* DISPLACEMENT OF	DISP X, IN	0.0107729
Plots of Lateral Deflection, Bending Moment and Shear Force versus Depth of L-walls from PYWall



Figure O.1: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft L-wall with Sheet Pile Supported by Batter Steel Piles at Full Flood Condition for Zone 4 to 7.



Figure O.2: Lateral Deflection, Bending Moment and Shear Force with Depth for 6 ft L-wall with Sheet Pile Supported by Batter Micropiles at Full Flood Condition for Zone 4 to 7.



Figure O.3: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft L-wall with Sheet Pile Supported by Batter Steel Piles at Full Flood Condition for Zone 4 to 7.



Figure O.4: Lateral Deflection, Bending Moment and Shear Force with Depth for 8 ft L-wall with Sheet Pile Supported by Batter Micropiles at Full Flood Condition for Zone 4 to 7.

# Appendix C1-P

Output from PYWall Analysis for 6 ft L-wall in Soil Areas 4 to 7

Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o _____ PYWALL for Windows, Version 2015.5.4 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved _____ This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Z:\Meadowlands\Feasibility Analysis for Flood Pr Supported Sheet Pile Wall\PYWall Analysis\ Name of input data file : Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5d Name of output file : Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o : Z:\Meadowlands\Feasibility Analysis for Flood Protection\Batter Pile Name of plot output file : Zone4_6ft_L_wall_with_Batter_HP_Steel_Pile.py5p _____ Time and Date of Analysis ------_____ Date: January 23, 2017 Time: 14:08:51 New Meadowlands_zone4_6ft_Double_Sheet_Pile_Wall_Full_Flood PROGRAM CONTROL PARAMETERS ********** _ ***** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0 NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1GENERATE EARTH PRESSURE INTERNALLY = GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 1 1 0 0 NUMBER OF INCREMENTS INCREMENT LENGTH = 60 6.000 IN 72.000 IN 10.000 IN = FREE HEIGHT OF WALL MAXIMUM ALLOWABLE DEFLECTION = = DEFLECTION CLOSURE TOLERANCE = 0.00001 IN****** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. S - STIFFNESS OF TRANSVERSE RESISTANCE,
 T - TORQUE,
 P - AXIAL LOAD P - AXIAL LOAD R - STIFFNESS OF TORSIONAL RESISTANCE. s' FROM TO CONTD ΕI Q т R Ρ LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS 1 BS 60 0 0.250E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 16 16 0 0.250E+11 0.000E+00 0.970E+06 0.000E+00 0.000E+00 0.000E+00 * WALL INFORMATION * * FREE HEIGHT OF WALL = 0.720E+02 IN WIDTH FOR EARTH PRESSURE, WA = 0.606E+02 IN WIDTH FOR SOIL RESISTANCE, WP = 0.606E+02 IN = 0.000E+00 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.000E+00 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.720E+02 IN = 0.360E-01 LBS/IN**3 UNIT WEIGHT OF WATER

Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py50 SLOPE OF THE BACKFILL (deg.) = 0.000E+00 MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 ******* SURCHARGE INFORMATION UNIFORM SURFACE PRESSURE = 0.000E+00 LBS/IN**2 SOIL INFORMATION 
 TOTAL
 TOTAL UNIT

 LAYER THICKNESS COHESION
 PHI
 WEIGHT
 DRAINED
 ZTOP

 NO.
 IN
 PSI
 DEG
 PCI
 T OR F
 IN

 1
 72.0
 0.0
 0.1
 0.036
 T
 0.00

 2
 168.0
 0.0
 22.0
 0.064
 T
 240.00
 DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.000E+00 0.720E+02 0.122E-01 0.240E+03 0.223E+01 * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * ************************** 
 ACTIVE EARTH
 PASSIVE EARTH

 COEFFICIENT
 COEFFICIENT

 0.997E+00
 0.100E+01

 0.490E+00
 0.204E+01

 0.455E+00
 0.220E+01
 LAYER NO. 1 2 0.220E+01 3 0.455E+00 * ACTIVE EARTH PRESSURE OF EACH LAYER * LAYER PA1 Z1 PA2 Z2 PA3 Z3 PA4 NO LBS/IN**2 IN LBS/IN**2 IN LBS/IN**2 LAYER PA1 0.00 0.00 0.44 48.00 0.00 36.00 0.00 1 * ACTIVE WATER PRESSURE OF EACH LAYER * LAYER PW1 Z1 PW2 72 NO 1 0.00 36.00 93.31 48.00 DEPTH ACTIVE EARTH PRESSURE LBS/IN IN _____ -----
 0.000E+00
 0.000E+00

 0.600E+01
 0.144E+02

 0.120E+02
 0.289E+02

 0.180E+02
 0.433E+02

 0.240E+02
 0.577E+02

 0.300E+02
 0.721E+02

 0.360E+02
 0.867E+02

	Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o
0.420E+02 0.480F+02	0.101E+03 0.115E+03
0.540E+02	0.130E+03
0.600E+02 0.660E+02	0.144E+03 0.154E+03
0.720E+02	0.154E+03
0.770E+02 0.830E+02	0.362E+00 0.362E+00
0.890E+02	0.362E+00
0.950E+02	0.362E+00
0.107E+03	0.362E+00
0.113E+03 0.119E+03	0.362E+00 0.362E+00
0.125E+03	0.362E+00
0.131E+03 0.137E+03	0.362E+00 0.362E+00
0.143E+03	0.362E+00
0.149E+03 0.155E+03	0.362E+00 0.362E+00
0.161E+03	0.362E+00
0.16/E+03 0.173E+03	0.362E+00 0.362E+00
0.179E+03	0.362E+00
0.185E+03 0.191E+03	0.362E+00 0.362E+00
0.197E+03	0.362E+00
0.203E+03 0.209E+03	0.362E+00 0.362E+00
0.215E+03	0.362E+00
0.221E+03 0.227E+03	0.362E+00 0.362E+00
0.233E+03	0.362E+00
0.239E+03 0.245E+03	0.336E+00
0.251E+03	0.336E+00
0.257E+05 0.263E+03	0.336E+00 0.336E+00
0.269E+03	0.336E+00
0.281E+03	0.336E+00
0.287E+03	0.336E+00 0.336E+00
0.299E+03	0.336E+00
0.305E+03 0.311E+03	0.336E+00 0.336E+00
0.317E+03	0.336E+00
0.323E+03 0.329E+03	0.336E+00 0.336E+00
0.335E+03	0.336E+00
0.341E+03 0.347E+03	0.336E+00 0.336E+00
0.353E+03	0.336E+00
0.339E+03	0.3302+00
****	*****
* SOIL LAY	ERS AND STRENGTH DATA *
*****	******************************
	$c = 0 = e \times c_{A} / A \pm t_{O}$ side $-$ 72.00 th
2 LAYER(S) OF	SOIL
THE SOIL IS A	SILT
LAYER 2 THE SOIL IS A	SILT
DISTRIBUTION C	F EFFECTIVE UNIT WEIGHT WITH DEPTH 4 POINTS
Χ,	IN WEIGHT, LBS/IN**3
72.00 240.00 240.00	00 0.1319D-01 00 0.1319D-01 00 0.2766D-01

Zone4_6ft_L_wall_with_Batter_HP_Steel_Pile.py50 0.2766D-01

# DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH $\ensuremath{4}$ POINTS

X,IN	S,LBS/IN**Z	PH1,DEGREES	E20
72.00	0.0000D+00	20.000	0.2000D-01
240.00	0.0000D+00	20.000	0.2000D-01
240.00	0.0000D+00	22.000	0.2000D-01
372.00	0.0000D+00	22.000	0.2000D-01

P-Y CURVES DATA

#### AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
0.10	60.62	20.0	0.132E-01	2.83	2.14	0.800E-01	0.211E+00
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.337E+00 0.421E+00 0.505E+00 0.674E+00 0.674E+00 0.758E+00 0.842E+00 0.926E+00 0.926E+00 0.101E+01 0.629E+02 0.124E+03 0.184E+03	-	P LBS/IN 0.362E+00 0.109E+00 0.326E-01 0.326E-01 0.555E-01 0.764E-01 0.943E-01 0.110E+00 0.124E+00 0.137E+00 0.148E+00 0.159E+00 0.314E+00 0.314E+00 0.314E+00		
	P-	Multip	lier = 0.10	00E+01 Y-Mu	ultiplier	= 0.100E	+01
AT	THE BACKFILL	SIDE					
DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
72.10	60.62	20.0	0.132E-01	1.98	1.44	0.576E+02	0.152E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.585E+00 0.585E+00 0.585E+00 0.674E+00 0.926E+00 0.926E+00 0.101E+01 0.629E+02 0.124E+03 0.184E+03		P LBS/IN 0.362E+00 0.153E+03 0.181E+03 0.213E+03 0.225E+03 0.225E+03 0.243E+03 0.251E+03 0.251E+03 0.258E+03 0.276E+03 0.276E+03 0.358E+03 0.358E+03 0.358E+03		

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

		Z	one4_6ft_L_Wa	ll_with_Bat	ter_HP_	Steel_Pile	e.py5o
	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
42.00	60.62	20.0	0.132E-01	2.34	1.72	0.336E+02	0.885E+02
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.421E+00 0.505E+00 0.505E+00 0.589E+00 0.674E+00 0.758E+00 0.926E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03	-0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	P LBS/IN 362E+00 103E+03 131E+03 133E+03 151E+03 157E+03 163E+03 168E+03 173E+03 177E+03 168E+03 177E+03 185E+03 240E+03 240E+03 240E+03	N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE BACKFILL SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG	А	В	Puc	Puí
114.00	60.62	20.0	0.132E-01	1.55	1.10	0.912E+02	0.240E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.505E+00 0.505E+00 0.589E+00 0.674E+00 0.5842E+00 0.926E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03		P LBS/IN 0.362E+00 0.232E+03 0.232E+03 0.256E+03 0.274E+03 0.302E+03 0.302E+03 0.332E+03 0.332E+03 0.341E+03 0.341E+03 0.345E+03 0.463E+03 0.463E+03		

#### P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	Puc	Puí
84.00	60.62	20.0	0.132E-01	1.84	1.33	0.672E+02	0.177E+03
			Y		Ρ,		
			IN		LBS/IN	N	
			0.000E+00	-0	.362E+00	)	
			0.842E-01	0	.167E+03	3	
			0.168E+00	0	.198E+03	3	
			0.253E+00	0	.218E+03	3	
			0.337E+00	Õ	233F+0	3	
			0.421F+00	ŏ	246F+0	ŝ	
			0.505E+00	õ	2575+03	2	
			0.5895+00	0	2665+03	2	
			0.5052+00	0	2755-02		
			0.074E+00	0	273E+0.		
			0.758E+00	0	.283E+0:	5	
			0.842E+00	0	.290E+0:	3	
			0.926E+00	0	.296E+03	3	

Page 5

Zone4_6ft_L_wall_with_Batter_HP_Steel_Pile.py5o 0.101E+01 0.303E+03 0.227E+01 0.392E+03 0.629E+02 0.392E+03 0.124E+03 0.392E+03 0.184E+03 0.392E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH TN	DIAM	PHI	GAMMA AVG	A	В	Puc	Puí
156.00	60.62	20.0	0.132E-01	1.21	0.84	0.125E+03	0.329E+03
			Y		Р		
			IN		LBS/I	N	
			0.000E+00	0.	362E+00	)	
			0.842E-01	0.	220E+03	3	
			0.168E+00	0.	260E+03	3	
			0.253E+00	0.	287E+0	3	
			0.337E+00	0.	307E+0	3	
			0.421E+00	0.	324E+0	3	
			0.505E+00	0.	339E+0	3	
			0.589E+00	0.	352E+0	3	
			0.674E+00	0.	363E+0	3	
			0.758E+00	0.	374E+03	3	
			0.842E+00	0.	383E+0	3	
			0.926E+00	0.	392E+0	3	
			0.101E+01	0.	401E+0	3	
			0.227E+01	0.	521E+0	3	
			0.629F+02	0.	521F+0	3	
			0.124F+03	ő.	521F+0	ŝ	
			0.184F+03	0.	521F+0	ŝ	
			0.1046403	0.	J U.	,	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG LBS/TN**3	A	В	Puc	Puí
126.00	60.62	20.0	0.132E-01	1.44	1.02	0.101E+03	0.266E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.589E+00	-0.3 0.2 0.2 0.2 0.3 0.3 0.3	P LBS/IN 62E+00 04E+03 41E+03 66E+03 85E+03 01E+03 14E+03 26E+03	N 3 3 3 3 3 3 3 3 3 3 3 3	
			0.758+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03	0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4	46E+03 55E+03 64E+03 71E+03 83E+03 83E+03 83E+03	3 3 3 3 3 3 3 3 3 3 3 3	

#### AT THE BACKFILL SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
198.00	60.62	20.0	0.132E-01	1.02	0.66	0.158E+03	0.417E+03
			Y IN 0.000E+00	0.	P LBS/IN 362E+00	1	

		Zone4_6ft 0.842e 0.168e 0.253e 0.337e 0.421e 0.505e 0.589e 0.674e 0.758e 0.842e 0.926e 0.101e 0.227e 0.629e 0.124e 0.184e P-Multiplier =	_L_Wall_with -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +	_Batter_HP_S1 0.221E+03 0.298E+03 0.322E+03 0.343E+03 0.360E+03 0.375E+03 0.402E+03 0.402E+03 0.402E+03 0.425E+03 0.435E+03 0.583E+03 0.583E+03 0.583E+03 0.583E+03 Multiplier =	0.100E-	÷.py5o +01
AT	THE EXCAVA	TION SIDE				
TH N	DIAM IN	PHI GAMMA A LBS/IN*	VG A *3	В	Puc	Puí
90	60.62	20.0 0.132E-	01 1.14	0.78 0	.134E+03	0.354E+03
		Y I 0.000E 0.842E 0.168E 0.253E 0.337E 0.421E 0.505E 0.589E 0.674E 0.758E 0.842E 0.926E 0.101E 0.227E 0.629E 0.124E 0.184E	N +00 -01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +	P LBS/IN -0.362E+00 0.221E+03 0.262E+03 0.312E+03 0.312E+03 0.330E+03 0.345E+03 0.370E+03 0.381E+03 0.391E+03 0.401E+03 0.401E+03 0.537E+03 0.537E+03 0.537E+03		

0.1012+01	0.4102403	
0.227E+01	0.537E+03	
0.629E+02	0.537E+03	
0.124E+03	0.537E+03	
0.184E+03	0.537E+03	
P-Multiplier = 0.100E+01	Y-Multiplier =	0.100E+01

AT THE BACKFILL SIDE

DEPTH IN 167.90

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
239.90	60.62	20.0	0.132E-01	0.91	0.54	0.192E+03	0.506E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.421E+00 0.505E+00 0.505E+00 0.674E+00 0.926E+00 0.926E+00 0.101E+01 0.629E+02 0.124E+03 0.184E+03		P LBS/IN 0.362E+00 0.209E+03 0.261E+03 0.371E+03 0.371E+03 0.390E+03 0.407E+03 0.447E+03 0.442E+03 0.451E+03 0.4651E+03 0.651E+03		



### Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o

AT	THE EXCAVATI	ON SID	Ξ				
DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
168.10	60.62	22.0	0.132E-01	1.28	0.90	0.134E+03	0.387E+03
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.505E+00 0.589E+00 0.674E+00 0.578E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03	-	P LBS/IN 0.336E+00 0.262E+03 0.310E+03 0.343E+03 0.368E+03 0.407E+03 0.407E+03 0.449E+03 0.449E+03 0.449E+03 0.442E+03 0.461E+03 0.461E+03 0.462E+03 0.630E+03 0.630E+03	N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	P-	Multip	lier = 0.100	E+01 Y-Mu	ultiplier	= 0.100E	+01
AT	THE BACKFILL	SIDE					
DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
240.10	60.62	22.0	0.132E-01	0.97	0.60	0.192E+03	0.552E+03
	Ρ-	Multip	Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.674E+00 0.589E+00 0.674E+00 0.926E+00 0.926E+00 0.101E+01 0.629E+02 0.124E+03 0.184E+03	Е+01 Ү-МІ	P LBS/IN 0.336E+00 0.248E+03 0.346E+03 0.346E+03 0.404E+03 0.404E+03 0.427E+03 0.447E+03 0.447E+03 0.466E+03 0.466E+03 0.513E+03 0.513E+03 0.527E+03 0.726E+03 0.726E+03 0.726E+03	= 0.100E	+01
۸ <del></del>			-				
AI	THE EACAVAIL	ON STDI	_				

DEPTH TN	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
201.00	60.62	22.0	0.156E-01	1.08	0.73 0	.190E+03	8 0.545E+03
			Y		Р		
			IN		LBS/IN		
			0.000E+00	-0.	336E+00		
			0.842E-01	<u>0</u> .	306E+03		
			0.168E+00	0.	367E+03		
			0.253E+00	0.	408E+03		
			0.337E+00	0.	440E+03		
			0.421E+00	0.	466E+03		
			0.505E+00	0.	489E+03		
			0.589E+00	<u>0</u> .	509E+03		
			0.674E+00	0.	527E+03		

Page 8

Zone4_6ft_L_wall_with_Batter_HP_Steel_Pile.py5o 0.758E+00 0.544E+03 0.842E+00 0.559E+03 0.926E+00 0.573E+03 0.101E+01 0.586E+03 0.227E+01 0.779E+03 0.629E+02 0.779E+03 0.124E+03 0.779E+03 0.184E+03 0.779E+03

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

uc Pu1	
8E+03 0.741E-	+03
	3C Pui 8E+03 0.741E

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH TN	DIAM	PHI	GAMMA	4VG * * 3	А	В	Puc	Puí
234.00	60.62	22.0	0.173E	-01 0	.98	0.62	0.245E+03	0.704E+03
			0.000 0.842 0.168 0.253 0.337 0.421 0.505 0.589 0.589 0.589 0.674 0.758 0.842 0.926 0.926 0.101 0.227 0.629 0.124 0.184	Y IN E+00 E+01 E+00 E+00 E+00 E+00 E+00 E+00	L -0.33 0.32 0.40 0.45 0.55 0.58 0.60 0.62 0.64 0.68 0.93 0.93 0.93	P BS/IN 6E+00 7E+03 3E+03 3E+03 7E+03 3E+03 6E+03 8E+03 8E+03 8E+03 6E+03 3E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 8E+03 7E+03 8E+03 7E+03 8E+03 7E+03 8E+03 7E+03 8E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+03 7E+0		
	P	-Multip	lier =	0.100E+01	Y-Multip	lier	= 0.100E-	+01

AT THE BACKFILL SIDE

DEPTH	DIAM	PHI GAMMA AVG	А	В	Puc	Puí
IN	IN	LBS/IN**3				
306.00	60.62	22.0 0.173E-01	0.89	0.51 0	.320E+03	0.921E+03

Sher_ore_rari_m	I CII_DUCCCI _III _5 C
Y	Р
IN	LBS/IN
0.000E+00	0.336E+00
0.842E-01	0.330E+03
0.168E+00	0.421E+03
0.253E+00	0.486E+03
0.337E+00	0.537E+03
0.421E+00	0.581E+03
0.505E+00	0.620E+03
0.589E+00	0.654E+03
0.674E+00	0.685E+03
0.758E+00	0.714E+03
0.842E+00	0.741E+03
0.926E+00	0.767E+03
0.101E+01	0.790E+03
0.227E+01	0.114E+04
0.629E+02	0.114E+04
0.124E+03	0.114E+04
0.184E+03	0.114E+04

## Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o

## P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE EXCAVATION SIDE

DEPTH	DIAM	PHI	GAMMA AVG	A	В	Puc	Puí	
267.00	60.62	22.0	0.186E-01	0.90	0.53	0.300E+03	0.863E+03	
			Y		P,			
			IN		LBS/IN	1		
			0.000E+00	-0.	336E+00	)		
			0.842E-01	0.3	327E+03	8		
			0.168E+00	0.4	13E+03	8		
			0.253E+00	0.4	174E+03	3		
			0.337E+00	0.5	522E+03	3		
			0.421E+00	0.5	563E+03	3		
			0.505E+00	0.5	599E+03	3		
			0.589E+00	0.0	531E+03	3		
			0.674E+00	0.0	60E+03	3		
			0.758E+00	0.0	687E+03	3		
			0.842E+00	0.7	712E+03	3		
			0.926E+00	0.7	735E+03	3		
			0.101E+01	0.7	757E+03	3		
			0.227E+01	0.3	L08E+04	Ļ		
			0.629E+02	0.1	L08E+04	L.		
			0.124E+03	0.1	L08E+04	Ļ		
			0.184E+03	0.1	L08E+04	Ļ		
				• • • •				

#### P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE BACKFILL SIDE

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
339.00	60.62	22.0	0.186E-01	0.88	0.50	0.381E+03	0.110E+04
	00.02	22.0	Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.421E+00 0.505E+00 0.505E+00 0.589E+00 0.589E+00 0.674E+00 0.842E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02		P LBS/IN 0.336E+00 0.382E+03 0.489E+03 0.566E+03 0.627E+03 0.725E+03 0.725E+03 0.804E+03 0.804E+03 0.804E+03 0.804E+03 0.990E+03 0.930E+04 0.135E+04	N N N N N N N N N N N N N N	0.1101+04
			0.184E+03	C	).135E+04	1	

Page 10

#### Zone4_6ft_L_Wall_with_Batter_HP_Steel_Pile.py5o

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH	DIAM	PHI	GAMMA AVG	А	В	Puc	Puí
299.90	60.62	22.0	0.196E-01	0.89	0.51	0.355E+03	0.102E+04
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.337E+00 0.421E+00 0.505E+00 0.674E+00 0.674E+00 0.674E+00 0.926E+00 0.926E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03		P LBS/IN .336E+00 .369E+03 .470E+03 .599E+03 .599E+03 .648E+03 .690E+03 .728E+03 .728E+03 .735E+03 .853E+03 .853E+03 .853E+04 .126E+04 .126E+04	N ) 3 3 3 3 3 3 3 3 3 3 3 3 3	

# P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

#### AT THE BACKFILL SIDE

AT THE EXCAVATION SIDE

DEPTH TN	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	Puc	Puí
371.90	60.62	22.0	0.196E-01	0.88	0.50	0.441E+03	0.127E+04
			Y IN 0.000E+00 0.842E-01 0.168E+00 0.253E+00 0.421E+00 0.505E+00 0.505E+00 0.674E+00 0.674E+00 0.842E+00 0.842E+00 0.101E+01 0.227E+01 0.629E+02 0.124E+03 0.184E+03		P LBS/IN 0.336E+00 0.441E+03 0.566E+03 0.5654E+03 0.725E+03 0.725E+03 0.725E+03 0.886E+03 0.886E+03 0.929E+03 0.929E+03 0.969E+03 0.101E+04 0.107E+04 0.156E+04 0.156E+04	V 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

New Meadowlands_Zone4_6ft_Double_Sheet_Pile_Wall_Full_Flood

RESULTS ITERATION	3

STA I	Х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/ST	A EI
	IN	IN		LBS-IN	LBS	LBS	LBS-IN**2
0	0.000E+00	0.930E-01	-0.933E-03	0.000E+00	0.000E+00	0.000E+00	0.125E+11
1	0.600E+01	0.874E-01	-0.933E-03	0.000E+00	0.433E+02	0.866E+02	0.250E+11
2	0.120E+02	0.818E-01	-0.933E-03	0.519E+03	0.173E+03	0.173E+03	0.250E+11
3	0.180E+02	0.762E-01	-0.932E-03	0.208E+04	0.390E+03	0.260E+03	0.250E+11
4	0.240E+02	0.706E-01	-0.931E-03	0.519E+04	0.693E+03	0.346E+03	0.250E+11
5	0.300E+02	0.650E-01	-0.930E-03	0.104E+05	0.108E+04	0.433E+03	0.250E+11
6	0.360E+02	0.595E-01	-0.926E-03	0.182E+05	0.156E+04	0.520E+03	0.250E+11

		Zo	ne4_6ft_L_Wa	11_with_Batt	er_HP_Steel_	Pile.py5o	
7	0.420E+02	0.539E-01	-0.920E-03	0.291E+05	0.212E+04	0.607E+03	0.250E+11
8	0.480F+02	0.484F-01	-0.912E-03	0.436F+05	0.277F+04	0.691F+03	0.250F+11
ğ	0.540E+02	0 430F-01	-0 899F-03	0.623E+05	0.351E+04	0.778E+03	0.250E+11
10	0.600 = 102	0.376 = 01	-0.881E-03	0.857E+05	0.433E+04	0.8665+03	0.250E+11
11		$0.370E^{-01}$		0.0371+03			0.25000111
12	0.000E+02	0.324E-01	-0.037E-03	0.114E+00	0.522E+04	0.924E+03	0.250E+11
12	0.720E+02	0.275E-01	-0.020E-03	0.146E+00	0.015E+04	0.925E+05	0.250E+11
13	0.780E+02	0.225E-01	-0.785E-03	0.188E+06	0.660E+04	-0.218E+02	0.250E+11
14	0.840E+02	0.1/9E-01	-0./35E-03	0.228E+06	0.65/E+04	-0.358E+02	0.250E+11
15	0.900E+02	0.137E-01	-0.676E-03	0.267E+06	0.653E+04	-0.411E+02	0.250E+11
16	0.960E+02	0.980E-02	-0.607E-03	0.306E+06	0.174E+04	-0.955E+04	0.250E+11
17	0.102E+03	0.638E-02	-0.536E-03	0.288E+06	-0.306E+04	-0.314E+02	0.250E+11
18	0.108E+03	0.337E-02	-0.469E-03	0.269E+06	-0.308E+04	-0.191E+02	0.250E+11
19	0.114E+03	0.752E-03	-0.407E-03	0.251E+06	-0.309E+04	-0.336E+01	0.250E+11
20	0.120E+03	-0.151E-02	-0.349E-03	0.232E+06	-0.308E+04	0.237E+02	0.250E+11
21	0.126E+03	-0.343E-02	-0.295E-03	0.214E+06	-0.304E+04	0.519E+02	0.250E+11
22	0.132E+03	-0 505E-02	-0 246E-03	0 196F+06	-0.298E+04	0.765E+02	0.250E+11
22	$0.138 \pm 03$	-0.639E-02	-0.201 = 0.03	$0.178 \pm 06$	-0 289F+04	0.976E+02	0.250E+11
21	0.1302+03 0.144E+03	-0.746E-02	-0.161E - 03	0.1702+00 0.161E+06	-0.270E+04	0.1165+02	0.250E+11
24	0.144E+03 0.150E+02		-0.101E-03	0.1010+00	-0.279E+04	0.1100+03 0.1200-02	0.25000+11
25	0.1500+03			0.1400	-0.200E+04		
20	0.150E+05	-0.695E-02	-0.910E-04	0.129E+00	-0.233E+04	0.142E+03	0 250E+11
27	0.162E+03	-0.940E-02	-0.618E-04	0.114E+06	-0.238E+04	0.149E+03	0.250E+11
28	0.168E+03	-0.969E-02	-0.361E-04	0.100E+06	-0.223E+04	0.154E+03	0.250E+11
29	0.1/4E+03	-0.984E-02	-0.135E-04	0.8/4E+05	-0.207E+04	0.156E+03	0.250E+11
30	0.180E+03	-0.986E-02	0.603E-05	0.755E+05	-0.192E+04	0.157E+03	0.250E+11
31	0.186E+03	-0.976E-02	0.228E-04	0.644E+05	-0.176E+04	0.155E+03	0.250E+11
32	0.192E+03	-0.958E-02	0.371E-04	0.543E+05	-0.161E+04	0.153E+03	0.250E+11
33	0.198E+03	-0.932E-02	0.490E-04	0.451E+05	-0.146E+04	0.149E+03	0.250E+11
34	0.204E+03	-0.899E-02	0.589E-04	0.368E+05	-0.131E+04	0.142E+03	0.250E+11
35	0.210E+03	-0.861E-02	0.668E-04	0.294E+05	-0.117E+04	0.135E+03	0.250E+11
36	0.216E+03	-0.819E-02	0.731E-04	0.228E+05	-0.104E+04	0.128E+03	0.250E+11
37	0.222E+03	-0.774E-02	0.778E-04	0.169E+05	-0.917E+03	0.120E+03	0.250E+11
38	0.228F+03	-0.726F-02	0.813E-04	0.117F+05	-0.801F+03	0.112F+03	0.250F+11
39	0.234E+03	-0 676E-02	0 835E-04	0.727E+04	-0.693E+03	0 104F+03	0.250E+11
40	$0.2340 \pm 03$	-0.626E-02	0.848 = 04	0.342 = 0.04	-0.594 E + 03	0.952E+02	0.250E+11
11	0.2402+03	-0.574 = -02	0.8535-04	0.3422+04 0.1465+03	-0.500E+03	0.00000000000000000000000000000000000	0.250E+11
42	0.2402403		0.0551 = 04				0.250E+11
42				-0.238E+04	-0.410E+03	0.000E+02	0.25000+11
43	0.230E+03		0.0410-04		-0.324E+03	0.0410+02	0.25000+11
44	0.204E+03	-0.422E-02	0.027E-04	-0.040E+04	-0.242E+03	0.709E+02	0.250E+11
45	0.270E+03	-0.373E-02	0.010E-04	-0.766E+04	-0.100E+03	0.750E+02	0 250E+11
40	0.276E+03	-0.325E-02	0.791E-04	-0.845E+04	-0.963E+02	0.666E+02	0.250E+11
47	0.282E+03	-0.278E-02	0.770E-04	-0.883E+04	-0.333E+02	0.593E+02	0.250E+11
48	0.288E+03	-0.233E-02	0./49E-04	-0.885E+04	0.221E+02	0.516E+02	0.250E+11
49	0.294E+03	-0.188E-02	0.728E-04	-0.857E+04	0.697E+02	0.435E+02	0.250E+11
50	0.300E+03	-0.145E-02	0.708E-04	-0.802E+04	0.109E+03	0.351E+02	0.250E+11
51	0.306E+03	-0.103E-02	0.690E-04	-0.726E+04	0.140E+03	0.263E+02	0.250E+11
52	0.312E+03	-0.625E-03	0.673E-04	-0.634E+04	0.161E+03	0.171E+02	0.250E+11
53	0.318E+03	-0.226E-03	0.659E-04	-0.532E+04	0.174E+03	0.760E+01	0.250E+11
54	0.324E+03	0.166E-03	0.648E-04	-0.426E+04	0.177E+03	-0.186E+01	0.250E+11
55	0.330E+03	0.552E-03	0.639E-04	-0.320E+04	0.170E+03	-0.109E+07	0.250E+11
56	0.336F+03	0.933E-03	0.632E-04	-0.222F+04	0.155F+03	-0.197F+02	0.250F+11
57	0.342F+03	0.131F-02	0.628F-04	-0.135F+04	0.131F+03	-0.286F+02	0.250F+11
58	0 348F±03	0 169 = 02	0.626F - 04	-0 646F±03	0.973F+02	-0 383F+02	0.250F+11
59	0 3545+03	$0.206E_{02}$	$0.625E_{-0.4}$	-0 178F±03		-0 485E+02	0 250E+11
60	0 360 = +03	0.244 = 02	0.625E - 0.4	-0 151=-00		-0 296=+02	0 12551
00		$v \cdot c \tau \tau c U c$		V . T J T L . U J			V · + C J L T + +

END OF ANALYSIS

Appendix C1-Q

Plots of Ultimate Axial Capacities versus Length of Friction Piles from APILE



Figure Q.1: Ultimate Axial Compression Capacity versus Length of HP 14 x 73 Pile for Soil Areas 4 to 7.



Figure Q.2: Ultimate Axial Tension Capacity versus Length of HP 14 x 73 Pile for Soil Areas 4 to 7.

#### Axial Capacity (kips)



Figure Q.3: Ultimate Axial Compression Capacity versus Length of HP 16 x 141 Pile for Soil Areas 4 to 7.



Figure Q.4: Ultimate Axial Tension Capacity versus Length of HP 16 x 141 Pile for Soil Areas 4 to 7.

Appendix C1-R

Output from APILE Analysis for Axial Capacity of Driven Piles

HP 16 x 141 Batter Pile.apo Z:\Meadowlands\Feasibility Analysis for Flood Protection\Batter Pile Supported Sheet Pile\HP 16 x 141 Batter Pile.cpt

1

AXIALLY LOADING PILE ANALYSIS PROGRAM - APILEplus VERSION 5.0 - (C) COPYRIGHT ENSOFT, INC., 1987-2008.

Flood Protection Feasibility Analysis - HP 14x73 Pile

DESIGNER : A. Hossain

DATE : 10/06/2016

PILE PROPERTIES :

PERIMETER OF PILE WITH NONCIRCULAR SECTION	1=	64.00	IN.
TIP AREA OF PILE WITH NONCIRCULAR SECTION	=	1.78	SQF
OUTSIDE DIAMETER OF CIRCULAR PILE	=	11.88	IN.
INTERNAL DIAMETER OF CIRCULAR PILE	=	0.00	IN.
PILE LENGTH	=	100.00	FT.
MODULUS OF ELASTICITY	=	0.290E+08	PSI
LENGTH OF ENHANCED END SECTION	=	0.60	FT.
INTERNAL DIAMETER OF ENHANCED END SECTION	=	0.00	IN.

LENGTH OF SURFACE SECTION WITH ZERO SKIN FRICTION = 14.00 FT. INCREMENT OF PILE LENGTH USED IN COMPUTATION = 1.00 FT.

SOIL INFORMATIONS :

		LATERAL	EFFECTIVE	FRICTION	BEARING
	SOIL	EARTH	UNIT	ANGLE	CAPACITY
DEPTH	TYPE	PRESSURE	WEIGHT	DEGREES	FACTOR
FT.			LB/CF		
0.00	CLAY	0.00	22.60	0.00	0.00
14.00	CLAY	0.00	22.60	0.00	0.00
14.00	CLAY	0.00	47.60	0.00	0.00
105.00	CLAY	0.00	47.60	0.00	0.00

MAXIMUM	MAXIMUM	UNDISTURB	REMOLDED			
UNIT	UNIT	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRICTION	BEARING	STRENGTH	STRENGTH	COUNT	FRICTION	BEARING
KSF	KSF	KSF	KSF		KSF	KSF
0.10E+08	0.10E+08	0.20	0.00	0.00	0.00	0.00
0.10E+08	0.10E+08	0.20	0.00	0.00	0.00	0.00
0.10E+08	0.10E+08	0.30	0.00	0.00	0.00	0.00
0.10E+08	0.10E+08	0.30	0.00	0.00	0.00	0.00

SET MAXIMUM UNIT FRICTION AND MAXIMUM UNIT BEARING TO BE  $0.10E{+}08$  BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

1

DTLE	τοται			HP	16 x 141	Batter	Pile.ap	D	
PILE PENETR-	SKIN	END BEARING	CAPAC-	SKIN	END BEARTNG	CAPAC-	SKIN	END BEARING	CAPAC-
FT.	KIP 0 0	KIP 3 2	KIP 3 2	KIP 0 0	KIP 3 2	KIP 3 2	KIP 0 0	KIP 3 2	KIP 3 2
1.0	0.0	3.2	3.2	0.0	3.2	3.2	0.0	3.2	3.2
3.0	0.0	3.2	3.2	0.0	3.2	3.2	0.0	3.2	3.2
5.0	0.0	3.2	3.2	0.0	3.2	3.2	0.0	3.2	3.2
7.0	0.0	3.2	3.2	0.0	3.2	3.2	0.0	3.2	3.2
9.0	0.0	3.2	3.2	0.0	3.2	3.2	0.0	3.2	3.2
10.0 11.0	0.0	3.4	3.4	0.0	3.4	3.4	0.0	3.4	3.4
13.0	0.0	4.3	4.3	0.0	4.3	4.3	0.0	4.3	4.3
14.0 15.0 16.0	1.7	4.8	6.5	1.9	4.8	6.7	3.8	4.8	8.6
17.0	4.5	4.8	9.3	5.1	4.8	9.9 11 5	5.6	4.8	10.4
19.0	7.4	4.8	12.2	8.3	4.8	11.5 13.1 14.7	7.7	4.8	12.5
21.0	10.3	4.8	15.0 15.1 16.5	11.5	4.8	16.3	9.8	4.8	13.3 14.6 15.7
23.0	13.1	4.8	17.9	14.7	4.8	19.5	10.9 12.0 13.2	4.8	16.8
25.0	16.0	4.8	20.8	17.9	4.8	22.7	14.4	4.8	19.2
27.0	18.8	4.8	23.6	21.1	4.8	25.9	16.8	4.8	21.6
29.0	21.7	4.8	26.5	24.3	4.8	29.1	19.4	4.8	24.2
31.0 32 0	24.5	4.8	29.3	27.5	4.8	32.3	22.0	4.8	26.8
33.0 34.0	27.4	4.8	32.2	30.7	4.8	35.5	24.7	4.8	29.5
35.0	30.2 31.7	4.8	35.0	33.9	4.8	38.7	27.6	4.8	32.4
37.0 38.0	33.1 34.5	4.8	37.9	37.1 38.7	4.8	41.9	30.5 32.0	4.8	35.3
39.0 40.0	35.9	4.8	40.7	40.3	4.8	45.1 46.7	33.6 35.1	4.8	38.4 39.9
41.0 42.0	38.8 40.2	4.8 4.8	43.6 45.0	43.5 45.1	4.8 4.8	48.3 49.9	36.7 38.3	4.8 4.8	41.5 43.1
43.0 44.0	41.7 43.1	4.8 4.8	46.5 47.9	46.7 48.3	4.8 4.8	51.5 53.1	39.9 41.6	4.8 4.8	44.7 46.4
45.0 46.0	44.5 45.9	4.8 4.8	49.3 50.7	49.9 51.5	4.8 4.8	54.7 56.3	43.3 45.0	4.8 4.8	48.1 49.8
47.0 48.0	47.4 48.8	4.8 4.8	52.2 53.6	53.1 54.7	4.8 4.8	57.9 59.5	46.7 48.4	4.8 4.8	51.5 53.2
49.0 50.0	50.2 51.6	4.8 4.8	55.0 56.4	56.3 57.9	4.8 4.8	61.1 62.7	50.2 52.0	4.8 4.8	55.0 56.8
51.0 52.0	53.1 54.5	4.8 4.8	57.9 59.3	$59.5 \\ 61.1$	4.8 4.8	64.3 65.9	53.8 55.6	4.8 4.8	58.6 60.4
53.0 54.0	55.9 57.4	4.8 4.8	60.7 62.2	62.7 64.3	4.8 4.8	67.5 69.1	57.5 59.4	4.8 4.8	62.3 64.2
55.0 56.0	58.8 60.2	4.8 4.8	63.6 65.0	65.9 67.5	4.8 4.8	70.7 72.3	61.3 63.2	4.8 4.8	$66.1 \\ 68.0$
57.0 58.0	$\begin{array}{c} 61.6 \\ 63.1 \end{array}$	4.8 4.8	66.4 67.9	69.1 70.7	4.8 4.8	73.9 75.5	65.1 67.1	4.8 4.8	69.9 71.9
59.0 60.0	64.5 65.9	4.8 4.8	69.3 70.7	72.3 73.9	4.8 4.8	77.1 78.7	$69.1 \\ 71.1$	4.8 4.8	73.9 75.9
$61.0 \\ 62.0$	67.3 68.8	4.8	72.1 73.6	75.5 77.1	4.8	80.3 81.9	73.1 75.4	4.8	77.9 80.2
63.0 64.0	70.2 71.6	4.8	75.0 76.4	/8./	4.8	83.5	77.8 80.3	4.8	82.6 85.1
65.0	73.1	4.8	77.9	81.9	4.8	86.7	82.8	4.8	87.6 90.1
67.0 68.0	75.9	4.8	80.7 82.1	85.1 86.7	4.8	89.9 91.5	87.8 90.4	4.8	92.6
69.0 70.0	78.8	4.8	83.6 85.0	88.3	4.8	93.1	93.0 95.7	4.8	97.8 100.5
/1.0 72.0	81.6 83.0	4.8	86.4 87.8	91.5 93.1	4.8	96.3	98.4 101.1	4.8	103.2
73.0 74.0	84.5 85.9	4.8 4.8	89.3 90.7	94.7 96.3	4.8 4.8	99.5 101.1	103.9 106.7	4.8 4.8	108.7 111.5

				HP	16 x 141	Batter	Pile.apo		
75.0	87.3	4.8	92.1	97.9	4.8	102.7	109.5	4.8	114.3
76.0	88.8	4.8	93.6	99.5	4.8	104.3	112.4	4.8	117.2
77.0	90.2	4.8	95.0	101.1	4.8	105.9	115.3	4.8	120.1
78.0	91.6	4.8	96.4	102.7	4.8	107.5	118.2	4.8	123.0
79.0	93.0	4.8	97.8	104.3	4.8	109.1	121.2	4.8	126.0
80.0	94.5	4.8	99.3	105.9	4.8	110.7	124.2	4.8	129.0
81.0	95.9	4.8	100.7	107.5	4.8	112.3	127.3	4.8	132.1
82.0	97.3	4.8	102.1	109.1	4.8	113.9	130.4	4.8	135.2
83.0	98.7	4.8	103.5	110.7	4.8	115.5	133.5	4.8	138.3
84.0	100.2	4.8	105.0	112.3	4.8	110 7	136.6	4.8	141.4
85.0	101.6	4.8	106.4	115.9	4.8	110.7	142.0	4.8	144.0
80.0	103.0	4.8	107.8	117.0	4.8	120.3	145.0	4.8	147.8
07.0	104.5	4.0	110 7	110 7	4.0	121.9	140.5	4.0	151.1
80.0	107.3	4.0	110.7	120.7	4.0	125.5	152 0	4.0	157 7
00.0	107.3	4.0	112.1	120.3	4.0	126.7	156.2	4.0	161 1
90.0	110.7	4.0	115 0	122.5	4.0	120.7	150.5	4.0	164 5
91.0	111 6	4.0	116 /	125.5 125.1	4.0	120.3	163 1	4.0	167 0
92.0	113 0	4.8	117 8	126.7	4.8	131 5	166 6	4.8	171 4
94 0	114 4	4.8	119 2	128.3	4.8	133 1	170 1	4.8	174 9
95 0	115 9	4 8	120 7	129.9	4 8	134 7	173 7	4 8	178 5
96.0	117.3	4.8	122.1	131.5	4.8	136.3	177.3	4.8	182.1
97.0	118.7	4.8	123.5	133.1	4.8	137.9	180.9	4.8	185.7
98.0	120.1	4.8	124.9	134.7	4.8	139.5	184.5	4.8	189.3
99.0	121.6	4.8	126.4	136.3	4.8	141.1	188.2	4.8	193.0
100.0	123.0	4.8	127.8	137.9	4.8	142.7	191.9	4.8	196.7

### ***** * API RP-2A (1994) *

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PILE	TOTAL SKIN	END	ULTIMATE
FT.KIPKIPKIP $0.00$ $0.0$ $3.2$ $3.2$ $1.00$ $0.0$ $3.2$ $3.2$ $2.00$ $0.0$ $3.2$ $3.2$ $3.00$ $0.0$ $3.2$ $3.2$ $4.00$ $0.0$ $3.2$ $3.2$ $4.00$ $0.0$ $3.2$ $3.2$ $5.00$ $0.0$ $3.2$ $3.2$ $6.00$ $0.0$ $3.2$ $3.2$ $7.00$ $0.0$ $3.2$ $3.2$ $8.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $12.1$ $22.00$ $4.8$ $21.3$ $29.00$ $16.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $25.8$ $31.00$ $21.0$ $4.8$ $22.8$ $31.00$ $22.6$ $4.8$ <td>PENETRATION</td> <td>FRICTION</td> <td>BEARING</td> <td>CAPACITY</td>	PENETRATION	FRICTION	BEARING	CAPACITY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FT.	KIP	KIP	KIP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0	3.2	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	0.0	3.2	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00	0.0	3.2	3.2
4.00 $0.0$ $3.2$ $3.2$ $5.00$ $0.0$ $3.2$ $3.2$ $6.00$ $0.0$ $3.2$ $3.2$ $7.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $27.00$ $15.1$ $4.8$ $19.9$ $28.00$ $16.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $30.00$ $21.0$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $32.2$ $34.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $32.2$ $34.00$ <	3.00	0.0	3.2	3.2
5.00 $0.0$ $3.2$ $3.2$ $6.00$ $0.0$ $3.2$ $3.2$ $7.00$ $0.0$ $3.2$ $3.2$ $8.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $10.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $27.00$ $15.1$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $18.5$ $27.00$ $15.1$ $4.8$ $22.8$ $30.00$ $19.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $31.00$ $21.0$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $32.2$ $34.00$ $25.8$ $4.8$ $32.2$ $36.00$ $27.4$ $4.8$ $35.4$ $37.00$ $30.6$ $4.8$ $35.4$ <t< td=""><td>4.00</td><td>0.0</td><td>3.2</td><td>3.2</td></t<>	4.00	0.0	3.2	3.2
6.00 $0.0$ $3.2$ $3.2$ $7.00$ $0.0$ $3.2$ $3.2$ $8.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $27.00$ $15.1$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $30.00$ $19.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $25.8$ $32.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $30.6$ $35.00$ $27.4$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $37.00$ $30.6$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ <	5.00	0.0	3.2	3.2
7.00 $0.0$ $3.2$ $3.2$ $8.00$ $0.0$ $3.2$ $3.2$ $9.00$ $0.0$ $3.2$ $3.2$ $10.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.4$ $3.4$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $19.9$ $28.00$ $16.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $25.8$ $31.00$ $21.0$ $4.8$ $25.8$ $32.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $30.6$ $35.00$ $27.4$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	6.00	0.0	3.2	3.2
3.00 $0.0$ $3.2$ $3.2$ $3.2$ $10.00$ $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $18.5$ $27.00$ $15.1$ $4.8$ $22.8$ $30.00$ $19.5$ $4.8$ $24.3$ $31.00$ $21.0$ $4.8$ $25.8$ $32.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $30.6$ $35.00$ $27.4$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	2 00	0.0	2.2	2.2
10.00 $0.0$ $3.2$ $3.2$ $11.00$ $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $19.9$ $28.00$ $16.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $30.00$ $21.0$ $4.8$ $25.8$ $32.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $32.2$ $34.00$ $25.8$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $37.00$ $30.6$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	9 00	0.0	3 2	3.2
11.00 $0.0$ $3.4$ $3.4$ $12.00$ $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $19.9$ $28.00$ $16.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $30.00$ $21.0$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $29.0$ $34.00$ $25.8$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $37.00$ $30.6$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	10 00	0.0	3 2	3 2
12.00 $0.0$ $3.9$ $3.9$ $13.00$ $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $18.5$ $27.00$ $15.1$ $4.8$ $22.8$ $30.00$ $19.5$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $25.8$ $31.00$ $21.0$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $30.6$ $35.00$ $27.4$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $37.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	11.00	0.0	3.4	3.4
13.00 $0.0$ $4.3$ $4.3$ $14.00$ $0.3$ $4.8$ $5.1$ $15.00$ $1.1$ $4.8$ $5.9$ $16.00$ $2.0$ $4.8$ $6.8$ $17.00$ $3.0$ $4.8$ $7.8$ $18.00$ $4.0$ $4.8$ $8.8$ $19.00$ $5.1$ $4.8$ $9.9$ $20.00$ $6.2$ $4.8$ $11.0$ $21.00$ $7.3$ $4.8$ $12.1$ $22.00$ $8.5$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $13.3$ $23.00$ $9.8$ $4.8$ $14.6$ $24.00$ $11.0$ $4.8$ $15.8$ $25.00$ $12.4$ $4.8$ $17.2$ $26.00$ $13.7$ $4.8$ $18.5$ $27.00$ $15.1$ $4.8$ $21.3$ $29.00$ $18.0$ $4.8$ $22.8$ $30.00$ $21.0$ $4.8$ $25.8$ $32.00$ $22.6$ $4.8$ $27.4$ $33.00$ $24.2$ $4.8$ $29.0$ $34.00$ $25.8$ $4.8$ $30.6$ $35.00$ $27.4$ $4.8$ $32.2$ $36.00$ $29.0$ $4.8$ $35.4$ $37.00$ $30.6$ $4.8$ $35.4$ $38.00$ $32.2$ $4.8$ $37.0$ $39.00$ $33.8$ $4.8$ $38.6$	12.00	0.0	3.9	3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.00	0.0	4.3	4.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.00	0.3	4.8	5.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.00	1.1	4.8	5.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.00	2.0	4.8	6.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.00	3.0	4.8	7.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.00	4.0	4.8	8.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.00	5.1	4.8	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.00	6.2	4.8	11.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.00	/.3	4.8	12.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.00	8.5	4.8	13.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.00	9.0	4.0	14.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.00	12 4	4.8	17 2
27.0015.14.819.928.0016.54.821.329.0018.04.822.830.0019.54.824.331.0021.04.825.832.0022.64.827.433.0024.24.829.034.0025.84.830.635.0027.44.832.236.0029.04.835.437.0030.64.835.438.0032.24.837.039.0033.84.838.6	26.00	13 7	4 8	18 5
28.00       16.5       4.8       21.3         29.00       18.0       4.8       22.8         30.00       19.5       4.8       24.3         31.00       21.0       4.8       25.8         32.00       22.6       4.8       27.4         33.00       24.2       4.8       29.0         34.00       25.8       4.8       30.6         35.00       27.4       4.8       32.2         36.00       29.0       4.8       33.8         37.00       30.6       4.8       35.4         38.00       32.2       4.8       37.0         39.00       33.8       4.8       38.6	27.00	15.1	4.8	19.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.00	16.5	4.8	21.3
30.0019.54.824.331.0021.04.825.832.0022.64.827.433.0024.24.829.034.0025.84.830.635.0027.44.832.236.0029.04.833.837.0030.64.835.438.0032.24.837.039.0033.84.838.6	29.00	18.0	4.8	22.8
31.0021.04.825.832.0022.64.827.433.0024.24.829.034.0025.84.830.635.0027.44.832.236.0029.04.833.837.0030.64.835.438.0032.24.837.039.0033.84.838.6	30.00	19.5	4.8	24.3
32.0022.64.827.433.0024.24.829.034.0025.84.830.635.0027.44.832.236.0029.04.833.837.0030.64.835.438.0032.24.837.039.0033.84.838.6	31.00	21.0	4.8	25.8
33.00       24.2       4.8       29.0         34.00       25.8       4.8       30.6         35.00       27.4       4.8       32.2         36.00       29.0       4.8       33.8         37.00       30.6       4.8       35.4         38.00       32.2       4.8       37.0         39.00       33.8       4.8       38.6	32.00	22.6	4.8	27.4
34.00       25.8       4.8       30.6         35.00       27.4       4.8       32.2         36.00       29.0       4.8       33.8         37.00       30.6       4.8       35.4         38.00       32.2       4.8       37.0         39.00       33.8       4.8       38.6	33.00	24.2	4.8	29.0
35.00       27.4       4.8       32.2         36.00       29.0       4.8       33.8         37.00       30.6       4.8       35.4         38.00       32.2       4.8       37.0         39.00       33.8       4.8       38.6	34.00	25.8	4.8	30.6
36.00         29.0         4.8         33.8           37.00         30.6         4.8         35.4           38.00         32.2         4.8         37.0           39.00         33.8         4.8         38.6	35.00	27.4	4.8	32.2
37.00         30.6         4.8         35.4           38.00         32.2         4.8         37.0           39.00         33.8         4.8         38.6	36.00	29.0	4.8	33.8
30.00         32.2         4.6         37.0           39.00         33.8         4.8         38.6	37.00	30.0	4.8	35.4
33.00 33.0 4.0 30.0	30.00	22.2	4.0	20 6
	39.00	33.0 35 A	4.0	20.0
40.2	41 00	37 0	4.8	41 8
42.00 38.6 4.8 43.4	42.00	38.6	4.8	43.4

$\begin{array}{c} 43.00\\ 44.00\\ 45.00\\ 46.00\\ 47.00\\ 48.00\\ 50.00\\ 52.00\\ 53.00\\ 54.00\\ 55.00\\ 56.00\\ 57.00\\ 58.00\\ 60.00\\ 61.00\\ 62.00\\ 63.00\\ 64.00\\ 65.00\\ 66.00\\ 67.00\\ 67.00\\ 77.00\\ 73.00\\ 74.00\\ 77.00\\ 73.00\\ 74.00\\ 77.00\\ 78.00\\ 80.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 85.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 83.00\\ 84.00\\ 85.00\\ 80.00\\ 90.00\\ 91.00\\ 93.00\\ 91.00\\ 93.00\\ 94.00\\ 95.00\\ 93.00\\ 94.00\\ 95.00\\ 96.00\\ 97.00\\ 98.00\\ 99.00\\ 90.00\\ 99.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 90$	$\begin{array}{c} 40 \\ 41 \\ 43 \\ 45 \\ 46 \\ 48 \\ 49 \\ 51 \\ 53 \\ 54 \\ 56 \\ 57 \\ 57 \\ 57 \\ 56 \\ 57 \\ 61 \\ 62 \\ 64 \\ 65 \\ 67 \\ 69 \\ 70 \\ 72 \\ 73 \\ 75 \\ 77 \\ 78 \\ 80 \\ 81 \\ 83 \\ 85 \\ 88 \\ 89 \\ 91 \\ 101 \\ 102 \\ 104 \\ 105 \\ 107 \\ 109 \\ 101 \\ 102 \\ 104 \\ 105 \\ 107 \\ 109 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 102 \\ 101 \\ 101 \\ 102 \\ 101 \\ 101 \\ 101 \\ 102 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 $	HP 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 8 0 8 2 8 8 0 8 2 8 8 0 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 16 \\ \times \\ 141 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.$	Batter Pil 45.0 46.6 48.2 49.8 51.4 53.0 54.6 56.2 57.8 59.4 61.0 62.6 64.2 65.8 67.4 69.0 70.6 72.2 73.8 75.4 77.0 78.6 80.2 81.8 83.4 85.0 86.6 88.2 89.8 91.4 93.0 94.6 96.2 97.8 99.4 101.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 102.6 104.2 105.8 107.4 109.0 106.1 107.2 105.8 107.4 109.0 106.1 107.2 105.8 107.4 109.0 106.2 105.8 107.4 109.0 106.2 105.8 107.4 109.0 106.2 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 105.8 107.4 107.0 126.6 126.6 126.2 127.8 131.4 133.0 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.6 134.	e.apo
94.00 95.00 96.00 97.00 98.00 99.00 100.00	121. 123. 125. 126. 128. 129. 131.	8 4 0 6 2 8 4	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	126.6 128.2 129.8 131.4 133.0 134.6 136.2	
AN ASTE IF THE OF SOIL	RISK WILL BE TIP RESISTAN PLUG INSIDE	E PLACED IN ICE IS CONTI AN OPEN-EN	THE END- ROLLED BY NDED PIPE	BEARING COL THE FRICTI PILE.	.UMN ON
*** * Cl ***	*************** OMPUTE LOAD- JRVES FOR AX **********	DISTRIBUTIO	********** ON AND LO G *********	*********** AD-SETTLEME ******	**** NT * * *
T-Z CURVE NO.	NO. OF DE POINTS	PTH TO CUR	/E LOAD	TRANSFER PSI	PILE MOVEMENT IN.
1	10 0	0.0000E+00	0.0 0.0 0.0	000E+00 000E+00 000E+00 Page 4	0.0000E+00 0.1000E-01 0.2000E-01
				~	

0E-01
0E-01
00E+00
0E+00
0E+02
0F+00
0E-01
0E-01
0E-01
0E-01
0E+00
0E+00
0E+02
00E+00
0E-01
0E-01
0E-01
0E-01
0E+00
0E+00
0E+02
0E+00
00E - 01
0E-01
0E-01
0E - 0I
0E+00
0E+00
0E+02
0E+00
0E-01
0E-01
00E-01
0E+00
00E+00
0E+00
0- 00
0E+00
0E-01
00E - 01
0E-01
0E+00
00E+00
0E+02

TIP LOAD	TIP MOVEMENT
KIP	IN.
0.0000E+00	0.0000E+00
0.5317E-01	0.1000E-03
0.3760E+00	0.5000E-02
0.5317E+00	0.1000E-01
0.1189E+01	0.5000E-01
0.1681E+01	0.1000E+00
0.2378E+01	0.2000E+00
0.3760E+01	0.5000E+00
0.4800E+01	0.1000E+01
0.4800E+01	0.2000E+01

#### HP 16 x 141 Batter Pile.apo

# LOAD VERSUS SETTLEMENT CURVE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
KIP	IN.	KIP	IN.
.5199E+00	0.6474E-03	0.5317E-01	0.1000E-03
.3904E+01	0.4941E-02	0.1125E+00	0.1000E-02
.1932E+02	0.2420E-01	0.3760E+00	0.5000E-02
.3972E+02	0.4895E-01	0.5317E+00	0.1000E-01
.1145E+03	0.1848E+00	0.1189E+01	0.5000E-01
.1158E+03	0.2391E+00	0.1681E+01	0.1000E+00
.1141F+03	0.6377F+00	0.3760F+01	0.5000F+00
1152F+03	0.1140 F + 01	0.4800F+01	0.1000 E + 01
.1152F+03	0.2140F+01	0.4800F+01	0.2000F+01
.1932E+02 .1145E+03 .1158E+03 .1158E+03 .1141E+03 .1152E+03 .1152E+03	0.2420E-01 0.1848E+00 0.2391E+00 0.6377E+00 0.1140E+01 0.2140E+01	0.5317E+00 0.1189E+01 0.1681E+01 0.3760E+01 0.4800E+01 0.4800E+01	0.1000E-01 0.5000E-01 0.1000E+00 0.5000E+00 0.1000E+01 0.2000E+01

1 10 0.0000E+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000E+00 000E+00 000E+00 000E+00 000E+00 000E+00 000E+00 000E+00 000E+00	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.8000E-01 0.1200E+00 0.1600E+00 0.5000E+00 0.1000E+02

Appendix C1-S

Compression Capacity Calculation for Driven Pile Bearing on Rock





# Appendix C1-T

Details of Micropile Axial Capacity Calculations

### MICROPILE DESIGN - 2015 INTERNATIONAL BUILDING CODE NEW JERSEY EDITION

Project Name: New Meadowlands - Soil Areas 4 to 7 Project Number : 60481054

Calculated by : LC Checked by : KV

Outside Diameter of Casing:	11.875 in.
Thickness of Casing:	0.582 in.
Inside Diameter of Casing	10.711 in.
Diameter of Bond Zone :	<b>11.5</b> in.
Perimeter of Bond Zone :	36.1 in.
Area of Bond Zone :	103.9 sq.in.
Center to Center Spacing :	<b>3.0</b> ft
Cased length :	<b>15</b> ft
Soil unit weight :	110 pcf
Wedge angle (for single row calc.):	30 degrees
Allowable Bond Stress (Compression):	5 psi
Allowable Bond Stress (Tension):	3 psi

#### **GEOTECHNICAL CAPACITY**

			Tension					
				Single				
			Failure at	Row -				
			grout/soil	Failure	Multiple Ro	ws -		
Bond Zone	Compression		interface	thru soil	Failure thru	ı soil		
Length (ft)	(tons)		(tons)	(tons)	(tons)			
5 5			4	22	10			
10	11		7	22	12			
15	16		11	22	15			
20	22		14	22	17			
25	27		18	22	20			
30	33		22	22	22			
35	38		22	22	22			
40	43		22	22	22			
STRUCTURA								
Cased Section	on :							
Rebar Diameter: 1.		1.25	in	Rebar Num	nber:	10		
Number of Rebars:		1		Rebar & ca	sing clearar	nce	4.7 in.	(Minimum = 1 inch)
Total Rebar Area: 1.2		1.23	sq.in.					
Rebar Steel Yield Stress: 60		ksi A615 Grade 60						
Allow. Rebar Stress: 2		24	ksi					
Casing Steel Yield Stress :		45	ksi	Minimum 4	5 ksi			
Allow. Casing Stress:		18	ksi					
Grout Compr. Stress:		4	ksi	Minimum 4	ksi			
Casing Steel Area: 20		20.6	sq.in.					
Grout Area :		88.9	sq.in.					
Rebar Strength (Comp.):		15	tons	Rebar Strength (Tension):			22 tons	
Steel Casing Strength:		186	tons					
Grout Strength :		53	tons					
Total : 254		254	tons					
Uncased Sec	ction :							
Rebar Diameter:		1.25	in	Rebar Num	nber:	10		
Number of Rebars:		1		Grout cove	r:		5.1	(Minimum = 2.5 inches)
Rebar Diame	ter:	0	in	Rebar Num	nber:	0		
Number of Rebars:		1		Grout cove	r:		5.8	(Minimum = 2.5 inches)
Total Rebar A	Area:	1.23	sq.in.					
Rebar Steel Yield Stress: 60		ksi	A615 Grad	e 60				
Allow. Rebar Stress: 24		ksi						
Grout Compr.	Stress:	4	ksi					
Grout Area : 102.6		sq.in.						
Rebar Strength (Comp.): 15		tons	Load carried by the steel:			19%		
Grout Strength : 62		tons						
Total : 76		tons						

APPENDIX C1-U Plots of Lateral Deflection, Bending Moment and Shear Force versus Embedded Depth of Cantilever Sheet Pile Walls from PYWall








Cantilever Sheet Pile Wall with 15 ft Height (Not Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood Condition



Factored axial load, F = 0.00

Section modulus (pile), S = 244.00

Max. bending moment, M = 3.12E+03 kips-in

Area (pile), A = 40.5

kips

in²

in³





Cantilever Sheet Pile Wall with 15 ft Height (Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood Condition



Cantilever Sheet Pile Wall with 15 ft Height (Grouted) for Soil Area 2, @ -27 ft or Lower No Flood and Seismic



APPENDIX C1-V Output from PYWall Analysis for Cantilever Sheet Pile Wall in Soil Area 2

## Cantilever Sheet Pile Wall with 15 ft Height (Not Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood Condition

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5o _____ PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Q:\Geotechnical\Meadowlands\Calculations for New Alternatives\Cantilever Sheet Pile wall\PYWall Analysis\Proposed Section\No Flood_With Out Grout\ Name of input data file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5d Name of output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py50 Name of plot output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5p _____ Time and Date of Analysis _____ Date: October 18, 2017 Time: 16:38:27 Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood ******* * PROGRAM CONTROL PARAMETERS *********** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1 = 1 GENERATE EARTH PRESSURE INTERNALLY GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1 NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 70 NUMBER OF INCREMENTS = INCREMENT LENGTH 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION 18.000 IN = = 1.000E-05 IN DEFLECTION CLOSURE TOLERANCE * STIFFNESS AND LOAD DATA ***************** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, Page 1

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5o R - STIFFNESS OF TORSIONAL RESISTANCE. s' FROM TO CONTD ΕI Т R Ρ Q LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 70 0 * * WALL INFORMATION FREE HEIGHT OF WALL = 0.180E+03 IN 0.630E+02 IN WIDTH FOR EARTH PRESSURE, WA = 0.630E+02 IN WIDTH FOR SOIL RESISTANCE, WP = DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER = 0.360E-01 LBS/IN**3 SLOPE OF THE BACKFILL (deg.) = 0.000E+00MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 * SURCHARGE INFORMATION * = 0.174E+01 LBS/IN**2UNIFORM SURFACE PRESSURE * SOTE INFORMATION * TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP NO. IΝ PSI DEG PCI T OR F ΙN 96.0 32.0 0.064 0.00 0.0 Т 1 22.0 84.0 96.00 2 0.3 0.064 Т 3 300.0 0.0 36.0 0.075 Т 180.00 ************** * EFFECTIVE OVERBURDEN STRESS * ***** DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.174E+01 0.960E+02 0.785E+01 0.180E+030.102 F + 02* ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * LAYER ACTIVE EARTH PASSIVE EARTH OPTIONAL EARTH NO. COEFFICIENT COEFFICIENT COEFFICIENT

Page 2

Cantilever 1 2 3	Sheet Pile 0.307E+00 0.455E+00 0.260E+00	e Wall Be ) ) )	drock @ 0.325E 0.220E 0.385E	-27ft or Lou +01 +01 +01	wer_No_F 0.000E+ 0.000E+ 0.000E+	100d.py50 -00 -00 -00
**************************************	************ EARTH PRESS ******	SURE OF E	ACH LAY	********* ER * *******		
LAYER PA1 NO LBS/IN**	Z1 2 IN LE	PA2 BS/IN**2	Z2 IN	PA3 LBS/IN**2	Z3 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 138.00	90.13 44.39 1	64.00 52.00	0.00 -39.35	0.00	0.00 0.00
**************************************	************ WATER PRESS ********	SURE OF E	ACH LAY	********* ER * ******		
LAYER PW1 NO	Z1	PW2	Z2			
2 0.00	138.00	127.01 1	.52.00			
DEPTH IN	ACTIVE E	EARTH PRE _BS/IN	SSURE			
0.000E+00 0.600E+01 0.120E+02 0.180E+02 0.240E+02 0.300E+02 0.360E+02 0.420E+02 0.420E+02 0.540E+02 0.600E+02 0.600E+02 0.720E+02 0.720E+02 0.780E+02 0.900E+02 0.900E+02 0.960E+02 0.102E+03 0.114E+03 0.120E+03 0.132E+03 0.132E+03 0.132E+03 0.150E+03 0.150E+03 0.150E+03 0.168E+03 0.180E+03 0.186E+03 0.192E+03	0.33 0.41 0.48 0.55 0.63 0.70 0.78 0.92 0.10 0.11 0.12 0.13 0.13 0.14 0.13 0.13 0.14 0.22 0.21 0.21 0.21 0.21 0.21 0.22 0.23 0.24 0.25 0.22 0.25 0.22 0.21 0.21 0.21 0.22 0.23 0.24 0.25 0.25 0.25 0.22 0.24 0.22 0.25 0.22 0.24 0.22 0.25 0.22 0.24 0.22 0.25 0.22 0.24 0.22 0.22 0.24 0.22 0.22 0.24 0.22 0.22	36E+02 L0E+02 34E+02 36E+02 30E+02 31E+02 31E+02 30E+03 30E+03 32E+03 30E+03 32E+03 30E+03 32E+03 32E+03 32E+03 32E+03 32E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 34E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03 35E+03				

Cantilever Sheet 0.204E+03 0.210E+03 0.216E+03 0.222E+03 0.228E+03 0.234E+03 0.240E+03 0.240E+03 0.252E+03 0.258E+03 0.264E+03 0.270E+03 0.276E+03 0.288E+03 0.294E+03 0.306E+03 0.312E+03 0.312E+03 0.318E+03 0.324E+03 0.324E+03 0.336E+03 0.348E+03 0.348E+03 0.348E+03 0.348E+03 0.348E+03 0.354E+03 0.366E+03 0.366E+03 0.366E+03 0.372E+03 0.366E+03 0.372E+03 0.366E+03 0.378E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.402E+03 0.402E+03 0.402E+03 0.414E+03 0.420E+03	Pile Wall 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.1	Bedrock	@-27ft	or Lower	_No_Flood.py5o
******	****	******	******	****	
X AT THE SURFACE	OF EXCAVATI	ON SIDE	=	180.0	0 IN
1 LAYER(S) OF SOI	Ľ				
LAYER 1 THE SOIL IS A SAM	ID				
DISTRIBUTION OF E	EFFECTIVE UN 2 POINTS	IT WEIGH	HT WITH	DEPTH	
X,IN 180.0000 480.0000	WEIGHT,LB 0.3923D 0.3923D	S/IN**3 -01 -01			
DISTRIBUTION OF S	TRENGTH PAR 2 POINTS	AMETERS	WITH DE	EPTH	
		Page 4	1		

Cantilever S	Sheet Pile	Wall Bedrock	@-27ft or L	_ower_No_Flood.py5o
Х	(,IN S	,LBS/IN**2	PHI,DEGRE	EES E50
180	0.00	.0000D+00	36.000	
432	2.00 0	.0000D+00	36.000	

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH BELOW GS	DIAM	PHI	GAMMA AVG	A	В	РСТ	PCD
0.10	63.00	36.00	0.39E-01	2.83	2.14	0.89E+00	0.15E+02
			Y TN		P IBS/	ΓN	
		0.	000	-1	166.34	17	
		0.	088	-1	165.2	53	
		0.	175	-1	164.1	59	
		0.	263	-1	163.38	31	
		0.	350	-1	163.1	53	
		0.	438	-1	162.90	53	
		0.	525	-1	162.80	00	
		0.	613	-1	162.6	56	
		0.	700		162.52	27	
		0.	788	-1	162.40	)9	
		0.	875		162.30	)1	
		0.	963		162.20	00	
		1.	050		162.10	)6	
		2.	362		160.7	38	
		65.	362		L60./:	38	
		128.	363		160.7	38	
		191.	303		160.73	38	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELOW	I GS	DIAM	PHI	GAMMA AVG	А	В	РСТ	PCD
180.10		63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05
180.10		63.00	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.39E-01 Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362	1.11 12 15 17 17 20 22 25 26 27 28 41	P LBS/1 L66.34 216.17 30.78 330.78 339.68 339.68 339.68 357.63 471.12 576.10 574.09 766.08 353.09 L23.00	EN 47 71 37 39 37 23 48 34 27 05 55 38 54 51	0.27E+03
			05.	Page 5	41	123.00	)T	

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py50 128.363 4123.061 191.363 4123.061

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW GS IN	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
63.00	63.00	36.00	0.39E-01	2.11	1.54	0.11E+04	0.95E+04
		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN 2000 288 175 263 350 438 525 613 700 788 875 963 250 362 362 362 363 363	-1 5 9 11 12 13 14 14 14 16 16 16 17 17 24 24 24 24	P LBS/1 .66.34 22.71 .65.31 .09.67 23.13 .18.04 .00.38 .73.55 .39.69 .00.24 .56.22 .08.35 .57.32 .69.32 .69.32 .69.32	EN 47 46 44 34 43 32 52 91 41 23 92 21 228 228 228 228 228	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELOW	GS	DIAM	PHI	GAMMA AVG	А	В	PCT	PCD		
243.00		63.00	36.00	0.39E-01	0.92	0.56	0.97E+04	0.37E+05		
				Y		Р				
				IN		LBS/1	IN			
			0.0	000	-	L66.34	47			
			0.0	088	2	586.30	52			
			0.	1/5	14	204.94	43			
			0.2	263	14	453.10	54			
			0.3	350	16					
			0.4	438	18	1852.014				
			0.	525	2022.534					
			0.0	613	21	L80.09	97			
			0.1	700	23	327.3	54			
			0.3	788	24	166.1	58			
			0.0	875	25	597.80	50			
			0.9	963	27	723.48	34			
			1.0	050	28	343.82	29			
			2.	362	46	512.7	57			
			65.	362	46	512.7	57			
			128	363	46	512 7	57			
			191	363	46	512 7	57			
			-J			,				

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5o P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BEL	OW	GS	DIAM TN	PHI	GAMMA AVG	А	В	PCT	PCD
126.00			63.00	36.00	0.39E-01	1.48	1.05	0.31E+04	0.19E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363		P LBS/: 166.3 995.8 292.10 499.2 663.9 802.7 923.9 322.2 130.5 220.8 304.7 383.1 456.8 531.0 531.0 531.0	IN 47 19 03 97 21 37 38 14 30 94 36 14 36 92 92 92 92	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH	BELOW	GS	DIAM	PHI	GAMMA AVG	А	В	РСТ	PCD
30	6.00		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.46E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363 363		P LBS/2 166.34 354.28 209.46 497.07 748.04 974.82 564.69 564.69 564.65 564.65 5740.49 564.65 2740.49 522.84 522.84 522.84 522.84	IN 47 31 59 76 46 73 48 71 99 1 36 34 52 41 41 41	

P-Multiplier =	0.100E+01	Y-Multiplier =	0.100E+01
----------------	-----------	----------------	-----------

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5o AT THE EXCAVATION SIDE

DEPTH BELOW	GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	Α	В	РСТ	PCD
189.00		63.00	36.00	0.39E-01	1.06	0.71	0.62E+04	0.29E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 362		P LBS/1 L66.34 332.20 L46.19 373.78 558.80 717.50 357.94 384.82 L01.11 208.94 305.90 305.90 305.90 305.90	IN 47 54 93 81 09 04 44 22 38 47 21 50 10 02 22	
			тат.	202	50	502.90	JZ	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BEI IN	LOW	GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
369.00	0		63.00	36.00	0.39E-01	0.88	0.50	0.21E+05	0.56E+05
				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN 2000 288 175 263 350 438 525 513 700 788 875 263 250 362 363 363 363		P LBS/2 266.34 273.82 397.03 241.10 042.09 314.65 566.50 302.32 025.20 237.50 430.68 536.02 324.52 504.74 504.74 504.74	EN 47 10 38 01 99 56 00 30 55 07 31 29 28 45 45 45	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

Cantilever Sheet Pi	le Wall Bedrock @-	27ft or Lower_No_Flood.py50	
DEPTH BELOW GS DI	AM PHI GAMMA AV	G A B PCT PO	CD
IN	N LBS/IN**	3	~ -
251.90 63.	00 36.00 0.39E-01	0.90 0.53 0.10E+05 0.38E-	+05
		2	
	Ŷ		
	0.000	-166.347	
	0.088	495.368	
	0.175	807.943	
	0.263	1055.374	
	0.350	1268.170	
	0.438	1458.435	
	0.525	1632.480	
	0.613	1794.101	
	0.700	1945.794	
	0 788	2089 311	
	0 875	2225 936	
	0.963	2356 643	
	1 050	2/22 105	
	2 262	4220 022	
	2.302	4330.023	
	05.302	4330.023	
	128.363	4330.023	
	TAT'303	4330.023	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH	BELOW TN	GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	РСТ	PCD
431	L.90		63.00	36.00	0.39E-01	0.88	0.50	0.28E+05	0.65E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P LBS/1 166.3 111.4 506.8 2009.5 361.8 361.8 375.6 512.5 761.0 998.8 227.4 448.10 702.2 702.2 702.2	IN 47 51 23 34 45 8 32 51 98 19 26 74 26 74 29 39 39 39 39	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood

RESULTS -- ITERATION 6

STA I	Х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA
			Page	9		

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood.py5o

ст	culteriever	Sheet The	Warr Dearber	e 2710 01		u.py50
LBS-IN**2	IN	IN		LBS-IN	LBS	LBS
0 0.331E+11	0.000E+00	0.178E+01	-0.753E-02	0.000E+00	0.000E+00	0.000E+00
1 0.662E+11	0.600E+01	0.174E+01	-0.753E-02	0.000E+00	0.123E+03	0.246E+03
2 0.662F+11	0.120E+02	0.169E+01	-0.753E-02	0.148E+04	0.391E+03	0.290E+03
3 0 662E+11	0.180E+02	0.165E+01	-0.753E-02	0.469E+04	0.704E+03	0.335E+03
4 0 6625,11	0.240E+02	0.160E+01	-0.753E-02	0.992E+04	0.106E+04	0.378E+03
0.002E+11 5	0.300E+02	0.156E+01	-0.752E-02	0.174E+05	0.146E+04	0.423E+03
0.002E+11 6	0.360E+02	0.151E+01	-0.752E-02	0.275E+05	0.191E+04	0.469E+03
0.662E+11 7	0.420E+02	0.147E+01	-0.752E-02	0.403E+05	0.240E+04	0.510E+03
0.662E+11 8	0.480E+02	0.142E+01	-0.752E-02	0.562E+05	0.293E+04	0.556E+03
0.662E+11 9	0.540E+02	0.138E+01	-0.751E-02	0.755E+05	0.351E+04	0.601E+03
0.662E+11 10	0.600E+02	0.133E+01	-0.750E-02	0.983E+05	0.413E+04	0.646E+03
0.662E+11 11	0.660E+02	0.129E+01	-0.749E-02	0.125E+06	0.480E+04	0.688E+03
0.662E+11 12	0.720F+02	0.124F+01	-0.748F-02	0.156F+06	0.551F+04	0.733F+03
0.662E+11	0 780F±02	0 120F±01	-0 746E-02	0 191E+06	0.627E+04	0 779F±03
0.662E+11		0.1201+01			0.7075+04	
0.662E+11	0.040E+02	0.1115.01	-0.744E-02	0.2512+00	0.707E+04	0.024E+03
0.662E+11	0.900E+02	0.111E+01	-0.742E-02	0.276E+06	0.791E+04	0.866E+03
16 0.662E+11	0.960E+02	0.106E+01	-0.739E-02	0.326E+06	0.880E+04	0.911E+03
17 0.662E+11	0.102E+03	0.102E+01	-0.736E-02	0.382E+06	0.986E+04	0.120E+04
18 0.662E+11	0.108E+03	0.976E+00	-0.732E-02	0.444E+06	0.111E+05	0.123E+04
19 0 662E+11	0.114E+03	0.932E+00	-0.728E-02	0.514E+06	0.123E+05	0.126E+04
20	0.120E+03	0.888E+00	-0.723E-02	0.592E+06	0.136E+05	0.129E+04
21	0.126E+03	0.845E+00	-0.717E-02	0.677E+06	0.149E+05	0.132E+04
22	0.132E+03	0.802E+00	-0.711E-02	0.771E+06	0.162E+05	0.134E+04
0.662E+11 23	0.138E+03	0.760E+00	-0.703E-02	0.872E+06	0.176E+05	0.137E+04
0.662E+11 24	0.144E+03	0.718E+00	-0.695E-02	0.982E+06	0.190E+05	0.140E+04
0.662E+11 25	0.150E+03	0.676E+00	-0.685E-02	0.110E+07	0.204E+05	0.143E+04
0.662E+11 26	0.156E+03	0.636E+00	-0.675E-02	0.123E+07	0.218E+05	0.146E+04
0.662E+11 27	0.162E+03	0.595E+00	-0.663E-02	0.136F+07	0.233F+05	0.149E+04
0.662E+11 28	0.168F+03	0.556F+00	-0.650F-02	0.151F+07	0.248F+05	0.152F+04
	2.2002.00	0.00000000	3.333C 0L		012102105	J. 1322. 01

0.662E+11

Cantilever 29 0.174E+03	Sheet Pile 0.517E+00	Wall Bedrock -0.636E-02	@-27ft or 0.166E+07	Lower_No_Flo 0.263E+05	od.py5o 0.154E+04
0.662E+11 30 0.180E+03	0.480E+00	-0.620E-02	0.182E+07	0.281E+05	0.207E+04
0.662E+11 31 0.186E+03	0.443E+00	-0.603E-02	0.200E+07	0.292E+05	0.167E+03
0.662E+11 32 0.192E+03	0.407E+00	-0.584E-02	0.217E+07	0.290E+05	-0.602E+03
0.662E+11 33 0.198E+03	0.373E+00	-0.563E-02	0.234E+07	0.281E+05	-0.133E+04
0.662E+11 34 0.204E+03	0.340E+00	-0.541E-02	0.251E+07	0.264E+05	-0.201E+04
0.662E+11 35 0.210E+03	0.308E+00	-0.518E-02	0.266E+07	0.241E+05	-0.265E+04
0.662E+11 36 0.216E+03	0.278E+00	-0.493E-02	0.280E+07	0.211E+05	-0.325E+04
0.662E+11 37 0.222E+03	0.249E+00	-0.467E-02	0.292E+07	0.176E+05	-0.379E+04
0.662E+11 38 0.228E+03	0.222E+00	-0.441E-02	0.301E+07	0.136E+05	-0.428E+04
0.662E+11 39 0.234E+03	0.196E+00	-0.413E-02	0.308E+07	0.906E+04	-0.473E+04
0.662E+11 40 0.240E+03	0.172E+00	-0.385E-02	0.312E+07	0.415E+04	-0.509E+04
0.662E+11 41 0.246E+03	0.150E+00	-0.357E-02	0.313E+07	-0.909E+03	-0.502E+04
0.662E+11 42 0.252E+03	0.129F+00	-0.328E-02	0.311F+07	-0.574E+04	-0.464E+04
0.662E+11 43 0.258E+03	0.110F+00	-0.300E-02	0.306F+07	-0.102F+05	-0.435E+04
0.662E+11 44 0.264E+03	0.932F-01	-0.273E-02	0.298F+07	-0.145F+05	-0.414F+04
0.662E+11 45 0.270E+03	0.776F-01	-0.246E-02	0.288F+07	-0.184F+05	-0.368F+04
0.662E+11 46 0.276E+03	0 636F-01	-0 221E-02	0 276F+07	-0 218F+05	-0 304F+04
0.662E+11 47 0.282E+03	0 511E-01	-0 1965-02	0 262F±07	-0 245E±05	-0 241E±04
0.662E+11 48 0.288E+03	0.4005-01	-0 1735-02	0.2022+07 0.2475+07	-0 266E±05	-0 180E+04
0.662E+11 49 0.204E+03	0.303 = 01	-0.1526-02			
0.662E+11	0.303E-01	-0.132E-02	0.2302+07		
0.662E+11		-0.132E-02	0.1065.07	-0.291E+05	-0.073E+03
0.662E+11	0.145E-01	-0.113E-02	0.1705.07	-0.295E+05	-0.101E+03
0.662E+11	0.828E-02	-0.961E-03	0.1/8E+07	-0.294E+05	0.345E+03
0.662E+11	0.299E-02	-0.808E-03	0.160E+07	-0.288E+05	0.764E+03
54 0.324E+03 - 0.662E+11	-0.142E-02	-0.670E-03	0.143E+07	-0.279E+05	0.10/E+04
55 0.330E+03 - 0.662E+11	-0.505E-02	-0.548E-03	0.12/E+0/	-0.268E+05	0.125E+04
56 0.336E+03 - 0.662E+11	-0.799E-02	-0.440E-03	0.111E+07	-0.254E+05	0.140E+04
57 0.342E+03 - 0.662E+11	-0.103E-01	-0.346E-03	0.963E+06	-0.240E+05	0.153E+04
58 0.348E+03 - 0.662E+11	-0.121E-01	-0.265E-03	0.824E+06	-0.224E+05	0.163E+04
59 0.354E+03 - 0.662E+11	-0.135E-01	-0.196E-03	0.695E+06	-0.207E+05	0.171E+04
60 0.360E+03 -	-0.145E-01	-0.138E-03 Page 1	0.576E+06 1	-0.190E+05	0.178E+04

	Cantilever	Sheet Pil	e Wall	Bedrock	@-27ft or	Lower_No_Floo	d.py5o
0.662E+11							
61 (	0.366E+03	-0.152E-01	-0.9	12E-04	0.467E+06	-0.172E+05	0.183E+04
0.662E+11							
62 (	0.372E+03	-0.156E-01	-0.5	33e-04	0.370E+06	-0.153E+05	0.186E+04
0.662E+11							
63 (	0.378E+03	-0.158E-01	-0.2	37E-04	0.283E+06	-0.134E+05	0.189E+04
0.662E+11		0 4 5 0 - 04				0 445- 05	0 101 - 01
64 (	J.384E+03	-0.159E-01	-0.1	44E-05	0.208E+06	-0.115E+05	0.191E+04
0.662E+11		0 1 5 0 - 01	0 1	46- 04	0 145- 00	0 004- 04	0 100- 04
65 (	J.390E+03	-0.158E-01	0.1	46E-04	0.145E+06	-0.964E+04	0.192E+04
0.662E+11		0 157- 01	0 0	F2- 04	0 007- 05	0 770- 04	0 100- 04
	J.396E+03	-0.15/E-01	0.2	53E-04	0.927E+05	-0.//2E+04	0.192E+04
0.662E+11	1025.02	0 1555 01	0.2	10- 04	0 5315.05	0 5705.04	0 1025.04
	J.402E+03	-0.122E-01	0.3	19E-04	0.521E+05	-0.379E+04	0.193E+04
0.002E+11		0 1525 01	0.2		0 2225.05	0 2065-04	0 1025.04
	J.408E+03	-0.153E-01	0.3	53E-04	0.232E+05	-0.380E+04	0.193E+04
0.002E+II		0 1515 01	0.2		0 5705.04		0 102-04
0 662 - 11	J.414E+05	-0.1316-01	0.5	00E-04	0.379E+04	-0.195E+04	0.1956+04
70 (		_0 1/0=_01	03	695-04			0 9665103
$0.331 \pm 11$	J.4202+03	-0.1496-01	0.5	092-04	0.000E+00	-0.40JE+0J	0.900E+03
0.0016411							

END OF ANALYSIS

## Cantilever Sheet Pile Wall with 15 ft Height (Not Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood and Seismic

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py50 _____ PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ : Q:\Geotechnical\Meadowlands\Calculations for New Path to file locations Alternatives\Cantilever Sheet Pile Wall\PYWall Analysis\Proposed Section\Seismic_With Out Grout\ Name of input data file Lower_Seismic.py5d : Cantilever Sheet Pile Wall Bedrock @-27ft or ^_Seismic.py5d Name of output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py5o Name of plot output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py5p _____ Time and Date of Analysis _____ Date: October 19, 2017 Time: 15:19:15 Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic ******* * PROGRAM CONTROL PARAMETERS *********** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1 = 1 GENERATE EARTH PRESSURE INTERNALLY GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1 NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 70 NUMBER OF INCREMENTS = INCREMENT LENGTH 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION 18.000 IN = = 1.000E-05 IN DEFLECTION CLOSURE TOLERANCE * STIFFNESS AND LOAD DATA ***************** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, Page 1

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py50 R - STIFFNESS OF TORSIONAL RESISTANCE. s' FROM TO CONTD ΕI Т R Ρ Q LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 70 0 10 0 0.662E+11 0.361E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 10 WALL INFORMATION * * FREE HEIGHT OF WALL = 0.180E+03 IN WIDTH FOR EARTH PRESSURE, WA 0.630E+02 IN = WIDTH FOR SOIL RESISTANCE, WP = 0.630E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER = 0.360E-01 LBS/IN**3 0.000E+00 SLOPE OF THE BACKFILL (deg.) = MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01* * SURCHARGE INFORMATION ************* = 0.174E+01 LBS/IN**2UNIFORM SURFACE PRESSURE * SOIL INFORMATION TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP DEG PCI T OR F NO. IN PSI IΝ 0.064 0.00 1 96.0 0.0 32.0 Т 84.0 0.3 2 22.0 0.064 Т 96.00 3 300.0 0.0 36.0 0.075 180.00 т * EFFECTIVE OVERBURDEN STRESS * DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.174E+01 0.785E+01 0.960E+02 0.180E+03 0.102E+02 * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * LAYER ACTIVE EARTH PASSIVE EARTH OPTIONAL EARTH Page 2

Cantileve NO. 1 2 3	r Sheet Pf COEFFIC 0.307E+ 0.455E+ 0.260E+	le wall   IENT 00 00 00	Bedrock COEFFI 0.325 0.220 0.385	@-27ft or I CIENT E+01 E+01 E+01	_ower_Se COEFFIC 0.000E 0.000E 0.000E	ismic.py50 IENT +00 +00 +00
**************************************	********** EARTH PRE ********	******** SSURE OF *******	EACH LA	*********** YER * ********		
LAYER PA1 NO LBS/IN*	Z1 *2 IN	PA2 LBS/IN**2	Z2 IN	PA3 LBS/IN**	Z3 2 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 138.00	90.13 44.39	64.00 152.00	0.00 -39.35	0.00 0.00	0.00 0.00
**************************************	*********** WATER PRE *********	********* SSURE OF ********	EACH LA	*********** YER * *******		
LAYER PW1 NO	Z1	PW2	Z2			
2 0.00	138.00	127.01	152.00			
DEPTH IN	ACTIVE	EARTH PR LBS/IN	RESSURE			
0.000E+00 0.600E+01 0.120E+02 0.240E+02 0.240E+02 0.300E+02 0.360E+02 0.420E+02 0.420E+02 0.600E+02 0.600E+02 0.600E+02 0.720E+02 0.720E+02 0.780E+02 0.780E+02 0.900E+02 0.900E+02 0.900E+02 0.900E+02 0.102E+03 0.114E+03 0.120E+03 0.126E+03 0.132E+03 0.138E+03 0.150E+03 0.156E+03 0.162E+03 0.162E+03 0.162E+03 0.174E+03 0.186E+03 0.186E+03 0.192E+03		336E+02 410E+02 4384E+02 558E+02 630E+02 706E+02 781E+02 926E+02 100E+03 108E+03 115E+03 122E+03 137E+03 137E+03 137E+03 137E+03 200E+03 205E+03 205E+03 214E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 257E+03 264E+03 166E+03 166E+03				

Page 3

Cantilever 0.198E+03 0.204E+03 0.210E+03 0.216E+03 0.222E+03 0.228E+03 0.234E+03 0.240E+03 0.246E+03 0.252E+03 0.258E+03 0.264E+03 0.270E+03 0.276E+03 0.288E+03 0.294E+03 0.306E+03 0.312E+03 0.312E+03 0.312E+03 0.312E+03 0.312E+03 0.312E+03 0.324E+03 0.324E+03 0.324E+03 0.348E+03 0.348E+03 0.348E+03 0.354E+03 0.366E+03 0.366E+03 0.366E+03 0.372E+03 0.366E+03 0.372E+03 0.378E+03 0.378E+03 0.378E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.390E+03 0.402E+03 0.402E+03 0.402E+03 0.414E+03 0.420E+03	Sheet Pile Wall 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.16E	Bedrock	@-27ft d	or Lower_S	eismic.py5o
**************************************	AYERS AND STRENG	GTH DATA	********* ******	* * *	
X AT THE SUR	RFACE OF EXCAVATI	ON SIDE	=	180.00	EN
1 LAYER(S) C	OF SOIL				
LAYER 1 THE SOIL IS	A SAND				
DISTRIBUTION	N OF EFFECTIVE UN 2 POINTS	IT WEIGH	T WITH D	EPTH	
180. 480.	X,IN WEIGHT,LE .0000 0.39230 .0000 0.39230	8S/IN**3 0-01 0-01			
DISTRIBUTION	N OF STRENGTH PAR	AMETERS	WTTH DEP	тн	

DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH 2 POINTS Page 4 Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py50

X,IN	S,LBS/IN**2	PHI, DEGREES	E50
180.00	0.0000D+00	36.000	
432.00	0.0000D+00	36.000	

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH BELOW G	S DIAM	PHI	GAMMA AVG	А	В	PCT	PCD
0.10	63.00	36.00	0.39E-01	2.83	2.14	0.89E+00	0.15E+02
			Y		Р		
			IN		LBS/1	EN .	
		0.0	000		166.34	47	
		0.0	088	-1	165.2	53	
		0.1	175	-1	164.1	59	
		0.2	263	-1	163.38	81	
		0.	350	-1	163.1	53	
		0.4	438	-1	162.90	53	
		0.	525	-1	162.80	00	
		0.	613	-1	162.6	56	
		0.	700	_	162.52	27	
		0.	788	_	162.40	19	
		0	875		162 30	)1	
		0.0	963		162.20		
		1	050		162.20	16	
		2	362		160 73	28	
		65	262				
		120	202			20	
		120.	202		100.73	50	
		191.	363		L6U./:	38	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELO IN	W GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
180.10		63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05
180.10		63.00	36.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.39E-01 Y IN 000 088 175 263 350 438 525 613 700 788 875	1.11 12 12 12 12 12 12 12 12 12 12 12 12 1	P LBS/1 166.34 216.1 530.78 756.88 339.68 095.88 233.54 357.61 471.12 576.10 574.09	0.57E+04 IN 47 71 37 39 37 23 48 34 27 25 55	0.27E+05
	0.963		963	27	766.08	88		
			2.	362	28 41	123.00	54 51	
				Page 5				

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py50 65.362 4123.061 128.363 4123.061 191.363 4123.061

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW G	S DIAM	PHI	GAMMA AVG	А	В	PCT	PCD
63.00	63.00	36.00	0.39E-01	2.11	1.54	0.11E+04	0.95E+04
		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363	-10 -10 52 90 110 122 133 140 142 145 160 169 170 240 240 240 240	P BS/1 56.34 22.7 55.3 09.67 23.13 18.09 67.32 59.32 59.32 59.32 59.32	EN 47 16 14 74 34 43 32 52 91 41 23 92 21 28 28 28 28 28 28	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH	BELOW	GS	DIAM	PHI	GAMMA AVG	А	В	PCT	PCD	
243	3.00		63.00	36.00	0.39E-01	0.92	0.56	0.97E+04	0.37E+05	
				Y		Р				
				•	IN		LBS/I	<u>EN</u>		
				0.	000	1	166.34	47		
				0.	088	5	386.30	52		
				0.	1/5	14				
				0.	263	1453.164				
				0.	350	10				
				0.	438	10				
				0.						
				0.613 2180.097						
				0.	700					
				0.	/00 075	24	100.1	20		
				0.	073	2.	772 19	20		
				1	050	21	212 2	34 20		
				2	362	20				
			65	2.302 4012.737 5 362 4612 757						
			128	363	46					
			191.	363	46					

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py5o P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW GS IN	DIAM PHI IN	GAMMA AVG LBS/IN**3	А	В	PCT	PCD
126.00	63.00 36.00	0.39E-01	1.48	1.05	0.31E+04	0.19E+05
	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363	-1 9 12 14 16 18 19 20 21 22 23 24 35 35 35	P LBS/I 66.34 95.81 92.10 99.29 63.92 02.73 23.93 32.21 30.53 20.89 04.73 83.11 56.83 31.09 31.09 31.09	N7937178404622222	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELC	W GS	DIAM	PHI	GAMMA AVG	А	В	РСТ	PCD
306.00		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.46E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363	14 14 12 22 22 22 22 30 32 55 55	P LBS/1 166.34 354.28 209.46 497.07 748.04 379.85 564.65 740.49 564.65 740.49 508.61 570.18 225.96 522.84 522.84 522.84	EN 47 31 59 76 46 73 48 71 96 91 36 34 52 41 41	
				0 100- 01		1 <b>.</b>	- 0 100	2 01

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py5o AT THE EXCAVATION SIDE

DEPTH BELOW IN	GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	PCT	PCD
189.00		63.00	36.00	0.39E-01	1.06	0.71	0.62E+04	0.29E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363		P LBS/2 166.34 332.20 146.19 373.78 558.80 717.50 357.94 364.82 101.12 208.94 309.72 404.50 194.33 305.90 805.90 805.90	IN 47 64 93 81 09 04 44 22 38 47 21 60 10 02 02 02 02	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELC	W GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	РСТ	PCD
369.00		63.00	36.00	0.39E-01	0.88	0.50	0.21E+05	0.56E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363 363		P LBS/1 L66.34 973.81 397.03 741.10 042.09 314.65 566.50 802.33 025.20 237.50 440.68 536.02 324.52 504.74 504.74 504.74	IN 47 10 38 01 99 56 00 30 55 07 31 29 28 45 45 45	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

Cantilever Shee	t Pile Wa	all Be	drock	@-271	ft or	Lower_	_Seismic	.py5o	
DEPTH BELOW GS	DIAM	PHI		AVG	А	В	РСТ	PCD	
251.90	63.00 3	6.00	0.39E-	01	0.90	0.53 0	.10E+05	0.38E+05	
$\begin{array}{ccccc} Y & P \\ IN & LBS/IN \\ 0.000 & -166.347 \\ 0.088 & 495.368 \\ 0.175 & 807.943 \\ 0.263 & 1055.374 \\ 0.350 & 1268.170 \\ 0.438 & 1458.435 \\ 0.525 & 1632.480 \\ 0.613 & 1794.101 \\ 0.700 & 1945.794 \\ 0.788 & 2089.311 \\ 0.875 & 2225.936 \\ 0.963 & 2356.643 \\ 1.050 & 2482.195 \\ 2.362 & 4330.023 \\ 128.363 & 4330.023 \\ 191.363 & 4330.023 \\ \end{array}$									
P-M	ultiplier	= 0	.100E+	01 Y-	Multi	plier	= 0.100	)E+01	
AT THE BACKFILL	SIDE								
DEPTH BELOW GS	DIAM	PHI	GAMMA	AVG	А	В	РСТ	PCD	
431.90	63.00 3	6.00	LBS/IN 0.39E-	**3 01	0.88	0.50 0	.28E+05	0.65E+05	
$\begin{array}{c} Y\\ IN\\ 0.000\\ 0.088\\ 0.175\\ 0.263\\ 0.350\\ 0.438\\ 0.525\\ 0.613\\ 0.700\\ 0.788\\ 0.875\\ 0.963\\ 1.050\\ 2.362\\ 65.362\\ 128.363\\ 191.363\end{array}$						P LBS/IN 66.347 11.451 06.823 09.534 61.841 80.858 75.632 51.661 12.598 61.019 98.826 27.474 48.104 02.239 02.239 02.239			

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_No_Flood

RESULTS -- ITERATION 5

STA I	Cantilever X	Sheet Pile DEFL.	Wall Bedrock SLOPE	@-27ft or MOMENT	Lower_Seismic SHEAR	∴py5o NET REACT/STA
EI	IN	IN		LBS-IN	LBS	LBS
LBS-IN**2						
0 0 0 331E+11	.000E+00	0.219E+01	-0.926E-02	0.000E+00	0.000E+00	0.000E+00
	.600E+01	0.213E+01	-0.926E-02	0.000E+00	0.123E+03	0.246E+03
2 0	.120E+02	0.207E+01	-0.926E-02	0.148E+04	0.391E+03	0.290E+03
0.662E+11 3 0	.180E+02	0.202E+01	-0.926E-02	0.469E+04	0.704E+03	0.335E+03
	.240E+02	0.196E+01	-0.926E-02	0.992E+04	0.106E+04	0.378E+03
0.662E+11 5 0	.300E+02	0.191E+01	-0.926E-02	0.174E+05	0.146E+04	0.423E+03
0.662E+11 6 0	.360E+02	0.185E+01	-0.925E-02	0.275E+05	0.191E+04	0.469E+03
0.662E+11 7 0	.420E+02	0.180E+01	-0.925E-02	0.403E+05	0.240E+04	0.510E+03
0.662E+11 8 0	.480E+02	0.174E+01	-0.925E-02	0.562E+05	0.293E+04	0.556E+03
9 0	.540E+02	0.169E+01	-0.924E-02	0.755E+05	0.351E+04	0.601E+03
10.662E+11 10 0	.600E+02	0.163E+01	-0.923E-02	0.983E+05	0.594E+04	0.426E+04
11 0	.660E+02	0.158E+01	-0.922E-02	0.147E+06	0.841E+04	0.688E+03
0.662E+11 12 0	.720E+02	0.152E+01	-0.921E-02	0.199E+06	0.912E+04	0.733E+03
0.662E+11 13 0	.780E+02	0.146E+01	-0.919E-02	0.256E+06	0.988E+04	0.779E+03
14 0	.840E+02	0.141E+01	-0.916E-02	0.318E+06	0.107E+05	0.824E+03
15 0	.900E+02	0.135E+01	-0.913E-02	0.384E+06	0.115E+05	0.866E+03
16 0	.960E+02	0.130E+01	-0.909E-02	0.456E+06	0.124E+05	0.911E+03
17 0	.102E+03	0.125E+01	-0.904E-02	0.533E+06	0.135E+05	0.120E+04
18 0	.108E+03	0.119E+01	-0.899E-02	0.618E+06	0.147E+05	0.123E+04
19 0	.114E+03	0.114E+01	-0.893E-02	0.710E+06	0.159E+05	0.126E+04
20 0	.120E+03	0.108E+01	-0.886E-02	0.809E+06	0.172E+05	0.129E+04
0.662E+11 21 0	.126E+03	0.103E+01	-0.878E-02	0.916E+06	0.185E+05	0.132E+04
0.662E+11 22 0	.132E+03	0.979E+00	-0.870E-02	0.103E+07	0.198E+05	0.134E+04
0.662E+11 23 0	.138E+03	0.927E+00	-0.860E-02	0.115E+07	0.212E+05	0.137E+04
24 0	.144E+03	0.876E+00	-0.849E-02	0.129E+07	0.226E+05	0.140E+04
25 0	.150E+03	0.825E+00	-0.836E-02	0.142E+07	0.240E+05	0.143E+04
0.002E+11 26 0	.156E+03	0.776E+00	-0.823E-02	0.157E+07	0.254E+05	0.146E+04
27 0	.162E+03	0.727E+00	-0.808E-02	0.173E+07	0.269E+05	0.149E+04
28 0	.168E+03	0.679E+00	-0.791E-02 Page 1	0.190E+07 0	0.284E+05	0.152E+04

	a sheet Pire	e wall beuloc	.K @-Z/IL OI	Lower_sersii	10.0950
29 0.174E+03	0.632E+00	-0.773E-02	0.207E+07	0.299E+05	0.154E+04
0.662E+11 30 0.180E+03	0.586E+00	-0.754E-02	0.226E+07	0.317E+05	0.207E+04
0.662E+11 31 0.186E+03	0.541E+00	-0.733E-02	0.245E+07	0.328E+05	0.118E+03
0.662E+11 32 0.192E+03	0.498E+00	-0.709E-02	0.265E+07	0.325E+05	-0.700E+03
0.662E+11 33 0.198E+03	0.456E+00	-0.685E-02	0.284E+07	0.315E+05	-0.148E+04
0.662E+11 34 0.204E+03	0.416E+00	-0.658E-02	0.303E+07	0.296E+05	-0.220E+04
0.662E+11 35 0.210E+03	0.377E+00	-0.630E-02	0.320E+07	0.271E+05	-0.288E+04
0.662E+11 36 0.216E+03	0.340E+00	-0.600E-02	0.335E+07	0.239E+05	-0.351E+04
0.662E+11 37 0.222E+03	0.305E+00	-0.569E-02	0.348E+07	0.201E+05	-0.409E+04
0.662E+11 38 0.228E+03	0.272E+00	-0.537E-02	0.359E+07	0.157E+05	-0.463E+04
0.662E+11 39 0.234E+03	0.241E+00	-0.504E-02	0.367E+07	0.109E+05	-0.509E+04
0.662E+11 40 0.240E+03	0.211E+00	-0.471E-02	0.372E+07	0.558E+04	-0.550E+04
0.662E+11 41 0.246E+03	0.184E+00	-0.437E-02	0.374E+07	-0.109E+03	-0.588E+04
0.662E+11 42 0.252E+03	0.159E+00	-0.403E-02	0.372E+07	-0.581E+04	-0.552E+04
0.662E+11 43 0.258E+03	0.136F+00	-0.369E-02	0.367E+07	-0.111F+05	-0.507E+04
0.662E+11 44 0.264E+03	0 115E+00	-0 337E-02	0 359F+07	-0 160F+05	-0 473F+04
0.662E+11 45 0.270E+03	0 954F-01	-0 305E-02	0 348F+07	-0 206E+05	-0 448F+04
0.662E+11 46 0.276E+03	0 781E-01	-0 274E-02	0.334F+07	-0 248F+05	-0 396F+04
0.662E+11 47 0.282E+03	0.626E-01	-0 244F-02	0 318F±07	$-0.284E\pm05$	-0 318F±04
0.662E+11 48 0.288E+03	0.0201 01	-0.216E - 02	0.300E+07		
0.662E+11	0.400E-01	-0.210E-02	$0.300 \pm 07$		
0.662E+11	0.307E-01		0.2010+07		
0.662E+11	0.200E-01	-0.103E-02	0.200E+07	-0.340E+03	-0.994E+03
0.662E+11	0.108E-01	-0.143E-02	0.239E+07	-0.353E+05	-0.345E+03
52 0.312E+03 0.662E+11	0.893E-02	-0.122E-02	0.218E+07	-0.353E+05	0.294E+03
53 0.318E+03 0.662E+11	0.221E-02	-0.103E-02	0.19/E+0/	-0.34/E+05	0.825E+03
54 0.324E+03 0.662E+11	-0.344E-02	-0.862E-03	0.176E+07	-0.337E+05	0.117E+04
55 0.330E+03 0.662E+11	-0.813E-02	-0.711E-03	0.156E+07	-0.324E+05	0.140E+04
56 0.336E+03 0.662E+11	-0.120E-01	-0.578E-03	0.137E+07	-0.309E+05	0.161E+04
57 0.342E+03 0.662E+11	-0.151E-01	-0.462E-03	0.119E+07	-0.292E+05	0.177E+04
58 0.348E+03 0.662E+11	-0.175E-01	-0.362E-03	0.102E+07	-0.274E+05	0.191E+04
59 0.354E+03 0.662E+11	-0.194E-01	-0.276E-03	0.863E+06	-0.254E+05	0.203E+04

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Seismic.py50

		(	Cantileve	r Sheet	Pile	Wal	1 Bedrock	@-27ft or	' Lo	wer_Seismic	.py5o
_	60	0.	360e+03	-0.208E	-01	-0.	205e-03	0.717E+06	-(	0.234E+05	0.212E+04
0.	662E+11	L	266- 02	0 010-	01	~	146- 02	0 500- 00	,	0 010- 05	0 010- 04
^	6L CC2E - 11	0.	366E+03	-0.219E	-01	-0.	146E-03	0.583E+06	-(	).212E+05	0.219E+04
0.	62 62		2725,02	0 2265	01	0		0 4625-06			0 2255-04
0	02 6625±11	υ.	372E+03	-0.220E	-01	-0.	903E-04	0.402E+00	-(	J.190E+03	0.2232+04
0.	63	0.	378E+03	-0.230E	-01	-0.	613E-04	0.355E+06	-(	).167E+05	0.229E+04
0.	662E+11	Ľ	0.01.00			• •					••••••
	64	0.	384E+03	-0.233E	-01	-0.	334e-04	0.261E+06	-(	).144E+05	0.233E+04
0.	662E+11	L									
~	65	0.	390E+03	-0.234E	-01	-0.	133E-04	0.182E+06	-(	0.121E+05	0.236E+04
0.	662E+11	L 0	2065-02	0 2255	01	0	2625-06	0 1175,06	_(		0 2285,04
0	00 662⊑±11	υ.	390E+03	-0.2335	-01	0.	2022-00	0.11/2+00	-(	J. 900E+04	0.2302+04
0.	67	0.	402E+03	-0.234E	-01	0.	854E-05	0.659E+05	-(	).729E+04	0.240E+04
0.	662E+11	Ľ				• •					
	68	0.	408E+03	-0.234E	-01	0.	129E-04	0.294E+05	-(	).488E+04	0.242E+04
0.	662E+11	L									
~	69	0.	414E+03	-0.233E	-01	0.	145E-04	0.736E+04	-(	).245E+04	0.244E+04
0.	662E+1J	L	4205.02	0 2225	01	0	140- 04			0.0145.02	0 1225.04
0	/U 221 <u>5</u> 11	υ.	420E+03	-U.232E	-01	0.	149E-04	U.030E-08	-(	J.014E+U3	U.123E+04
υ.	<b>JUTCLTI</b>	L									

END OF ANALYSIS

## Cantilever Sheet Pile Wall with 15 ft Height (Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood Condition

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Q:\Geotechnical\Meadowlands\Calculations for New Alternatives\Cantilever Sheet Pile wall\PYWall Analysis\Proposed Section\No Flood_with Grout\ Name of input data file Lower_Composite_No_Flood.py5d : Cantilever Sheet Pile Wall Bedrock @-27ft or Name of output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o Name of plot output file Lower_Composite_No_Flood.py5p : Cantilever Sheet Pile Wall Bedrock @-27ft or _____ _____ Time and Date of Analysis _____ Date: October 18, 2017 Time: 16:46:00 Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood ******* * PROGRAM CONTROL PARAMETERS *********** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 2 = 1 GENERATE EARTH PRESSURE INTERNALLY GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 70 NUMBER OF INCREMENTS = INCREMENT LENGTH 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION 18.000 IN = = 1.000E-05 IN DEFLECTION CLOSURE TOLERANCE * STIFFNESS AND LOAD DATA ****************** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, Page 1

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o R - STIFFNESS OF TORSIONAL RESISTANCE. s' FROM TO CONTD Т R Ρ FΤ Q LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 30 0 30 70 0 0.341E+12 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 WALL INFORMATION * * FREE HEIGHT OF WALL = 0.180E+03 IN WIDTH FOR EARTH PRESSURE, WA 0.630E+02 IN = WIDTH FOR SOIL RESISTANCE, WP = 0.630E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER 0.360E-01 LBS/IN**3 = 0.000E+00 SLOPE OF THE BACKFILL (deg.) = MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 * * SURCHARGE INFORMATION ************* = 0.174E+01 LBS/IN**2UNIFORM SURFACE PRESSURE * SOIL INFORMATION TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP DEG PCI T OR F NO. IN PSI ΙN 0.064 0.00 1 96.0 0.0 32.0 Т 84.0 0.3 2 22.0 0.064 Т 96.00 3 300.0 0.0 36.0 0.075 180.00 т * EFFECTIVE OVERBURDEN STRESS * DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.174E+01 0.785E+01 0.960E+02 0.180E+03 0.102E+02 * ACTIVE AND PASSIVE FARTH PRESSURE COFFFICIENT * LAYER ACTIVE EARTH PASSIVE EARTH OPTIONAL EARTH Page 2

Cantilever She NO. 1 2 3	et Pile Wal COEFFICI 0.307E+0 0.455E+0 0.260E+0	1 Bedrock ENT 0 0 0	@-27ft COEFFIC: 0.325E- 0.220E- 0.385E-	or Lower_Co LENT 0 ⊦01 ⊦01 ⊦01	omposit COEFFIC 0.000E 0.000E 0.000E	e_No_Flood.py5o IENT +00 +00 +00
************** * ACTIVE **********	************ EARTH PRES	********* SURE OF E *******	ACH LAY	********* ER * *****		
LAYER PA1 NO LBS/IN*	Z1 *2 IN L	PA2 BS/IN**2	Z2 IN	PA3 LBS/IN**2	Z3 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 138.00	90.13 44.39 1	64.00 52.00	0.00 -39.35	0.00	0.00 0.00
**************************************	************ WATER PRES	******** SURE OF E *******	ACH LAY	********* ER * *****		
LAYER PW1 NO	z1	PW2	Z2			
2 0.00	138.00	127.01 1	.52.00			
DEPTH IN	ACTIVE	EARTH PRE LBS/IN	SSURE			
0.000E+00 0.600E+01 0.120E+02 0.240E+02 0.300E+02 0.360E+02 0.420E+02 0.420E+02 0.480E+02 0.540E+02 0.600E+02 0.600E+02 0.720E+02 0.720E+02 0.780E+02 0.900E+02 0.900E+02 0.900E+02 0.900E+02 0.102E+03 0.126E+03 0.126E+03 0.126E+03 0.150E+03 0.156E+03 0.168E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.192E+03	0.3 0.4 0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	36E+02 10E+02 84E+02 58E+02 30E+02 81E+02 51E+02 26E+02 20E+03 30E+03 30E+03 37E+03 30E+03 37E+03 30E+03 37E+03 10E+03 14E+03 24E+03 34E+03 34E+03 34E+03 34E+03 35E+03 34E+03 35E+03 36E+03 66E+03 66E+03 66E+03				
Cantilever Sheet Pile 0.198E+03 0.204E+03 0.210E+03 0.216E+03 0.228E+03 0.228E+03 0.228E+03 0.240E+03 0.240E+03 0.246E+03 0.252E+03 0.258E+03 0.264E+03 0.270E+03 0.276E+03 0.288E+03 0.288E+03 0.294E+03 0.300E+03 0.306E+03 0.312E+03 0.312E+03 0.318E+03 0.324E+03 0.324E+03 0.336E+03 0.348E+03 0.348E+03 0.354E+03 0.366E+03 0.366E+03 0.372E+03 0.372E+03 0.378E+03 0.384E+03 0.390E+03 0.390E+03 0.390E+03 0.402E+03 0.414E+03 0.420E+03	<pre>Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03</pre>					
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------					
**************************************	AND STRENGTH DATA *					
X AT THE SURFACE (	DF EXCAVATION SIDE = 180.00 IN					
1 LAYER(S) OF SOII	-					
LAYER 1 THE SOIL IS A SANI	)					
DISTRIBUTION OF E	FECTIVE UNIT WEIGHT WITH DEPTH 2 POINTS					
X,IN 180.0000 480.0000	WEIGHT,LBS/IN**3 0.3923D-01 0.3923D-01					
DISTRIBUTION OF S	FRENGTH PARAMETERS WITH DEPTH 2 POINTS Page 4					

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o

E50	PHI, DEGREES	S,LBS/IN**2	X,IN
	36.000	0.0000D+00	180.00
	36.000	0.0000D+00	432.00

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH BELOW GS DIAM TN TN	PHI GAMMA AVG LBS/TN**3	A B	PCT PCD
0.10 63.00	36.00 0.39E-01	2.83 2.14 0	.89E+00 0.15E+02
	Y	P	
	IN	LBS/IN	
	0.000	-166.347	
	0.088	-165.253	
	0.175	-164.159	
	0.263	-163.381	
	0.350	-163.153	
	0.438	-162.963	
	0.525	-162.800	
	0.613	-162.656	
	0.700	-162.527	
	0.788	-162.409	
	0.875	-162.301	
	0.963	-162.200	
	1.050	-162.106	
	2.362	-160.738	
	65.362	-160.738	
	128.363	-160.738	
	191,363	-160.738	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELOW IN	GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD	
180.10		63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05	
	Y			Р					
				IN		LBS/	EN		
			0.0	000	166.347				
			0.0	088	12	216.1	71		
			0.175			530.78	37		
	0.263			1	756.88	39			
			0.	350	19	939.68	37		
			Ö.	438	20				
			0.	525	22	233.54	18		
			0.	613	23				
			0.	700	24	2471.127			
			0.	788	25	2576.105			
			0.	875	20	574.0	55		
	0.9		963	27	766.08	38			
	1.0		050	28	353.0	54			
	2.362		362	4	123.00	51			
				Page 5		-			

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o 65.362 4123.061 128.363 4123.061 191.363 4123.061

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW	GS	DIAM TN	PHI	GAMMA AVO	i A	В		РСТ	PCD
63.00	(	63.00	36.00	0.39E-01	2.1	1 1.5	4 0.1	1E+04	0.95E+04
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 362 363 363		LBS -166. 522. 965. 1109. 1223. 1318. 1400. 1473. 1539. 1600. 1708. 1708. 1708. 1757. 2469. 2469. 2469.	P /IN 347 716 314 674 134 043 382 552 691 241 223 392 321 328 328 328 328 328 328		
I	P-Mu ⁻	ltiplie	er = (	0.100E+01	Y-Mul	tipli	er =	0.100	)E+01

DEPTH	BELOW	GS	DIAM TN	PHI	GAMMA AVG	А	В	PCT	PCD	
243	3.00		63.00	36.00	0.39E-01	0.92	0.56	0.97E+04	0.37E+05	
	Y		Y		Р					
					IN		LBS/I			
				0.	000	-	166.34	47		
				0.	088	8	386.30	52		
				0.	175	12	204.94	43		
				0.	263	14	453.10	54		
				0.	0.350 1664			34		
				0.	438	18				
				0.	525	20	)22.53			
				0.	613	21	L80.09	97		
				0.	700	2327.354				
				0.	788	24				
				0.	875	25	597.80	50		
				0.	963	27	723.48	34		
				1.	050	28	343.82	29		
2			2.	362	46	512.7	57			
	65.362				362	46	512.7	57		
				128.	363	46	512.7	57		
191.363			46	512.7	57					
					Dama C					

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPTH BELOW GS IN	DIAM P IN	HI GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
$\begin{array}{ccccc} Y & P \\ IN & LBS/IN \\ 0.000 & -166.347 \\ 0.088 & 995.819 \\ 0.175 & 1292.103 \\ 0.263 & 1499.297 \\ 0.350 & 1663.921 \\ 0.438 & 1802.737 \\ 0.525 & 1923.938 \\ 0.613 & 2032.214 \\ 0.700 & 2130.530 \\ 0.788 & 2220.894 \\ 0.875 & 2304.736 \\ 0.963 & 2383.114 \\ 1.050 & 2456.836 \\ 2.362 & 3531.092 \\ 128.363 & 3531.092 \\ \end{array}$	126.00	63.00 36	.00 0.39E-01	1.48	1.05 0	.31E+04	0.19E+05
191.363 3531.092		1	Y IN 0.000 0.088 0.175 0.263 0.350 0.438 0.525 0.613 0.700 0.788 0.875 0.963 1.050 2.362 55.362 28.363 91.363	-1 9 12 14 16 18 20 21 23 23 23 23 23 23 23 23 23 23 23 23 23	P LBS/IN 66.347 95.819 92.103 99.297 63.921 02.737 23.938 32.214 30.530 20.894 04.736 83.114 56.836 31.092 31.092 31.092		

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BEL	OW GS	DIAM	PHI	GAMMA AVG	A	В	PCT	PCD
306.00		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.46E+05
			0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Y IN 2000 288 175 263 350 438 525 513 700 788 375 263 2700 788 375 263 250 362 362 363 363	1 1 1 2 2 2 2 3 3 5 5 5 5 5	P LBS/2 166.34 854.28 209.40 497.07 748.04 974.83 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69 564.69565.50 564.69 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 565.50 5	IN 47 31 59 76 46 73 48 71 99 1 36 34 52 41 41 41	
	<b>D</b> 14			1005.01	V M 7 +.		- 0.100	

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood.py5o AT THE EXCAVATION SIDE

DEPTH BEL IN	_OW	GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
189.00	)		63.00	36.00	0.39E-01	1.06	0.71	0.62E+04	0.29E+05
				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN 2000 2088 175 263 350 438 525 613 700 788 875 963 250 362 362 362 363 363		P LBS/1 L66.34 332.20 L46.12 373.78 558.80 717.50 357.94 084.82 L01.13 208.94 309.72 404.50 404.50 404.50 805.90 805.90	EN 47 54 93 99 94 44 22 38 47 21 50 L0 22 22 22 22 22 22 22 22	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELO	W GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	РСТ	PCD
369.00		63.00	36.00	0.39E-01	0.88	0.50	0.21E+05	0.56E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363 363		P LBS/1 L66.34 973.81 397.03 741.10 042.09 314.65 566.50 802.33 025.20 237.50 440.68 536.02 324.52 504.74 504.74 504.74	IN 47 10 38 01 99 56 00 30 55 07 31 29 28 45 45 45	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

Cantilever Sheet Pi	ile Wall	Bedrock @-27ft or	Lower_Composite	e_No_Flood.py5o
DEPTH BELOW O	S DIAM	PHI GAMMA AVG	A B PO	CT PCD
251.90	63.00	36.00 0.39E-01	0.90 0.53 0.10	E+05 0.38E+05
		Y IN 0.000 0.088 0.175 0.263 0.350 0.438 0.525 0.613 0.700 0.788 0.875 0.963 1.050 2.362 65.362 128.363 191.363	P LBS/IN -166.347 495.368 807.943 1055.374 1268.170 1458.435 1632.480 1794.101 1945.794 2089.311 2225.936 2356.643 2482.195 4330.023 4330.023	
P-	-Multipli	ier = 0.100E+01 Y	-Multiplier = (	0.100E+01
AT THE BACKFILI	_ SIDE			
DEPTH BELOW C IN 431.90	GS DIAM IN 63.00	PHI GAMMA AVG LBS/IN**3 36.00 0.39E-01	A B PC	CT PCD E+05 0.65E+05
	Multipli	Y IN 0.000 0.088 0.175 0.263 0.350 0.438 0.525 0.613 0.700 0.788 0.875 0.963 1.050 2.362 65.362 128.363 191.363	P LBS/IN 166.347 1111.451 1606.823 2009.534 2361.841 2680.858 2975.632 3251.661 3512.598 3761.019 3998.826 4227.474 4448.104 7702.239 7702.239 7702.239 7702.239	0, 100 <b>5</b> ⊹01
P-	יומוכזףו	rer = 0.100E+01 Y	-muitipiier = (	J.TOOF+OT

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood

RESULTS -- ITERATION 6

S	Cantilever S TAIXX	Sheet Pile Wall DEFL.	Bedrock @-2 SLOPE	7ft or Lower MOMENT	_Composite_N SHEAR	o_Flood.py5o NET REACT/STA
ΕI	IN	IN		LBS-IN	LBS	LBS
LBS-	IN**2					
0.33	0 0.000E+0 1F+11	00 0.791E+00	-0.336E-02	0.000E+00	0.000E+00	0.000E+00
0 66	1 0.600E+(	01 0.771E+00	-0.336E-02	0.000E+00	0.123E+03	0.246E+03
0.00	2 0.120E+(	0.751E+00	-0.336E-02	0.148E+04	0.391E+03	0.290E+03
0.00	3 0.180E+0	0.731E+00	-0.336E-02	0.469E+04	0.704E+03	0.335E+03
0.66	2E+11 4 0.240E+(	0.710E+00	-0.336E-02	0.992E+04	0.106E+04	0.378E+03
0.00	5 0.300E+(	0.690E+00	-0.336E-02	0.174E+05	0.146E+04	0.423E+03
0.66	2E+11 6 0.360E+0	0.670E+00	-0.336E-02	0.275E+05	0.191E+04	0.469E+03
0.00	7 0.420E+(	0.650E+00	-0.336E-02	0.403E+05	0.240E+04	0.510E+03
0.66	2E+11 8 0.480E+0	0.630E+00	-0.335E-02	0.562E+05	0.293E+04	0.556E+03
0.66	2E+11 9 0.540E+0	0.610E+00	-0.335E-02	0.755E+05	0.351E+04	0.601E+03
0.66	2E+11 10 0.600E+0	0.590E+00	-0.334E-02	0.983E+05	0.413E+04	0.646E+03
0.66	2E+11 11 0.660E+0	0.570E+00	-0.333E-02	0.125E+06	0.480E+04	0.688E+03
0.66	2E+11 12 0.720E+(	0.550E+00	-0.332E-02	0.156E+06	0.551E+04	0.733E+03
0.66	2E+11 13 0.780E+0	0.530E+00	-0.330E-02	0.191E+06	0.627E+04	0.779E+03
0.66	2E+11 14 0.840E+0	0.510E+00	-0.328E-02	0.231E+06	0.707E+04	0.824E+03
0.66	2E+11 15 0.900E+0	0.490E+00	-0.326E-02	0.276E+06	0.791E+04	0.866E+03
0.66	2E+11 16 0.960E+0	0.471E+00	-0.323E-02	0.326E+06	0.880E+04	0.911E+03
0.66	2E+11 17 0.102E+0	0.452E+00	-0.320E-02	0.382E+06	0.986E+04	0.120E+04
0.66	2E+11 18 0.108E+0	0.433E+00	-0.316E-02	0.444E+06	0.111E+05	0.123E+04
0.66	2E+11 19 0.114E+0	0.414E+00	-0.312E-02	0.514E+06	0.123E+05	0.126E+04
0.66	2E+11 20 0.120E+0	0.395E+00	-0.307E-02	0.592E+06	0.136E+05	0.129E+04
0.66	2E+11 21 0.126E+0	0.377E+00	-0.301E-02	0.677E+06	0.149E+05	0.132E+04
0.66	2E+11 22 0.132E+(	)3 0.359E+00	-0.294E-02	0.771E+06	0.162E+05	0.134E+04
0.66	2E+11 23 0.138F+(	)3 0.342E+00	-0.287E-02	0.872E+06	0.176F+05	0.137E+04
0.66	2E+11 24 0 144F+(	)3 0 325E+00	-0 279E-02	0 982E+06	0 190F+05	0 140F+04
0.66	2E+11 25 0 150E+(	)3 0 308E+00	-0 269E-02	0 110E+07	0 204F+05	0.143E+04
0.66	2E+11 26 0 156F±0	$13 0 292 \pm 100$	-0 2595-02	0 1235107		0 146F±04
0.66	2E+11 27 0 162E+0	$13 0 277 \pm 100$	-0.247 = -0.2	0 1365-07		$0.1495\pm04$
0.66	2E+11	$0.277 \pm 00$		0.1502+07		0.1525.04
	20 U.108E+U	JS U.203E+UU	-0.234E-02 Page	10.151E+07	U.248E+U5	U.132E+U4

Cantilever She	et Pile Wall	Bedrock @-2	27ft or Lower	_Composite_N	o_Flood.py5o
29 0.174E+03	0.249E+00	-0.220E-02	0.166E+07	0.263E+05	0.154E+04
0.662E+11 30 0.180E+03	0.236E+00	-0.209E-02	0.182E+07	0.281E+05	0.207E+04
0.204E+12 31 0.186E+03	0.224E+00	-0.205E-02	0.200E+07	0.293E+05	0.321E+03
0.341E+12 32 0.192E+03	0.212E+00	-0.201E-02	0.217E+07	0.293E+05	-0.316E+03
0.341E+12 33 0.198E+03	0.200E+00	-0.197E-02	0.235E+07	0.287E+05	-0.931E+03
0.341E+12 34 0.204E+03	0.188E+00	-0.193E-02	0.252E+07	0.275E+05	-0.153E+04
0.341E+12 35 0.210E+03	0.177E+00	-0.188E-02	0.268E+07	0.257E+05	-0.210E+04
0.341E+12 36 0.216E+03	0.165E+00	-0.184E-02	0.283E+07	0.233E+05	-0.255E+04
0.341E+12 37 0.222E+03	0.155E+00	-0.179E-02	0.296E+07	0.206E+05	-0.293E+04
0.341E+12 38 0.228E+03	0.144E+00	-0.173E-02	0.307E+07	0.175E+05	-0.326E+04
0.341E+12 39 0.234E+03	0.134E+00	-0.168E-02	0.317E+07	0.141E+05	-0.354E+04
0.341E+12 40 0.240E+03	0.124E+00	-0.162E-02	0.324E+07	0.104E+05	-0.377E+04
0.341E+12 41 0.246E+03	0.114E+00	-0.156E-02	0.329E+07	0.659E+04	-0.395E+04
0.341E+12 42 0.252E+03	0.105E+00	-0.150E-02	0.332E+07	0.264E+04	-0.394E+04
0.341E+12 43 0.258E+03	0.963E-01	-0.145E-02	0.333E+07	-0.130E+04	-0.395E+04
0.341E+12 44 0.264E+03	0.878E-01	-0.139E-02	0.331E+07	-0.528E+04	-0.400E+04
45 0.270E+03	0.796E-01	-0.133E-02	0.326E+07	-0.918E+04	-0.380E+04
46 0.276E+03	0.718E-01	-0.127E-02	0.320E+07	-0.129E+05	-0.356E+04
0.341E+12 47 0.282E+03	0.644E-01	-0.122E-02	0.311E+07	-0.163E+05	-0.330E+04
48 0.288E+03	0.572E-01	-0.116E-02	0.300E+07	-0.194E+05	-0.301E+04
49 0.294E+03	0.504E-01	-0.111E-02	0.287E+07	-0.223E+05	-0.269E+04
50 0.300E+03	0.439E-01	-0.106E-02	0.273E+07	-0.248E+05	-0.236E+04
51 0.306E+03	0.376E-01	-0.102E-02	0.258E+07	-0.270E+05	-0.200E+04
52 0.312E+03	0.317E-01	-0.973E-03	0.241E+07	-0.287E+05	-0.149E+04
0.341E+12 53 0.318E+03	0.259E-01	-0.932E-03	0.223E+07	-0.300E+05	-0.102E+04
0.341E+12 54 0.324E+03	0.205E-01	-0.894E-03	0.205E+07	-0.308E+05	-0.572E+03
0.341E+12 55 0.330E+03	0.152E-01	-0.860E-03	0.186E+07	-0.312E+05	-0.154E+03
0.341E+12 56 0.336E+03	0.102E-01	-0.829E-03	0.168E+07	-0.311E+05	0.239E+03
0.341E+12 57 0.342E+03	0.527E-02	-0.801E-03	0.149E+07	-0.307E+05	0.609E+03
U.341E+12 58 0.348E+03	0.539E-03	-0.776E-03	0.131E+07	-0.299E+05	0.957E+03
0.341E+12 59 0.354E+03 0.341E+12	-0.405E-02	-0.755E-03	0.113E+07	-0.288E+05	0.121E+04

Cantilever She	et Pile Wall	Bedrock @-27	ft or Lower	_Composite_No_ -0.275F+05	_Flood.py5o 0.146F+04
0 341F+12	UIUJEE UE	017572 05	OIDOILIOU	012752105	011102101
61 0.366E+03	-0.129E-01	-0.721E-03	0.801E+06	-0.259E+05	0.170E+04
0.341E+12					
62 0.372E+03	-0.172E-01	-0.708E-03	0.650E+06	-0.241E+05	0.195E+04
0.341E+12					
63 0.378E+03	-0.214E-01	-0.698E-03	0.512E+06	-0.220E+05	0.220E+04
0.341E+12					
64 0.384E+03	-0.255E-01	-0.690E-03	0.386E+06	-0.197E+05	0.246E+04
0.341E+12					
65 0.390F+03	-0.297E-01	-0.684E-03	0.275E+06	-0.171E+05	0.272E+04
0 341F+12					••••••
66 0 396F+03	-0 338F-01	-0 680F-03	$0.181 \pm 06$	$-0.142 \text{F} \pm 05$	0 299F+04
0 341F+12	ULDDUL UL	010002 05	OITOTEIOO	011122105	012552101
	_0 378E_01	-0 678E-03	0 1055+06	-0 111F±05	0 327E±04
0.702100	0.5762 01	0.0702 05	0.1010+00	0.1111-00	0.5272704
	0 410- 01	0 6765 02			
00 U.4U0E+U3	-0.419E-01	-0.070E-05	0.479E+05	-0.769E+04	0.333E+04
U.341E+12	0 400- 01	0 070- 00	0 104- 05	0 200- 04	0 2045 04
69 0.414E+03	-0.460E-01	-0.6/6E-03	0.124E+05	-0.399E+04	0.384E+04
0.341E+12					
70 0.420E+03	-0.500E-01	-0.676E-03	0.329E-07	-0.103E+04	0.207E+04
0.170E+12					

END OF ANALYSIS

## Cantilever Sheet Pile Wall with 15 ft Height (Grouted) for Soil Area 2, Bedrock @ -27 ft or Lower No Flood and Seismic

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ : Q:\Geotechnical\Meadowlands\Calculations for New Path to file locations Alternatives\Cantilever Sheet Pile Wall\PYWall Analysis\Proposed Section\Seismic_With Grout\ Name of input data file Lower_Composite_Seismic.py5d : Cantilever Sheet Pile Wall Bedrock @-27ft or Name of output file : Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o Name of plot output file Lower_Composite_Seismic.py5p : Cantilever Sheet Pile Wall Bedrock @-27ft or _____ Time and Date of Analysis _____ Date: October 19, 2017 Time: 15:18:37 Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic ******* * PROGRAM CONTROL PARAMETERS *********** NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 2 = 1 GENERATE EARTH PRESSURE INTERNALLY GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1 NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 70 NUMBER OF INCREMENTS = INCREMENT LENGTH 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION = 18.000 IN = 1.000E-05 IN DEFLECTION CLOSURE TOLERANCE * STIFFNESS AND LOAD DATA ***************** EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD. S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, Page 1

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o R - STIFFNESS OF TORSIONAL RESISTANCE.

s' FROM TO CONTD EI Т R Ρ Q LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 30 0 30 0.341E+12 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 70 0 0.662E+11 0.361E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 10 10 0 * WALL INFORMATION * * FREE HEIGHT OF WALL = 0.180E+03 IN WIDTH FOR EARTH PRESSURE, WA = 0.630E+02 IN WIDTH FOR SOIL RESISTANCE, WP = 0.630E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER 0.360E-01 LBS/IN**3 = SLOPE OF THE BACKFILL (deg.) = 0.000E+00 MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 ÷ * SURCHARGE INFORMATION UNIFORM SURFACE PRESSURE = 0.174E+01 LBS/IN**2 SOIL INFORMATION TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP NO. IN DEG PCI T OR F IN PSI 96.0 1 0.0 32.0 0.064 Т 0.00 84.0 96.00 2 0.3 22.0 0.064 Т 3 300.0 0.0 36.0 0.075 180.00 Т * * EFFECTIVE OVERBURDEN STRESS *************** DEPTH STRESS LBS/IN**2 TΝ 0.000E+00 0.174E+01 0.960E+02 0.785E+01 0.180E+03 0.102E+02 * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * 

Cantilever She LAYER NO. 1 2 3	et Pile Wa ACTIVE COEFFIC 0.307E+ 0.455E+ 0.260E+	All Bedro EARTH IENT 00 00 00	ck @-27f PASSIV COEFFI 0.325 0.220 0.385	t or Lower_C E EARTH CIENT E+01 E+01 E+01 E+01	Composit OPTIONA COEFFIC 0.000E 0.000E 0.000E	te_Seismic.py5o L EARTH IENT +00 +00 +00
**************************************	********** EARTH PRE ********	******** SSURE OF ********	EACH LA	*********** YER * *******		
LAYER PA1 NO LBS/IN*	Z1 *2 IN	PA2 LBS/IN**2	Z2 IN	PA3 LBS/IN**2	Z3 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 138.00	90.13 44.39	64.00 152.00	0.00 -39.35	0.00	0.00 0.00
**************************************	********** WATER PRE ********	******** SSURE OF ********	EACH LA	********** YER * ********		
LAYER PW1 NO	Z1	PW2	Z2			
2 0.00	138.00	127.01	152.00			
DEPTH IN	ACTIVE	EARTH PR LBS/IN	RESSURE			
0.000E+00 0.600E+01 0.120E+02 0.180E+02 0.240E+02 0.300E+02 0.360E+02 0.420E+02 0.420E+02 0.540E+02 0.540E+02 0.660E+02 0.720E+02 0.720E+02 0.720E+02 0.780E+02 0.900E+02 0.900E+02 0.900E+02 0.900E+02 0.102E+03 0.120E+03 0.120E+03 0.120E+03 0.132E+03 0.132E+03 0.138E+03 0.150E+03 0.156E+03 0.168E+03 0.168E+03 0.174E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.180E+03 0.1	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	336E+02 410E+02 484E+02 558E+02 630E+02 706E+02 781E+02 926E+02 100E+03 108E+03 115E+03 122E+03 130E+03 137E+03 137E+03 137E+03 137E+03 205E+03 205E+03 214E+03 205E+03 214E+03 214E+03 224E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234E+03 234				

Cantilever Sheet Pile Wa 0.192E+03 0.1 0.198E+03 0.1 0.204E+03 0.1 0.210E+03 0.1 0.216E+03 0.1 0.222E+03 0.1 0.228E+03 0.1 0.224E+03 0.1 0.240E+03 0.1 0.246E+03 0.1 0.252E+03 0.1 0.252E+03 0.1 0.258E+03 0.1 0.270E+03 0.1 0.276E+03 0.1 0.282E+03 0.1 0.282E+03 0.1 0.282E+03 0.1 0.294E+03 0.1 0.306E+03 0.1 0.312E+03 0.1 0.312E+03 0.1 0.324E+03 0.1 0.348E+03 0.1 0.348E+03 0.1 0.366E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03 0.1 0.426E+03	11 Bedrock @-27f 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166	t or Lower_	Composite_Seismic.py5o
****	* * * * * * * * * * * * * * * * * * *	*****	
* SOIL LAYERS AND	D STRENGTH DATA	* *******	
X AT THE SURFACE OF E	EXCAVATION SIDE	= 10	30.00 IN
LAVER 1			
THE SOIL IS A SAND			
DISTRIBUTION OF EFFEC	TIVE UNIT WEIGH POINTS	F WITH DEPTH	I
X,IN WE 180.0000 480.0000	EIGHT,LBS/IN**3 0.3923D-01 0.3923D-01		
DISTRIBUTION OF STREM	NGTH PARAMETERS N Page 4	VITH DEPTH	
	5		

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py50 2 POINTS

PHI	L, DEGREES	E50
3	36.000	
3	36.000	

P-Y CURVES DATA

AT THE EXCAVATION SIDE

DEPTH BELOW G	S DIAM	PHI	GAMMA AVG LBS/TN**3	А	В	PCT	PCD	
0.10	63.00	36.00	0.39E-01	2.83	2.14	0.89E+00	0.15E+02	
		0.	Y IN 000 088 175	- 1 - 1 - 1	P LBS/J L66.34 L65.29 L64.19	EN 47 53 59		
		0. 0. 0.	263 350 438	 - 1 - 1				
		0. 0. 0.	525 613 700	 - 1 - 1				
		0. 0. 0.	788 875 963	-162.409 -162.301 -162.200				
		1. 2. 65.	050 362 362	- 1 - 1 - 1	L62.10 L60.73 L60.73	)6 38 38		
		128. 191.	363 363	-1 -1	L60.73 L60.73	38 38		

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BELOW	GS	DIAM	PHI	GAMMA AVG	А	В	PCT	PCD
180.10		63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05
180.10		65.00	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Y IN 000 088 175 263 350 438 525 613 700	1.11 12 15 17 20 22 23	P LBS/1 66.34 16.17 30.78 756.88 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.78 95.88 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.85 95.95 95.95 95.85 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.95 95.	EN 47 71 37 39 37 23 48 34 27	0.272+03
			0. 0. 0. 1.	788 875 963 050 Page 5	25 26 27 28	576.10 574.05 766.08 353.05	55 55 38 54	

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o 2.362 4123.061 65.362 4123.061 128.363 4123.061 191.363 4123.061

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW	GS	DIAM TN	PHI	GAMMA AVG	А	В	PCT	PCD
63.00		63.00	36.00	0.39E-01	2.11	1.54	0.11E+04	0.95E+04
				Y		Р		
				IN		LBS/I	IN	
			0.0	000	-1	166.34	47	
			0.0	088	[	522.7	16	
			0.	175	ç	965.32	14	
			0.	263	1	109.6	74	
			Ő.	350	12	23.1	34	
			0.4	438	1	318.04	43	
			Ő.	525	14	100.38	82	
			Õ.	613	14	173 5	52	
			0	700	1	539 69	91	
			0	788	16	500 24	41	
			0.	875	16	556 2	23	
			0.0	963	1	708 30	2.5 2.7	
			1	050	1	757 2	52 01	
			1.1	262	1/	160 2	21	
			<u>د</u> ۲	202	24	+03.34	20	
			120	30Z	24	+09.34	2 Õ	
			128.	363	24	469.34	28	
			191.	363	24	169.32	28	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

DEPTH BI	ELOW	GS	DIAM	PHI	GAMMA AVG	А	В	РСТ	PCD
243.0	00		63.00	36.00	0.39E-01	0.92	0.56	0.97E+04	0.37E+05
				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN D00 D88 L75 263 350 438 525 513 700 788 375 963 050 362 363 8275 963 050 362 363	1 1 1 2 2 2 2 2 2 2 4 4 4 4	P LBS/1 166.3 886.3 204.9 453.1 664.4 852.0 022.5 180.0 327.3 466.1 597.8 597.8 597.8 612.7 612.7	IN 47 62 43 64 84 14 34 97 54 897 55 80 89 55 57 57	
					raye 0				

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py50 191.363 4612.757

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW GS	5 DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
126.00	63.00	36.00	0.39E-01	1.48	1.05	0.31E+04	0.19E+05
120100		0. 0. 0. 0. 0. 0.	Y IN 000 088 175 263 350 438 525 613	-1 12 14 16 18 19 20	P LBS/1 66.34 995.81 992.10 199.29 663.92 663.92 302.73 923.93	IN 47 19 03 97 21 37 38 14	0.1252.105
		0. 0. 0. 1. 2. 65. 128. 191.	700 788 875 963 050 362 362 363 363	21 22 23 24 35 35 35	30.5 20.8 304.7 83.1 56.8 31.0 31.0 31.0 31.0 31.0	30 94 36 14 36 92 92 92 92	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH	BELOW TN	GS	DIAM TN	PHI	GAMMA AVO	G A	В	РСТ	PCD
306	5.00		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.46E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363	1, 1, 1, 2, 2, 3, 3, 5, 5, 5, 5,	P LBS/1 166.34 209.46 497.07 748.04 974.87 184.14 379.87 564.69 740.49 908.63 070.18 225.90 522.84 522.84 522.84	IN 47 31 59 76 46 73 48 71 96 91 36 34 52 41 41	
	I	P-Mi	ltipli	er =	0.100E+01	Y-Mult	iplie	r = 0.100	DE+01

Page 7

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o

AT THE EXCAVATION SIDE

DEPTH BE	LOW	GS	DIAM TN	PHI	GAMMA AVG	А	В	РСТ	PCD
189.0	0		63.00	36.00	0.39E-01	1.06	0.71	0.62E+04	0.29E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363		P LBS/2 166.34 332.20 146.19 373.78 558.80 717.50 357.94 384.82 101.13 208.94 309.72 404.50 404.50 494.33 805.90 805.90 805.90	IN 47 54 93 81 09 04 44 22 38 47 21 50 10 02 02 02	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BEL	.OW G	S DIAM	PHI	GAMMA AVO	i A	В	РСТ	PCD
369.00	)	63.00	36.00	0.39E-01	0.88	0.50	0.21E+05	0.56E+05
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 65. 128. 191.	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363 363		P LBS/1 166.34 973.81 397.03 741.10 042.09 314.65 566.50 802.31 566.50 802.31 566.50 802.32 237.50 440.68 536.02 324.52 504.74 504.74	IN 47 10 38 01 99 56 00 30 55 07 31 29 28 45 45 45	
	P-1	Multipli	er =	0.100E+01	Y-Mult	iplie	r = 0.100	DE+01

AT THE EXCAVATION SIDE

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py5o

DEPTH BELO IN	N GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	i A	В	РСТ	PCD
251.90		63.00	36.00	0.39E-01	0.90	0.53	0.10E+05	0.38E+05
	P-M	ultipli	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 362 363 363 0.100E+01		P LBS/1 166.3 495.3 807.9 55.3 268.1 458.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.4 532.0 330.0 330.0 330.0 330.0 530.0	$   \begin{bmatrix}     N \\     47 \\     58 \\     43 \\     74 \\     70 \\     35 \\     30 \\     01 \\     94 \\     11 \\     36 \\     43 \\     95 \\     23 \\     23 \\     23 \\     23 \\     23 \\     r = 0.100 $	DE+01
T THE BACKE	тіі	STDE						

AT THE BACKFILL SIDE

DEPTH BE		GS	DIAM TN	PHI	GAMMA AVG	А	В	PCT	PCD
431.9	90		63.00	36.00	0.39E-01	0.88	0.50	0.28E+05	0.65E+05
				0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 363 363		P LBS/1 L66.3 L11.4 506.8 5009.5 361.8 375.6 512.5 761.0 998.8 227.4 448.10 702.2 702.2 702.2	IN 47 51 23 41 58 32 61 98 19 26 74 26 74 29 39 39 39 39	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_No_Flood

RESULTS -- ITERATION 5

Cantilever Sheet Pile Wall Bedrock @-27ft or Lower_Composite_Seismic.py50

STA I	Х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA
ET	IN	IN		LBS-IN	LBS	LBS
LBS-IN**2						
0 0	.000e+00	0.960E+00	-0.415E-02	0.000E+00	0.000E+00	0.000E+00
0.331E+11 1 0.	.600E+01	0.935E+00	-0.415E-02	0.000E+00	0.123E+03	0.246E+03
2 0.662E+11	.120E+02	0.910E+00	-0.415E-02	0.148E+04	0.391E+03	0.290E+03
3 0.662E+11	.180E+02	0.885E+00	-0.415E-02	0.469E+04	0.704E+03	0.335E+03
4 0. 0.662E+11	.240E+02	0.860E+00	-0.415E-02	0.992E+04	0.106E+04	0.378E+03
5 0. 0.662E+11	.300E+02	0.835E+00	-0.415E-02	0.174E+05	0.146E+04	0.423E+03
6 0. 0.662E+11	.360E+02	0.810E+00	-0.415E-02	0.275E+05	0.191E+04	0.469E+03
7 0. 0.662E+11	.420E+02	0.785E+00	-0.414E-02	0.403E+05	0.240E+04	0.510E+03
8 0. 0.662E+11	.480E+02	0.761E+00	-0.414E-02	0.562E+05	0.293E+04	0.556E+03
9 0. 0.662E+11	.540E+02	0.736E+00	-0.413E-02	0.755E+05	0.351E+04	0.601E+03
10 0. 0.662E+11	.600E+02	0./11E+00	-0.412E-02	0.983E+05	0.594E+04	0.426E+04
0.662E+11	.660E+02	0.686E+00	-0.411E-02	0.14/E+06	0.841E+04	0.688E+03
0.662E+11	720E+02	0.627E+00	-0.410E-02	0.199E+06	0.912E+04	0.733E+03
0.662E+11	840E±02	0.0372+00	-0.408E-02	$0.230\pm00$	0.9882+04 0.1075+05	0.779E+03
0.662E+11	900F+02	0.588F+00	-0 402F-02	0.3101+00 0.384F+06	0.115F+05	0.866E+03
0.662E+11 16 0.	960F+02	0.564E+00	-0.398E-02	0.456E+06	0.124E+05	0.911E+03
0.662E+11 17 0.	.102E+03	0.541E+00	-0.394E-02	0.533E+06	0.135E+05	0.120E+04
0.662E+11 18 0.	.108E+03	0.517E+00	-0.388E-02	0.618E+06	0.147E+05	0.123E+04
0.662E+11 19 0.	.114E+03	0.494E+00	-0.382E-02	0.710E+06	0.159E+05	0.126E+04
0.662E+11 20 0.	.120E+03	0.471E+00	-0.375E-02	0.809E+06	0.172E+05	0.129E+04
0.662E+11 21 0.	.126E+03	0.449E+00	-0.368E-02	0.916E+06	0.185E+05	0.132E+04
0.662E+11 22 0.	.132E+03	0.427E+00	-0.359E-02	0.103E+07	0.198E+05	0.134E+04
23 0.6625 + 11	.138E+03	0.406E+00	-0.349E-02	0.115E+07	0.212E+05	0.137E+04
24 0.062E+11	.144E+03	0.385E+00	-0.338E-02	0.129E+07	0.226E+05	0.140E+04
25 0.662F+11	.150E+03	0.365E+00	-0.326E-02	0.142E+07	0.240E+05	0.143E+04
26 0. 0.662F+11	.156E+03	0.346E+00	-0.312E-02	0.157E+07	0.254E+05	0.146E+04
27 0. 0.662E+11	.162E+03	0.328E+00	-0.297E-02	0.173E+07	0.269E+05	0.149E+04

Page 10

Cantilever She	et Pile Wall 0.311E+00	Bedrock @-2 -0.281E-02	27ft or Lower 0.190E+07	Composite 0.284E+05	Seismic.py5c 0.152E+04
0.662E+11 29 0.174E+03	0.294E+00	-0.263E-02	0.207E+07	0.299E+05	0.154E+04
0.662E+11 30 0.180E+03	0.279E+00	-0.250E-02	0.226E+07	0.317E+05	0.207E+04
0.204E+12 31 0.186E+03	0.264E+00	-0.244E-02	0.245E+07	0.329E+05	0.283E+03
0.341E+12 32 0.192E+03	0.250E+00	-0.240E-02	0.265E+07	0.329E+05	-0.386E+03
0.341E+12 33 0.198E+03	0.236E+00	-0.235E-02	0.285E+07	0.322E+05	-0.103E+04
0.341E+12 34 0.204E+03	0.222E+00	-0.230E-02	0.304E+07	0.308E+05	-0.165E+04
0.341E+12 35 0.210E+03	0.208E+00	-0.224E-02	0.322E+07	0.289E+05	-0.224E+04
0.341E+12 36 0.216E+03	0.195E+00	-0.219E-02	0.338E+07	0.263E+05	-0.282E+04
0.341E+12 37 0.222E+03	0.182E+00	-0.213E-02	0.353E+07	0.233E+05	-0.337E+04
0.341E+12 38 0.228E+03	0.169E+00	-0.206E-02	0.366E+07	0.197E+05	-0.381E+04
0.341E+12 39 0.234E+03	0.157E+00	-0.200E-02	0.377E+07	0.157E+05	-0.411E+04
0.341E+12 40 0.240E+03	0.145E+00	-0.193E-02	0.385E+07	0.115E+05	-0.435E+04
0.341E+12 41 0.246E+03	0.134E+00	-0.186E-02	0.391E+07	0.702E+04	-0.454E+04
0.341E+12 42 0.252E+03	0.123E+00	-0.179E-02	0.393E+07	0.252E+04	-0.446E+04
0.341E+12 43 0.258E+03	0.112E+00	-0.172E-02	0.394E+07	-0.191E+04	-0.441E+04
0.341E+12 44 0.264E+03	0.102E+00	-0.165E-02	0.391E+07	-0.630E+04	-0.439E+04
0.341E+12 45 0.270E+03	0.924E-01	-0.159E-02	0.386E+07	-0.107E+05	-0.440E+04
0.341E+12 46 0.276E+03	0.831E-01	-0.152E-02	0.378E+07	-0.150E+05	-0.428E+04
0.341E+12 47 0.282E+03	0.742F-01	-0.145E-02	0.368F+07	-0.192F+05	-0.395F+04
0.341E+12 48 0 288E+03	0 657E-01	-0 139E-02	0 355E+07	-0 229E+05	-0 360F+04
0.341E+12 49 0.294E+03	0.575E-01	-0 133E-02	0 340F±07	-0 263E+05	-0 321F±04
0.341E+12 50 0.300E+03	0.075001	-0 127E-02	0.3245+07	_0 203E+05	-0 280E+04
0.341E+12 51 0.306E+03	0.423 = 01	$-0.121E_{-0.02}$	0.3055107		-0.2375+04
0.341E+12	0.425E-01	-0.1212-02	0.3050-07		
0.341E+12	0.331E-01	-0.1102-02	0.2645+07		
0.341E+12	0.203E-01	0.1075.02	0.2040+07		0.6725.02
0.341E+12	0.216E-01	-0.107E-02	0.245E+07	-0.304E+05	-0.072E+03
0.341E+12	0.155E-01	-0.103E-02	0.221E+07	-0.308E+05	-0.1/4E+03
0.341E+12	0.942E-02	-0.992E-03	0.199E+07	-0.308E+05	0.294E+03
0.341E+12	0.337E-UZ	-U.939E-U3	U.1//E+U/	-U.303E+U5	U./33E+U3
0.341E+12	-U.2U9E-U2	-U.93UE-U3	U.155E+U/	-U.354E+U5	0.110= 01
59 0.354E+03	-0.758E-02	-0.904E-03 Page	0.134E+0/ 11	-0.341E+05	U.140E+04

Cantile	ever Shee	t Pile Wall	Bedrock @-27	ft or Lower	_Composite_Se	ismic.py5o
0.341E+12						
60 0.3	60E+03 ·	-0.129E-01	-0.882E-03	0.114E+07	-0.326E+05	0.169E+04
0.341E+12						
61 0.3	66E+03 ·	-0.182E-01	-0.864E-03	0.951E+06	-0.307E+05	0.199E+04
0.341E+12						
62 0.3	72E+03 ·	-0.233E-01	-0.849E-03	0.773E+06	-0.286E+05	0.229E+04
0.341E+12						
63 0.3	78E+03 ·	-0.284E-01	-0.837E-03	0.608E+06	-0.261E+05	0.259E+04
0.341E+12						
64 0.3	84E+03 ·	-0.333E-01	-0.827E-03	0.459E+06	-0.234E+05	0.291E+04
0.341E+12						
65 0.3	90E+03 ·	-0.383E-01	-0.820E-03	0.328E+06	-0.203E+05	0.322E+04
0.341E+12						
66 0.3	96E+03 ·	-0.432E-01	-0.816E-03	0.216E+06	-0.169E+05	0.355E+04
0.341E+12						
67 0.4	02E+03 ·	-0.481E-01	-0.813E-03	0.125E+06	-0.132E+05	0.388E+04
0.341E+12						
68 0.4	08E+03 ·	-0.529E-01	-0.811E-03	0.571E+05	-0.916E+04	0.423E+04
0.341E+12						
69 0.4	14E+03 ·	-0.578E-01	-0.810E-03	0.148E+05	-0.476E+04	0.458E+04
0.341E+12						
70 0.4	20E+03 ·	-0.627E-01	-0.810E-03	0.657E-07	-0.123E+04	0.247E+04
0.170E+12						

END OF ANALYSIS

APPENDIX C1-W
Plots of Lateral Deflection, Bending Moment and Shear Force versus Embedded Depth of Anchored Sheet Pile Walls from PYWall





APPENDIX C1-X Output from PYWall Analysis for Anchored Sheet Pile Wall in Soil Area 2

## Anchored Sheet Pile Wall with 15 ft Height for Soil Area 2 Bedrock Higher than -27' No Flood Condition

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5o _____ PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Q:\Geotechnical\Meadowlands\Calculations for New Alternatives\Anchored Wall\PYWall Analysis\Proposed Section\No Flood\ Name of input data file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5d Name of output file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5o Name of plot output file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5p _____ Time and Date of Analysis _____ Date: October 18, 2017 Time: 17:00:59 Anchored_Sheet_Pile_wall_Bedrock_Higher_than_-27ft_No_Flood 4 PROGRAM CONTROL PARAMETERS NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0 NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1 GENERATE EARTH PRESSURE INTERNALLY = 1 GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1 NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 NUMBER OF INCREMENTS INCREMENT LENGTH = 50 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION 18.000 IN = DEFLECTION CLOSURE TOLERANCE = 1.000E - 05 IN ******* * STIFFNESS AND LOAD DATA EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD, S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, R - STIFFNESS OF TORSIONAL RESISTANCE. Page 1

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5o s' FROM TO CONTD ΕI Q т R Ρ LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 50 0 0 0.662E+11 0.000E+00 0.270E+06 0.000E+00 0.000E+00 0.000E+00 10 10 0 * * WALL INFORMATION FREE HEIGHT OF WALL = 0.180E+03 IN 0.630E+02 IN WIDTH FOR EARTH PRESSURE, WA = 0.630E+02 IN WIDTH FOR SOIL RESISTANCE, WP = DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER = 0.360E-01 LBS/IN**3 = 0.000E+00SLOPE OF THE BACKFILL (deg.) MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01 * SURCHARGE INFORMATION * = 0.174E+01 LBS/IN**2UNIFORM SURFACE PRESSURE * SOTE INFORMATION * TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP NO. IΝ PSI DEG PCI T OR F ΙN 96.0 32.0 0.064 0.00 0.0 Т 1 22.0 84.0 96.00 2 0.3 0.064 Т 3 240.0 0.0 36.0 0.075 Т 180.00 *************** * EFFECTIVE OVERBURDEN STRESS * ***** DEPTH STRESS LBS/IN**2 IΝ 0.000E+00 0.174E+01 0.960E+02 0.785E+01 0.180E+030.102 F + 02* ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * ACTIVE EARTH PASSIVE EARTH OPTIONAL EARTH LAYER NO. COEFFICIENT COEFFICIENT COEFFICIENT

Page 2

Anchored S 1 2 3	heet Pile Wal 0.307E+00 0.455E+00 0.260E+00	1 Bedrock Hig 0.325E 0.220E 0.385E	her than -2 +01 +01 +01	7ft_No_F 0.000E+( 0.000E+( 0.000E+(	lood.py5o 00 00 00
**************************************	EARTH PRESSUR	:************* REOFEACHLAY :************	·********** ′ER * ·******		
LAYER PA1 NO LBS/IN**	Z1 2 IN LBS/	PA2 Z2 'IN**2 IN	PA3 LBS/IN**2	Z3 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 9 138.00 4	00.13 64.00 4.39 152.00	0.00 -39.35	0.00 0.00	0.00 0.00
**************************************	*************** WATER PRESSUR ************	RE OF EACH LAY	·*********** ′ER * ·*******		
LAYER PW1 NO	Z1	PW2 Z2			
2 0.00	138.00 12	27.01 152.00			
DEPTH IN	ACTIVE EAR LBS	TH PRESSURE			
0.000E+00 0.600E+01 0.120E+02 0.240E+02 0.240E+02 0.300E+02 0.420E+02 0.420E+02 0.480E+02 0.540E+02 0.600E+02 0.660E+02 0.720E+02 0.780E+02 0.780E+02 0.900E+02 0.900E+02 0.960E+02 0.102E+03 0.114E+03 0.126E+03 0.126E+03 0.132E+03 0.132E+03 0.132E+03 0.156E+03 0.156E+03 0.168E+03 0.168E+03 0.185E+03 0.185E+03 0.191E+03	0.336E 0.456E 0.913E 0.137E 0.183E 0.228E 0.274E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.304E 0.228E 0.205E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.137E 0.228E 0.205E 0.205E 0.205E 0.137E 0.137E 0.137E 0.137E 0.137E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.188E 0.188E 0.188E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.228E 0.	+02 +02 +02 +03 +03 +03 +03 +03 +03 +03 +03 +03 +03			

Anchored Sheet Pi 0.203E+03 0.209E+03 0.215E+03 0.221E+03 0.227E+03 0.233E+03 0.239E+03 0.245E+03 0.251E+03 0.263E+03 0.269E+03 0.281E+03 0.281E+03 0.287E+03 0.293E+03 0.299E+03	le wall Bedrock H 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03 0.166E+03	igher than -27ft_	No_Flood.py5o
****	****	****	
* SOIL LAYERS /	AND STRENGTH DATA	***********	
X AT THE SURFACE O	F EXCAVATION SIDE	= 180.00	IN
1 LAYER(S) OF SOIL			
LAYER 1 THE SOIL IS A SAND			
DISTRIBUTION OF EF	FECTIVE UNIT WEIG 2 POINTS	GHT WITH DEPTH	
X,IN 180.0000 420.0000	WEIGHT,LBS/IN**3 0.3923D-01 0.3923D-01	3	
DISTRIBUTION OF ST	RENGTH PARAMETERS 2 POINTS	S WITH DEPTH	
X,IN 180.00 312.00	S,LBS/IN**2 0.0000D+00 0.0000D+00	PHI,DEGREES 36.000 36.000	E50 
P-Y CURVES DATA			
AT THE EXCAVATION	SIDE		
DEPTH BELOW GS	DIAM PHI GAMMA	A AVG A B	PCT PCD
IN 0.10 6	IN LBS/3 3.00 36.00 0.398	EN**3 E-01 2.83 2.14 0	.89E+00 0.15E+02
	Y IN 0.000 0.088 Page	P LBS/IN -166.347 -165.253 4	

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5o 0.175 -164.159 0.263 -163.381 0.350 -163.153 0.438 -162.963 0.525 -162.800 0.613 -162.656 0.700 -162.527 0.788 -162.409 0.875 -162.301 0.963 -162.200 1.050 -162.106 2.362 -160.738 65.362 -160.738 128.363 -160.738

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELO	V GS		PHI	GAMMA AVG	А	В	PCT	PCD
180.10		63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05
			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN 2000 288 175 263 350 438 525 513 700 788 875 963 250 362 362 363 363	12 12 12 20 22 24 25 26 27 28 41 41 41	P LBS/I L66.34 216.17 530.78 756.88 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 939.68 93.05 100 574.05 766.08 353.05 L23.06 L23.06 L23.06	N 7 1 7 9 7 3 8 4 7 5 5 8 4 1 1 1 1 1	
	P-MI	ultipli	er = (	0.100E+01	Y-Multi	iplier	= 0.100	DE+01
AT THE EXCAV		N SIDE						
DEPTH BELO	V GS	DIAM	PHI	GAMMA AVG	А	В	РСТ	PCD
33.00		63.00	36.00	0.39E-01	2.46	1.82	0.43E+03	0.50E+04
			•	Y		P		
				IN		LBS/I	N	

TIN		
0.000		-166.347
0.088		194.591
0.175		547.253
0.263		634.550
0.350		702.891
	-	

Page 5

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py5o 0.438 759.891 809.227 0.525 0.613 852.985 0.700 892.474 928.572 0.788 0.875 961.906 0.963 992.933 1.050 1022.002 2.362 1444.811 1444.811 65.362 128.363 1444.811 191.363 1444.811 P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01 AT THE BACKFILL SIDE DEPTH BELOW GS DIAM PHI GAMMA AVG PCT PCD В А IN LBS/IN**3 ΙN 213.00 63.00 36.00 0.39E-01 1.00 0.64 0.77E+04 0.32E+05 Ρ Υ LBS/IN IN 0.000 166.347 0.088 1060.581 1384.549 0.175 1626.038 0.263 0.350 1825.885 1999.555 0.438 0.525 2154.862 2296.393 0.613 0.700 2427.110 2549.053 0.788 2663.698 0.875 0.963 2772.152 1.050 2875.270 2.362 4385.590 65.362 128.363 4385.590 4385.590 191.363 4385.590 P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01 AT THE EXCAVATION SIDE DEPTH BELOW GS DIAM GAMMA AVG PCT PCD PHI А В LBS/IN**3 IN ΙN

Y IN 0.000 0.088 0.175 0.263 0.350 0.438 0.525 0.613	P LBS/IN -166.347 555.528 997.314 1146.289 1263.418 1361.420 1446.460 1522.043
0.613	1522.043
Page 6	

2.08 1.51 0.11E+04 0.10E+05

36.00 0.39E-01

66.00

63.00

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py50 0.700 1590.373 0.788 1652.937 0.875 1710.787 0.963 1764.702 1.050 1815.274 2.362 2551.215 65.362 2551.215 128.363 2551.215 191.363 2551.215

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH I	BELOW TN	GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	РСТ	PCD		
246	.00		63.00	36.00	0.39E-01	0.92	0.55	0.99E+04	0.37E+05		
					Y EN	-	P LBS/I	EN 17			
				0.0	JUU 188	100.34/ 866.065					
				0.0	175	11	183 76	52			
				0.2	263	1431.874					
				0.3	0.350 1643.803						
				0.4	438	18	332.33	36			
				0.	525	20	04.10	)4			
				0.0	513	2163.077					
				0.7	700	2311.859					
				0.7	788	24	152.27	70			
				0.8	875	25	585.64	41			
				0.9	963	27	712.98	31			
				1.(	050	28	335.07	77			
				2.3	362	46	530.48	38			
				65.3	362	46	530.48	38			
				128.3	363	46	530.48	38			
				191.3	363	46	530.48	38			

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW	GS	DIAM	PHI	GAMMA AVG	Α	В	PCT	PCD
99.00		63.00	36.00	0.39E-01	1.72	1.24	0.21E+04	0.15E+05
55.00		05.00	0.0 0.0 0.0 0.0 0.0	Y IN 2000 288 175 263 350 438 525 613		P LBS/1 166.34 916.40 226.33 413.48 561.32 585.45 793.47	EN 47 56 39 32 23 59 79	0.152105
			0. 0. 0.	700 788 875	19 20 21	976.88 056.83 130.87	30 32 76	
				Page 7				

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py50 0.963 2199.978 1.050 2264.877 2.362 3209.886 65.362 3209.886 128.363 3209.886 191.363 3209.886

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELOW GS D	DIAM PHI TN	GAMMA AVG LBS/TN**3	А	В	РСТ	PCD
279.00 63	3.00 36.00	0.39E-01	0.89 (	0.52	0.12E+05	0.42E+05
279.00 63	3.00 36.00 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.39E-01 Y IN 2000 288 175 263 350 438 525 513 700 788 375 963 250 385 250 362	0.89 10 11 14 16 18 203 220 242 253 274 253 274 253 274 253 274 253 274 253 274 253 274 253 274 253 274 253 254 255 255 255 255 255 255 255	P LBS/I 66.34 44.97 80.09 48.34 80.70 89.56 81.42 60.20 28.51 88.17 40.51 88.17 40.51 27.12	0.12E+05 N 7 5 4 5 2 0 0 9 9 9 5 6 5 1 5	0.42E+05
	65.3 128.3 191.3	362 363 363	509 509 509	97.62 97.62 97.62	5 5 5	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW IN	GS	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
131.90		63.00	36.00	0.39E-01	1.43	1.01	0.34E+04	0.20E+05
				Y		P		
			0			LB2/1	LN 17	
			0.0	088	1(	100.34	47 47	
			0.1	175	1	301.71	14	
			0.2	263	1	512.00	53	
			0.3	350	10	579.34	14	
			0.4	438	18	320.49	96	
			0.	525	19	943.80	)2	
			0.0	613	20	)54.00	)8	
			0.1	700	22	154.11	13	
			0.1	788	27	246.15	53	
			0.0	875	23	331.57	74	
			0.9	963	24	411.44	19	
			1.0	050	24	486.59	98	
			2.	362	3.	581.70	56	
				Page 8				

Anchored Sheet Pile Wall Bedrock Higher than -27ft_No_Flood.py50 65.362 3581.766 128.363 3581.766 191.363 3581.766

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH	BELOW TN	GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	PCT	PCD
311	L.90		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.47E+05
					Y		Р		
					IN		LBS/1	EN	
				0.0	000	-	L66.34	1/	
				0.0	088	8	355.27	70	
				0.1	175	12	214.49	94	
				0.2	263	1:	506.12	23	
				0.3	350	17	761.02	26	
				0.4	438	19	991.69	92	
				0.	525	27	204.7	18	
				Õ. (	613	24	404.1	12	
				0	700	2	592 53	34	
				0.1	788	2	771 86	51	
				0.5	875	20	713 1	76	
				0.0	063	2	108 13	20	
				1 /		2	100.T.	20	
				1.V		54	207.JC		
				<u> </u>	302	20	014.D:	57	
				05.	362	50	514.5	57	
				128.	363	56	514.5	37	
				191.3	363	56	514.53	37	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

Anchored_Sheet_Pile_Wall_Bedrock_Higher_than_-27ft_No_Flood

RESULTS -- ITERATION 3

STA I	х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA
	IN	IN		LBS-IN	LBS	LBS
0 ( 0 331F+11	0.000E+00	0.130E+00	-0.192E-03	0.000E+00	0.000E+00	0.000E+00
1 (0.662F+11)	0.600E+01	0.129E+00	-0.192E-03	0.000E+00	0.137E+03	0.274E+03
2 (0 662F+11	0.120E+02	0.127E+00	-0.191E-03	0.164E+04	0.548E+03	0.548E+03
3 ( 0.662F+11	0.180E+02	0.126E+00	-0.191E-03	0.657E+04	0.123E+04	0.820E+03
4 ( 0.662F+11	0.240E+02	0.125E+00	-0.190E-03	0.164E+05	0.219E+04	0.110E+04
5 ( 0.662F+11	0.300E+02	0.124E+00	-0.188E-03	0.329E+05	0.342E+04	0.137E+04
6 ( 0.662F+11	0.360E+02	0.123E+00	-0.184E-03	0.575E+05	0.493E+04	0.164E+04
7 (	0.420E+02	0.122E+00	-0.177E-03 Page	0.920E+05 9	0.666E+04	0.183E+04

Anchored	Sheet Pile	Wall Bedrock	Higher than	-27ft_No_Flo	od.py5o
0.662E+11 8 0.480E+02	0.121E+00	-0.167E-03	0.137E+06	0.849E+04	0.183E+04
0.662E+11 9 0.540E+02	0.120E+00	-0.152E-03	0.194E+06	0.103E+05	0.183E+04
0.662E+11 10 0.600E+02	0.119E+00	-0.131E-03	0.261E+06	-0.393E+04	-0.303E+05
0.662E+11 11 0.660E+02	0.118E+00	-0.112E-03	0.147E+06	-0.182E+05	0.183E+04
0.662E+11 12 0.720E+02	0.118E+00	-0.104E-03	0.430E+05	-0.164E+05	0.183E+04
0.662E+11 13 0.780E+02	0.117E+00	-0.104E-03	-0.496E+05	-0.145E+05	0.183E+04
0.662E+11 14 0.840E+02	0.116E+00	-0.112E-03	-0.131E+06	-0.127E+05	0.183E+04
0.662E+11 15 0.900E+02	0.116E+00	-0.127E-03	-0.202E+06	-0.109E+05	0.183E+04
0.662E+11 16 0.960E+02	0.115E+00	-0.148E-03	-0.262E+06	-0.905E+04	0.183E+04
0.662E+11 17 0.102E+03	0.114E+00	-0.174E-03	-0.311E+06	-0.725E+04	0.178E+04
0.662E+11 18 0.108E+03	0.113E+00	-0.204E-03	-0.349E+06	-0.554E+04	0.164E+04
0.662E+11 19 0.114E+03	0.111E+00	-0.237E-03	-0.377E+06	-0.397E+04	0.150E+04
0.662E+11 20 0.120E+03	0.110E+00	-0.272E-03	-0.397E+06	-0.253E+04	0.137E+04
0.662E+11 21 0.126E+03	0.108E+00	-0.309E-03	-0.408E+06	-0.123E+04	0.123E+04
0.662E+11 22 0.132E+03	0.106E+00	-0.346E-03	-0.411E+06	-0.643E+02	0.110E+04
0.662E+11 23 0.138E+03	0.104E+00	-0.383E-03	-0.408E+06	0.962E+03	0.956E+03
0.662E+11 24 0.144E+03	0.102E+00	-0.420E-03	-0.400E+06	0.185E+04	0.820E+03
0.662E+11 25 0.150E+03	0.990E-01	-0.455E-03	-0.386E+06	0.260E+04	0.684E+03
0.662E+11 26 0.156E+03	0.961E-01	-0.489E-03	-0.368E+06	0.322E+04	0.548E+03
0.662E+11 27 0.162E+03	0.931E-01	-0.522E-03	-0.348E+06	0.370E+04	0.412E+03
0.662E+11 28 0.168E+03	0.899E-01	-0.552E-03	-0.324E+06	0.404E+04	0.274E+03
0.662E+11 29 0.174E+03	0.865E-01	-0.581E-03	-0.299E+06	0.425E+04	0.137E+03
0.662E+11 30 0.180E+03	0.829E-01	-0.606E-03	-0.273E+06	0.456E+04	0.495E+03
0.662E+11 31 0.186E+03	0.792E-01	-0.630E-03	-0.244E+06	0.514E+04	0.665E+03
0.662E+11 32 0.192E+03	0.753E-01	-0.651E-03	-0.211E+06	0.566E+04	0.371E+03
0.662E+11 33 0.198E+03	0.714E-01	-0.668E-03	-0.176E+06	0.590E+04	0.110E+03
0.662E+11 34 0.204E+03	0.673E-01	-0.683E-03	-0.141E+06	0.590E+04	-0.116E+03
0.662E+11 35 0.210E+03	0.632E-01	-0.694E-03	-0.106E+06	0.569E+04	-0.308E+03
U.662E+11 36 0.216E+03	0.590E-01	-0.702E-03	-0.724E+05	0.530E+04	-0.464E+03
0.662E+11 37 0.222E+03	0.548E-01	-0.707E-03	-0.420E+05	0.475E+04	-0.631E+03
U.662E+11 38 0.228E+03	0.505E-01	-0.710E-03	-0.154E+05	0.406E+04	-0.754E+03
U.662E+11					

Anchored	l Sheet Pile W	all Bedrock	Higher than	-27ft_No_Flo	od.py5o
39 0.234E+03	0.462E-01	-0.710E-03	Ŏ.673E+04	0.326E+04	-0.836E+03
0.662E+11					
40 0.240E+03	8 0.420E-01	-0.709E-03	0.238E+05	0.241E+04	-0.875E+03
0.662E+11					
41 0.246E+03	8 0.377E-01	-0.706E-03	0.356E+05	0.153E+04	-0.873E+03
0.662E+11					
42 0.252E+03	8 0.335E-01	-0.702E-03	0.422E+05	0.698E+03	-0.802E+03
0.662E+11					
43 0.258E+03	8 0.293E-01	-0.698E-03	0.440E+05	-0.515E+02	-0.697E+03
0.662E+11					
44 0.264E+03	0.251E-01	-0.695E-03	0.416E+05	-0.679E+03	-0.559E+03
0.662E+11					
45 0.270E+03	0.210E-01	-0.691E-03	0.358E+05	-0.115E+04	-0.388E+03
0.662E+11					
46 0.276E+03	0.168E-01	-0.688E-03	0.278E+05	-0.144E+04	-0.185E+03
0.662E+11					
47 0.282E+03	0.127E-01	-0.686E-03	0.186E+05	-0.151E+04	0.517E+02
0.662E+11					
48 0.288E+03	0.862E-02	-0.685E-03	0.969E+04	-0.131E+04	0.347E+03
0.662E+11					
49 0.294E+03	8 0.451E-02	-0.684E-03	0.289E+04	-0.808E+03	0.651E+03
0.662E+11					
50 0.300E+03	0.405E-03	-0.684E-03	-0.399E-09	-0.241E+03	0.482E+03
0.331E+11					

TIE BACK RESULTS

Ν	STA	X IN	HOR.FORCE/STA. LBS	FORCE/STA. LBS	FORCE/TIE BACK LBS
1	10	0.600E+02	-0.3215E+05	-0.5222E+05	-0.9947E+05

END OF ANALYSIS
#### Anchored Sheet Pile Wall with 15 ft Height for Soil Area 2 Bedrock Higher than -27' No Flood and Seismic

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py50 _____ PYWALL for Windows, Version 2015.5.11 Serial Number : 166868598 A Program for the Analysis of Flexible Retaining Walls (c) Copyright ENSOFT, Inc., 1987-2016 All Rights Reserved This program is licensed to : AECOM / URS Corp Clifton, NJ Path to file locations : Q:\Geotechnical\Meadowlands\Calculations for New Alternatives\Anchored Wall\PYWall Analysis\Proposed Section\Seismic\ Name of input data file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py5d Name of output file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py5o Name of plot output file : Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py5p _____ Time and Date of Analysis _____ Date: October 19, 2017 Time: 15:20:16 Anchored_Sheet_Pile_wall_Bedrock_Higher_than_-27ft_Seismic. ÷. PROGRAM CONTROL PARAMETERS NO OF POINTS FOR SPECIFIED DEFLECTIONS AND SLOPES = 0 NO OF POINTS FOR WALL STIFFNESS AND LOAD DATA = 1 GENERATE EARTH PRESSURE INTERNALLY 1 = GENERATE SOIL RESISTANCE (P-Y) CURVES INTERNALLY = 1 NO OF P-Y MODIFICATION FACTORS FOR GEN. P-Y CURVES = 0 NO OF USER-SPECIFIED SOIL RESISTANCE (P-Y) CURVES = 0 NUMBER OF INCREMENTS INCREMENT LENGTH = 50 6.000 IN = 180.000 IN FREE HEIGHT OF WALL = MAXIMUM ALLOWABLE DEFLECTION 18.000 IN = DEFLECTION CLOSURE TOLERANCE = 1.000E-05 IN ******* * STIFFNESS AND LOAD DATA EI - FLEXURAL RIGIDITY, Q - TRANSVERSE LOAD, S - STIFFNESS OF TRANSVERSE RESISTANCE, T - TORQUE, P - AXIAL LOAD, R - STIFFNESS OF TORSIONAL RESISTANCE. Page 1

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py50 FROM TO CONTD s' EI Q т R Ρ LBS-IN**2 LBS LBS/IN IN-LBS IN-LBS LBS 0.662E+11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 50 0 0 0.662E+11 0.361E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 10 10 0 10 10 0.662E+11 0.000E+00 0.270E+06 0.000E+00 0.000E+00 0.000E+00 0 WALL INFORMATION * * FREE HEIGHT OF WALL = 0.180E+03 IN WIDTH FOR EARTH PRESSURE, WA 0.630E+02 IN = WIDTH FOR SOIL RESISTANCE, WP = 0.630E+02 IN DEPTH TO THE WATER TABLE AT BACKFILL = 0.960E+02 IN DEPTH TO THE WATER TABLE AT EXCAVATION = 0.960E+02 IN UNIT WEIGHT OF WATER = 0.360E-01 LBS/IN**3 0.000E+00 SLOPE OF THE BACKFILL (deg.) = MODIFICATION FOR ACTIVE EARTH PRESSURE = 0.100E+01* * SURCHARGE INFORMATION ************* = 0.174E+01 LBS/IN**2 UNIFORM SURFACE PRESSURE * SOIL INFORMATION TOTAL TOTAL UNIT LAYER THICKNESS COHESION PHI WEIGHT DRAINED ZTOP DEG PCI T OR F NO. IN PSI ΙN 0.064 0.00 1 96.0 0.0 32.0 Т 84.0 0.3 0.064 2 22.0 Т 96.00 3 240.0 0.0 36.0 0.075 180.00 т * EFFECTIVE OVERBURDEN STRESS * DEPTH STRESS LBS/IN**2 IN 0.000E+00 0.174E+01 0.785E+01 0.960E+02 0.180E+03 0.102E+02 * ACTIVE AND PASSIVE EARTH PRESSURE COEFFICIENT * LAYER ACTIVE EARTH PASSIVE EARTH OPTIONAL EARTH Page 2

Anchored NO. 1 2 3	Sheet Pile Wall COEFFICIENT 0.307E+00 0.455E+00 0.260E+00	Bedrock H ⁻ COEFFI 0.325 0.220 0.385	igher than -2 CIENT E+01 E+01 E+01 E+01	27ft_Sei COEFFIC 0.000E 0.000E 0.000E	smic.py50 IENT +00 +00 +00
**************************************	•****************** EARTH PRESSURE ( •*****	********** DF EACH LA ********	********** YER * ******		
LAYER PA1 NO LBS/IN**	Z1 PA2 2 IN LBS/IN	2 Z2 **2 IN	PA3 LBS/IN**2	Z3 IN	PA4 LBS/IN**2
1 51.21 2 299.90	48.00 90.1 138.00 44.3	13 64.00 39 152.00	0.00 -39.35	0.00	0.00 0.00
**************************************	**************************************	*********** DF EACH LA **********	*********** YER * ******		
LAYER PW1 NO	Z1 PW2	2 Z2			
2 0.00	138.00 127.0	01 152.00			
DEPTH IN	ACTIVE EARTH LBS/IN	PRESSURE			
0.000E+00 0.600E+01 0.120E+02 0.240E+02 0.240E+02 0.300E+02 0.360E+02 0.420E+02 0.480E+02 0.540E+02 0.540E+02 0.600E+02 0.600E+02 0.720E+02 0.780E+02 0.780E+02 0.900E+02 0.900E+02 0.960E+02 0.102E+03 0.114E+03 0.120E+03 0.126E+03 0.132E+03 0.138E+03 0.150E+03 0.150E+03 0.168E+03 0.168E+03 0.185E+03 0.185E+03 0.191E+03	0.336E+02 0.456E+02 0.913E+02 0.137E+03 0.137E+03 0.183E+03 0.228E+03 0.274E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.304E+03 0.274E+03 0.274E+03 0.274E+03 0.274E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.251E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E+03 0.252E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

Page 3

Anchored Sheet Pile0.197E+030.0.203E+030.0.209E+030.0.215E+030.0.221E+030.0.227E+030.0.233E+030.0.239E+030.0.251E+030.0.263E+030.0.263E+030.0.275E+030.0.281E+030.0.292E+030.0.293E+030.0.293E+030.0.299E+030.	e Wall Bedrock H 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03 166E+03	Higher than -2	7ft_Seismic.py5o
**************************************	**************************************	***********	
*****	****	*****	
X AT THE SURFACE OF	EXCAVATION SIDE	= 18	0.00 IN
1 LAYER(S) OF SOIL			
LAYER 1 THE SOIL IS A SAND			
DISTRIBUTION OF EFFE	CTIVE UNIT WEIG POINTS	HT WITH DEPTH	
X,IN W 180.0000 420.0000	EIGHT,LBS/IN**3 0.3923D-01 0.3923D-01		
DISTRIBUTION OF STRE	NGTH PARAMETERS POINTS	WITH DEPTH	
X,IN 180.00 312.00	S,LBS/IN**2 0.0000D+00 0.0000D+00	PHI,DEGREE 36.000 36.000	5 E50 
P-Y CURVES DATA			
AT THE EXCAVATION SI	DE		
DEPTH BELOW GS DI IN I 0.10 63.	AM PHI GAMMA N LBS/I 00 36.00 0.39e	AVG A N**3 -01 2.83 2.1	B PCT PCD 14 0.89E+00 0.15E+02
	Y IN 0.000	LB -166	P 5/IN .347
	Page	4	

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py50 0.088 -165.253 0.175 -164.159 0.263 -163.381 0.350 -163.153 0.438 -162.963 0.525 -162.800 0.613 -162.656 0.700 -162.527 0.788 -162.409 0.875 -162.301 0.963 -162.200 1.050 -162.106 2.362 -160.738 65.362 -160.738 128.363 -160.738 191.363 -160.738

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELOW	V GS DIAM	PHI	GAMMA AVG LBS/IN**3	i A	В	PCT	PCD
180.10	63.00	36.00	0.39E-01	1.11	0.75	0.57E+04	0.27E+05
		0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Y IN 2000 288 175 263 350 438 525 513 700 788 375 263 275 263 250 362 362 362 363 363	1 12 15 17 20 22 23 24 25 26 27 28 41 41 41	P LBS/I 66.34 16.17 30.78 56.88 995.82 33.54 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.63 57.	N 7 1 7 9 7 3 8 4 7 5 5 8 4 1 1 1 1	
	P-Multipli	er = (	0.100E+01	Y-Multi	plier	= 0.100	DE+01
AT THE EXCAVA	TION SIDE						

DEPTH BELOW	I GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	PCT	PCD
33.00		63.00	36.00	0.39E-01	2.46	1.82	0.43E+03	0.50E+04
			0.0	Y IN 000 088 175 263 8200 5		P LBS/2 166.34 194.59 547.22 634.52	IN 47 91 53 50	
				Paye 5				

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py5o 0.350 702.891 0.438 759.891 0.525 809.227 0.613 852.985 0.700 892.474 0.788 928.572 0.875 961.906 0.963 992.933 1.050 1022.002 2.362 1444.811 128.363 1444.811 191.363 1444.811

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH B	BELOW	GS	DIAM TN	PHI	GAMMA AVG		A	В	РСТ	PCD
213.	.00		63.00	36.00	0.39E-01	1.	00	0.64	0.77E+04	0.32E+05
				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y EN D00 D88 L75 263 350 438 525 513 700 788 375 D63 D50 362 363 363		1 10 13 16 18 21 22 24 25 26 27 28 43 43 43 43	P LBS/1 266.34 266.35 266.35 25.88 299.55 254.86 296.35 27.11 249.05 263.65 272.11 375.27 385.55 385.55 385.55	EN 47 31 49 38 35 55 52 93 10 53 93 10 53 93 10 53 93 10 53 90 90 90 90	
	F	P-Mu	ıltiplie	er = (	).100E+01	Y-Mu	lti	plie	r = 0.100	)E+01

AT THE EXCAVATION SIDE

DEPTH BELOW GS DIAM	PHI GAMMA AVG LBS/TN**3	A B PCT	PCD
66.00 63.00	36.00 0.39E-01	2.08 1.51 0.11E+04	0.10E+05
	Y IN 0.000 0.088 0.175 0.263 0.350 0.438 0.525 Page 6	P LBS/IN -166.347 555.528 997.314 1146.289 1263.418 1361.420 1446.460	

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py50 0.613 1522.043 0.700 1590.373 0.788 1652.937 0.875 1710.787 0.963 1764.702 1.050 1815.274 2.362 2551.215 65.362 2551.215 128.363 2551.215 191.363 2551.215

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELOW GS IN	DIAM P IN	HI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
246.00	63.00 36	.00	0.39E-01	0.92	0.55	0.99E+04	0.37E+05
	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050 362 362 363 363	12 12 14 16 18 20 22 22 22 22 22 22 24 44 44 44	P LBS/1 L66.34 366.96 L83.76 431.87 543.80 332.33 004.10 L63.07 311.85 530.41 530.48 530.48 530.48 530.48	EN 47 55 52 74 03 36 04 77 59 70 41 31 77 38 38 38 38 38 38	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW GS IN	DIAM IN	PHI	GAMMA AVG LBS/IN**3	А	В	РСТ	PCD
99.00	63.00	36.00	0.39E-01	1.72	1.24	0.21E+04	0.15E+05
		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Y IN 000 088 175 263 350 438 525 613 700 788 Page 7	-1	P LBS/1 L66.34 226.33 413.48 561.32 585.45 793.47 389.71 389.71 376.88 056.83	IN 47 56 39 32 23 59 79 LO 30 32	

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py5o 0.875 2130.876 0.963 2199.978 1.050 2264.877 2.362 3209.886 65.362 3209.886 128.363 3209.886 191.363 3209.886

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELOW GS D	EAM PHI G	AMMA AVG	A	В	PCT	PCD
279.00 63	.00 36.00 0	.39E-01	0.89	0.52	0.12E+05	0.42E+05
	Y IN 0.00 0.08 0.17 0.26 0.35	1 00 88 75 33 00	1 8 11 14 16	P LBS/1 166.34 344.97 180.09 148.34 580.70	EN 47 75 94 45 02	
	0.43 0.52 0.61 0.70	8 5 .3 00	18 20 22 24	89.50 81.42 60.20 28.51	50 20 09 19	
	0.78 0.87 0.96 1.05 2.36	8 75 60 62	25 27 28 30 50	588.17 40.51 386.50 27.12 997.62	75 L6 55 21 25	
	65.36 128.36 191.36	52 53 53	50 50 50	)97.62 )97.62 )97.62	25 25 25	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE EXCAVATION SIDE

DEPTH BELOW	GS	DIAM	PHI	GAMMA AVG	А	В	PCT	PCD
131.90		63.00	36.00	0.39E-01	1.43	1.01	0.34E+04	0.20E+05
131.90		63.00	36.00 0.0 0.0 0.0 0.0 0.0 0.0	0.39E-01 Y IN 000 088 175 263 350 438 525 613		P LBS/1 L66.34 001.34 301.71 512.00 579.34 320.49 943.80	0.34E+04 IN 47 47 14 53 44 96 02 08	0.20E+05
			0. 0. 0. 0.	700 788 875 963 050 Page 8	22	L54.12 246.19 331.57 411.44 486.59	13 53 74 49 98	

Anchored Sheet Pile Wall Bedrock Higher than -27ft_Seismic.py50 2.362 3581.766 65.362 3581.766 128.363 3581.766 191.363 3581.766

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

AT THE BACKFILL SIDE

DEPTH BELOW	GS	DIAM TN	PHI	GAMMA AVG LBS/TN**3	А	В	PCT	PCD
311.90		63.00	36.00	0.39E-01	0.88	0.50	0.15E+05	0.47E+05
311.90		63.00	36.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.39E-01 Y IN 000 088 175 263 350 438 525 613 700 788 875 963 050	0.88	0.50 P LBS/1 166.34 355.27 214.49 506.12 761.02 991.69 204.71 592.53 771.80 943.41 108.43 267.58	0.15E+05 IN 47 70 94 23 26 92 18 12 34 51 76 39 30	0.47E+05
			65. 128.	362 363	50 50 50	514.53 514.53	37 37 37	
			191.	363	50	514.53	37	

P-Multiplier = 0.100E+01 Y-Multiplier = 0.100E+01

Anchored_Sheet_Pile_Wall_Bedrock_Higher_than_-27ft_No_Flood

RESULTS -- ITERATION 4

STA I	Х	DEFL.	SLOPE	MOMENT	SHEAR	NET REACT/STA
EL	IN	IN		LBS-IN	LBS	LBS
LBS-IN**2						
0 0.	.000e+00	0.147E+00	-0.269E-03	0.000E+00	0.000E+00	0.000E+00
1 0.5512+11 0.0000000000000000000000000000000000	.600E+01	0.146E+00	-0.269E-03	0.000E+00	0.137E+03	0.274E+03
2 0.662E+11	.120E+02	0.144E+00	-0.269E-03	0.164E+04	0.548E+03	0.548E+03
3 0. 0.662F+11	.180E+02	0.142E+00	-0.269E-03	0.657E+04	0.123E+04	0.820E+03
4 0. 0 662E+11	.240E+02	0.141E+00	-0.268E-03	0.164E+05	0.219E+04	0.110E+04
5 0.662E+11	.300E+02	0.139E+00	-0.265E-03	0.329E+05	0.342E+04	0.137E+04
6 0. 0.662E+11	.360E+02	0.138E+00	-0.261E-03	0.575E+05	0.493E+04	0.164E+04

م 7 0.4	nchored 420E+02	Sheet Pile 0.136E+00	Wall Bedrock -0.255E-03	Higher than 0.920E+05	-27ft_Seism 0.666E+04	ic.py5o 0.183E+04
0.662E+11 8 0.4	480e+02	0.135E+00	-0.244E-03	0.137E+06	0.849E+04	0.183E+04
0.662E+11 9 0.1	540e+02	0.133E+00	-0.229E-03	0.194E+06	0.103E+05	0.183E+04
0.662E+11 10 0.0	600e+02	0.132E+00	-0.209E-03	0.261E+06	-0.386E+04	-0.302E+05
0.662E+11 11 0.0	660E+02	0.131E+00	-0.190E-03	0.148E+06	-0.180E+05	0.183E+04
0.662E+11 12 0.1	720E+02	0.130E+00	-0.181E-03	0.448E+05	-0.162E+05	0.183E+04
0.662E+11 13 0.1	780e+02	0.128E+00	-0.181E-03	-0.471E+05	-0.144E+05	0.183E+04
0.662E+11 14 0.3	840e+02	0.127E+00	-0.189E-03	-0.128E+06	-0.126E+05	0.183E+04
0.662E+11 15 0.9	900e+02	0.126E+00	-0.204E-03	-0.198E+06	-0.107E+05	0.183E+04
0.662E+11 16 0.9	960e+02	0.125E+00	-0.225E-03	-0.257E+06	-0.891E+04	0.183E+04
0.662E+11 17 0.1	102E+03	0.123E+00	-0.250E-03	-0.305E+06	-0.711E+04	0.178E+04
0.662E+11 18 0.1	108E+03	0.122E+00	-0.279E-03	-0.342E+06	-0.540E+04	0.164E+04
0.662E+11 19 0.1	114E+03	0.120E+00	-0.312E-03	-0.370E+06	-0.382E+04	0.150E+04
0.662E+11 20 0.1	120E+03	0.118E+00	-0.346E-03	-0.388E+06	-0.239E+04	0.137E+04
0.662E+11 21 0.1	126E+03	0.116E+00	-0.382E-03	-0.398E+06	-0.109E+04	0.123E+04
0.662E+11 22 0.1	132E+03	0.114E+00	-0.418E-03	-0.401E+06	0.788E+02	0.110E+04
0.662E+11 23 0.1	138E+03	0.111E+00	-0.454E-03	-0.397E+06	0.111E+04	0.956E+03
0.662E+11 24 0.1	144E+03	0.108E+00	-0.490E-03	-0.388E+06	0.199E+04	0.820E+03
0.662E+11 25 0.1	150E+03	0.105E+00	-0.524E-03	-0.373E+06	0.275E+04	0.684E+03
0.662E+11 26 0.1	156E+03	0.102E+00	-0.557E-03	-0.355E+06	0.336E+04	0.548E+03
0.662E+11 27 0.1	162E+03	0.984E-01	-0.588E-03	-0.333E+06	0.384E+04	0.412E+03
0.662E+11 28 0.1	168E+03	0.948E-01	-0.617E-03	-0.309E+06	0.418E+04	0.274E+03
0.662E+11 29 0.1	174E+03	0.910E-01	-0.644E-03	-0.283E+06	0.439E+04	0.137E+03
0.662E+11 30 0.1	180E+03	0.870E-01	-0.669E-03	-0.256E+06	0.471E+04	0.495E+03
0.662E+11 31 0.1	186E+03	0.830E-01	-0.690E-03	-0.226E+06	0.528E+04	0.649E+03
0.662E+11 32 0.1	192E+03	0.788E-01	-0.709E-03	-0.193E+06	0.577E+04	0.343E+03
0.662E+11 33 0.1	198E+03	0.744E-01	-0.725E-03	-0.157E+06	0.598E+04	0.720E+02
0.662E+11 34 0.2	204e+03	0.701E-01	-0.738E-03	-0.121E+06	0.594E+04	-0.162E+03
0.662E+11 35 0.2	210E+03	0.656E-01	-0.747E-03	-0.857E+05	0.568E+04	-0.358E+03
0.662E+11 36 0.2	216E+03	0.611E-01	-0.753E-03	-0.528E+05	0.524E+04	-0.516E+03
0.662E+11 37 0.2	222e+03	0.566E-01	-0.757E-03	-0.229E+05	0.464E+04	-0.684E+03
0.662E+11 38 0.2	228e+03	0.520E-01	-0.758E-03	0.290E+04	0.389E+04	-0.806E+03
			Page	10		

Anchored	Sheet Pile	Wall Bedrock	Higher than	-27ft_Seism	ic.py5o
0.662E+11			-		
39 0.234E+03	0.475E-01	-0.757E-03	0.238E+05	0.305E+04	-0.884E+03
0.662E+11					
40 0.240E+03	0.429E-01	-0.754E-03	0.395E+05	0.215E+04	-0.917E+03
0.662E+11	0 004- 04	0 750- 00	0 400- 05	0 101- 01	0 000- 00
41 0.246E+03	0.384E-01	-0.750E-03	0.496E+05	0.124E+04	-0.906E+03
0.662E+11	0 220- 01	0 745- 02	0 5425 05	0 272- 02	0 004- 00
42 U.252E+U3	0.339E-01	-0.745E-03	0.543E+05	0.372E+03	-0.824E+03
	0 2055 01	0 7405 02			0 7065-02
45 0.230E+03	0.295E-01	-0.740E-03	0.341E+03	-0.392E+03	-0.700E+03
	0 2515-01	_0 7355_03	0 4965-05	-0 1025,04	-0 5535103
0.662F+11	0.2312 01	0.7552 05	0.4002400	0.1021+04	0.5552+05
45 0 270F+03	0 207E-01	-0 731E-03	0 418F+05	-0 148F+04	-0 366F+03
0.662F+11	0.2072 01	017912 09	011102105	011102101	019002109
46 0.276E+03	0.163E-01	-0.728E-03	0.318E+05	-0.174E+04	-0.145E+03
0.662E+11					
47 0.282E+03	0.119E-01	-0.725E-03	0.210E+05	-0.175E+04	0.112E+03
0.662E+11					
48 0.288E+03	0.757E-02	-0.724E-03	0.108E+05	-0.149E+04	0.425E+03
0.662E+11					
49 0.294E+03	0.323E-02	-0.723E-03	0.314E+04	-0.898E+03	0.749E+03
0.662E+11					
50 0.300E+03	-0.111E-02	-0.723E-03	0.797E-09	-0.262E+03	0.524E+03
0.331E+11					

chored Sheet Pile Wall Bedrock Higher than -27ft Seismic _

TIE BACK RESULTS _____

Ν	STA	X IN	HOR.FORCE/STA. LBS	FORCE/STA. LBS	FORCE/TIE BACK LBS
1	10	0.600E+02	-0.3562E+05	-0.5786E+05	-0.1102E+06

END OF ANALYSIS

APPENDIX C1-Y
Details of the conceptual design calculations for the pile foundations for pump station and forbay by the Marine
Engineering Group

277	Project	: New Mendow lak	ds	Computed: WAJ	Date: 9/4/17
-JK	Subject	Pump Station P	ile layout	Checked:	Date:
	Task:	l	l	Page:	of:
	Job #:			No:	
Pump Statio	m - Estimate	d hleight			Ref: Saginand Pip
Sere 2 Pr	72 " 1	31." 6	P' Ca	You" wall b	( kinese) = 9/0 K
screw 14	mp - ic vi	1	Tipe Las	sume of white	- Add ~ 20 Mas
	May not b	a conservative	: increase	- 36" pipe thick	ness 116 lb/f
	(	Say he"	thick =	a met an Anna ann a	19016/f
Azerordan	le length .	ecolor form	15n 151		+ 2014
f f roman	the trength -	scaled from p			210 16/4
	25'x 210	14/At × 8 pumps	= 42,000	bs	
	III Inol A	11515	MIT	1112	
	iolor is 10 De	tail tactor for	Mich Equi	pimise	
Columnat Water in S	Senews IT.34	(25)(62.4)====================================	= 46,20	00 1651	
Bu : (d:	1 Crows	×B	el .		
	Concretes	353,000 1	I celle	12 1 × 150	220 11
Conc Walls:	12" Thick Casa	une) × 10 hd. St	m x 99 (0	$u_{f}(C) = CO(1)$	DOD IN
Come Floor.	12" thick x	94 × 12 m	ile x150 =	169,200 Ha	
Com Meter S	upports = 3'	5'x 5' duep	wedge =	1,12576(8) = 90	16
Cenc Roof:	lassume) a san	neas floor =	169,200	14	
Misc Lead	s se 15% e	add	629	,400 16	
			21715	an th	
0 1 1	1		- [ [ [ ]	100 (2)	
Cenere fe Inf	ake				
Walls:	2'x 10' x'	14' (2) × 150 =	564,000	16	
Base :	2' x 12' x "	94' × (50 =	239 000	15	
Add Loto C	setail Factor	- cour etc	= 1493 0	72.114	
			115,0		
Water =	10 x 12 ' ×99	"x 62.4 =	[704,000]	16	
(this)			1		
Corera te Pi	nup Base Sla	16			
Steh	2' 15' 50'	~ 150 =	705,000 1	6	
A		1 Acil	11		
Approach S	las: Cxu	x 19 x15)=	147,200 1		
Card Card			875,0901	la	

Date: 9 6 19 New Medardands Promp Station Pile Lazout Computed: WDJ Project: FX Checked: Date: Subject: of: 2 Page: No: lob #: This desktop annheis neglets lateral forces due to pumping operations. Outer perimeter Dischage Channel Spilluny Walls: 2'x 15' ×94' × 150 423,000 pites can be battered to Bot Shb: 2'x 20' x94'x 150 = 564.000 Wafer: 15'x 20' x94' x 62.4 = 1.8 M lb counteract lateral forces Will increase and load N15% to accept for lateral Spillnay: 2' × 12' × 94' × 150 = 338,400.16 effects Water : = 3'x 12'x99'x62.4 = Z12,000 lb 3337K Total Axial Load ~ 2033K =7 [7050K] +15%= \$100K Soil Areale: Organic ela to -7 (ignore skin friction per Attom TM) Clay -7 to -75 Very liftle end bearing un fil Bedrock @ -75 Very liftle end bearing un fil Per Table 22 (5.2.4.1 Friction Pikes Attom TM) HP 14x 73 - CO FF piles & Allowable Compression Copacity = 32k It Pilex 141 - 67 Ft piles ~ Allowable = 45k Mugler F) Some piles with end bearing lock : Allowable compression = 200k Minples Assume friction piles & 8100k / 45K= 180 piles minimum 16 16" Develop conceptual pile layout & left specing as taget. H\$16×K+1 (see shutch) = 212 piles for frasible layout 212 piles @ 2 65' length= [13, 780 1:n. ft] HP 16x [4]



PUMP STATION CONCEPTUAL PILE LAYOUT N.T.S.

3

Project: New Mendewlands Subject: Pump Station Pile Layout Task: Date: 9/1/17 Computed: 1.1) FX Date: Checked: of: 4 Page: lob # No: Pile Driving - Production Rates St. Bernard Floodwalls => HP 14x89 & 95 FT long LPV 146 800 FT / DAY or & 8 piles / day J: M. Madel Ref: USALE NEW DRUEANS -(15 Hyd Inpact Hanner Ref: SMITHCANKE FLOODGATTE - Miter Gate - 60'opening STOCUTON, CA 36"& Steel pipe piles 22000 Blows (day & piles perday 95' long piles & 570 FT (DAY * USE LANIALE as Assumed PRODUCTION PATE 212 piles @ 8 piles (day 2 27 DAYS since pile group is in a small area - set up/ take down should be very efficient. 27-30 days is reasonable Forchay Piles CAssume similar for Energy Dis. Structure - size) Assume 2' Thick wells Isleb Cenerute: 2'x 16'x 40' (0,150) x 2 = 384k Walls 2× 16 × 60 (assumed length) × (0,150) (2) = 576k Slab: assus 3' Thick: 3x gox 40' (0.150) = 1080K Flap Gales: 8.7'x 6:0'x 0.5" Thick (4 gales) 6490 KCF)= 4K Water & 40 x60 x16 (62.4)= 2900K Tofa ( = | 4500 = | Piles: Assume HP 16x141 4500K/45 K allow capacity = 100 piles ASDOK/200K = 23 piles reg'd-Cannot get piles spaced (555pg) closely inough to fit. Assume drive to bedrock

Project: New Menden lands Date:9/1/1 Computed: WD_ FX Date: Checked: Subject: Fore bay of: 5 Page: Task: No: Job #: Forchay Pikes (contid) 23 piles min regid - will be spaced for far out and induce larger manents in base slab. Increase to 40 piles total ~ 8 x5 pattern - see sketch. Stilling Basin - siniler size - use same pile lagent For bay: 40 x 75'= 3,000 Lin FT Stilling Besin: 3000 Lea H lopod in FT (80 piles) & 8 piles / day = 10 days Increase to 15 days since contractor will need to Change sites @ Istilling basin. 212 @ 45 = Total HPILex141 = 13,780 FT 80 e 75' _ 6,000 FT 19,780 LINE FT ~ 45 days Installation



Subappendix C2: Structural Analysis

This Page has been Intentionally Left Blank.



# **Table of Contents**

1.0	Proje	ct Background	. C2-1
2.0	Alterr	native 1 Line of Protection Segments	. C2-2
2.1	Nor	thern Segment	. C2-2
2.2	Cer	ntral Segment	. C2-2
2.3	Sou	uthern Segment	. C2-3
2.4	Ber	ry's Creek	. C2-3
3.0	Struc	tural Measures	. C2-3
3.1	Cor	ncrete Floodwalls	. C2-3
3	.1.1	Shallow Foundation Concrete Floodwall (Central Segment)	. C2-3
3	.1.2	3.1.2 Deep Foundation Concrete Floodwall (Central Segment)	. C2-3
3.2	She	eet Pile Walls	. C2-3
3	.2.1	Single Sheet Pile Wall (Northern, Central, Southern Segments, and Berry's Creek)	. C2-3
3	.2.2	Double Sheet Pile Wall (Central and Southern Segments)	. C2-4
3	.2.3	Grading with Sheet Pile at Fluvial Park (Central Segment)	. C2-4
3.3	Wa	lkway	. C2-4
3	.3.1	Cantilever Sheet Pile Walkway (Northern Segment)	. C2-4
3	.3.2	Cantilever Walkway (Central Segment)	. C2-4
3	.3.3	Fluvial Park Elevated Walkway (Central Segment)	. C2-5
3.4	Cro	oss Section Summary	. C2-5
4.0	Appli	cable Codes, Standards, and Guidelines	C2-10
5.0	Geote	echnical Design Criteria	C2-10
6.0	Desig	ın Loading	C2-10
6.1	Dea	ad Loads (D)	C2-10
6.2	Live	e Loads ( <i>L</i> )	C2-11
6.3	Flui	ids (F) & Flood (F _a ) Loads	C2-11
6.4	Soil	l Loads ( <i>H</i> )	C2-11
6.5	Des	sign Loading Combinations	C2-11
7.0	Mater	ial Specifications	C2-12
7.1	Stru	uctural Concrete	C2-12
7.2	Rei	nforcing Steel	C2-12
7.3	Ste	el	C2-12
8.0	Struct	tural Analysis	C2-13

# List of Figures

Figure C2-	1: Rebuild by	Design M	leadowlands-Alternative 1 Key Plan	C2-1
i igaio or	n noodina by	Deelginit		

# List of Tables

Table C2-1: Alternative 1 Line of Protection Segments and Stations along the Hackensack Rive	ər C2-2
Table C2-2: Section Summary	C2-6
Table C2-3: Materials and Self-weights	C2-11
Table C2-4: Design Load Combinations (New Jersey Building Code [2015] Section 1605)	C2-12
Table C2-5: Inland Flood Wall Stability Criteria Load Case I2: Water to Top of Wall	C2-13

.

# Acronyms and Abbreviations

ACI	American Concrete Institute
ASCE	American Society of Civil Engineers
EM	Engineer Manual
ETL	Engineer Technical Letter
FEMA	Federal Emergency Management Agency
ft	Feet
ICC	International Code Council
in	Inches
kip-in	Kilopound-inches
lf	Linear feet
LOP	Line of protection
LRFD	Load and Resistance Factor Design
NAVD88	North American Vertical Datum of 1988
pcf	Per cubic foot
plf	Per linear foot
psf	Per square foot
USACE	United States Army Corps of Engineers
USS	United States Steel



# 1.0 Project Background

The Rebuild by Design Meadowlands Flood Protection Project (the Proposed Project) would provide a solution that will reduce flooding risk and enhance resiliency in the Meadowlands area near the Boroughs of Little Ferry, Teterboro, Moonachie, Carlstadt, and the Township of South Hackensack, Bergen County, New Jersey. The Alternative 1 line of protection (LOP) is located along the west bank of the Hackensack River and Berry's Creek, would protect the inland areas from flooding. The proposed design concept would simultaneously improve access to the waterfront and provide flood protection when needed, by using a combination of floodwalls, sheet pile walls, deployable flood barriers, walkways, and tie-ins to the existing flood plain boundary. This subappendix presents the relevant information used to design the structures of the Proposed Project.

Based on the location with respect to the Hackensack River, the Alternative 1 LOP is divided into four reaches: the Northern Segment, Central Segment, Southern Segment, and Berry's Creek (**Figure C2-1**). Also, based on the subsurface conditions and the bedrock elevations obtained from the existing borings, the Project Area is categorized into seven Soil Areas from Area 1 to 7 (**Figure C1-1** in **Subappendix C1**). The structural engineering portion of the Proposed Project is to design structural components, such as floodwalls (T-walls), sheet pile walls (single sheet pile walls and double sheet pile walls), and walkways to withstand flood and wave loads in a design event, as well as other structures including drainage structures, boardwalks, and miscellaneous site improvements.





# 2.0 Alternative 1 Line of Protection Segments

The Alternative 1 LOP proposed alignment is divided into four segments: three segments along the Hackensack River and one segment near Berry's Creek. The three segments along the Hackensack River are the Northern Segment, Central Segment, and Southern Segment, going from upstream to downstream of the Hackensack River.

**Table C2-1** shows the segments of the Alternative 1 LOP along the Hackensack River, the stations of the segments, and their corresponding flood-protection strategies and soil areas. For the stationing of the segments, a drawing set from CH-101 to CH-124 is referred and can be found in **Appendix F**. The high ground represents the locations where the elevation is greater than +7 feet North American Vertical Datum of 1988 (NAVD 88) and the flood-protection strategy is determined to be not necessary.

Segment	Station	Strategies	Soil Areas
	0+00 to 38+77	Cantilever Sheet Pile Walkway	Soil Area 2
Northern Segment	38+77 to 44+36	Single Sheet Pile Wall	Soil Area 3
	44+36 to 56+50	High Ground	Soil Area 3
	56+50 to 66+00	Grading with Sheet Pile	Soil Area 3 (Fluvial Park)
	66+00 to 67+00	High Ground	Soil Area 3 (Fluvial Park)
Central Segment	67+00 to 85+40	Cantilever Walkway	Soil Area 3
	85+40 to 125+40	Concrete Floodwall	Soil Area 3
	125+40 to 140+52	High Ground	Soil Areas 3 and 4
	140+52 to 225+00	Single/Double Sheet Pile Wall	Soil Areas 4 and 5
Southern Segment	225+00 to 266+90	Single/Double Sheet Pile Wall	Soil Area 5

Table C2-1: Alternative	1 Line of Protection	Segments and Stations along	the Hackensack River
-------------------------	----------------------	-----------------------------	----------------------

# 2.1 Northern Segment

The Northern Segment is from station 00+00 to station 56+50. It includes the upstream Hackensack River area and stretches down to the proposed Fluvial Park underneath US Route 46, which is a starting point of the next segment, the Central Segment. The Northern Segment falls in Soil Areas 2 and 3. For the Northern Segment, cantilever sheet pile walkway and single sheet pile wall were proposed.

#### 2.2 Central Segment

The Central Segment stretches from station 56+50 to station 225+00. The Central Segment starts from the proposed Fluvial Park, which covers stations 56+50 to 67+05, extends along the west bank of the Hackensack River, and ends near Williams/Transco Gas Pipeline Road. The proposed Fluvial Park would be located at the waterfront of the Hackensack River and underneath US Route 46.

The Central Segment is located in Soil Areas 3, 4, and 5. Fluvial Park, an elevated walkway, grading with sheet pile, concrete floodwall, cantilever walkway, and single and double sheet pile wall were proposed for the Central Segment.

# DEPARTMENT OF ENVIRONMENTAL PROTECTION

### 2.3 Southern Segment

The Southern Segment starts from station 225+00 and ends at station 266+90. The Southern Segment stretches along Commerce Boulevard, protecting the inland buildings. Two viewing platforms were proposed to be located at station points 246+00-247+00 and 255+00-256+00. Soil Area 5 belongs to the Southern Segment. Single and double sheet pile wall were proposed for the Southern Segment.

# 2.4 Berry's Creek

Berry's Creek Line of Protection involves Soil Areas 6 and 7. Single sheet pile wall, storm surge barrier, and closure gate were proposed for this segment.

# 3.0 Structural Measures

Structural measures were proposed to protect the Project Area from storm surge and flooding. The proposed measures include concrete floodwalls (T-walls), sheet pile walls, and walkways. The flood-protection strategy was designed to elevation +8 feet (NAVD88), which includes 1 foot of freeboard.

### 3.1 Concrete Floodwalls

T-shaped concrete floodwalls were proposed at various design heights throughout the Project Area. They are divided into a shallow foundation concrete floodwall and a deep foundation concrete floodwall, depending on their foundation forms.

# 3.1.1 Shallow Foundation Concrete Floodwall (Central Segment)

T-walls on shallow foundations were considered for all flood heights for Soil Areas 1 to 3 (the soil areas without organic soil layer). Prior to the construction of the T-walls on shallow foundations, the top soil would need to be inspected down to 6 feet depth by excavating trenches. If the existing soil material is not suitable for construction, it would be replaced by proper structural fill.

The shallow foundation concrete floodwall consists of a continuous concrete footing. The bottom of the footing was designed to be below the frost line depth, 3 feet (2015 New Jersey International Residential Code). The shallow foundation concrete floodwall was proposed for the Central Segment from station 85+40 to station 125+40.

# 3.1.2 3.1.2 Deep Foundation Concrete Floodwall (Central Segment)

T-walls with sheet piles and deep foundations were considered for the protected part of the cantilever walkway near the existing pump station at the Central Segment, which would be located between stations 75+00 and 76+00. The deep foundation concrete floodwall was proposed from station 75+17 to station 75+90, where the cantilever walkway section at the pump station was proposed. The foundation would consist of a pile cap with vertical continuous sheet piles and two battered H-Piles (3V:1H) at every 12 feet.

#### 3.2 Sheet Pile Walls

Two types of sheet pile walls were evaluated for the Proposed Project; single sheet pile wall and double sheet pile wall. In the proposed Fluvial Park, the sheet pile wall was proposed to be embedded below grade to stabilize the grading.

#### 3.2.1 Single Sheet Pile Wall (Northern, Central, Southern Segments, and Berry's Creek)

A single sheet pile wall consists of driven sheet piles capped by a concrete wall. For greater resistance against the flood and wave load and aesthetic purpose, a 2-feet -thick concrete casing on both protected and flood sides of sheet pile was proposed. Single sheet pile walls were considered for the height above

grade from 2 feet to 5 feet. The single sheet pile wall was proposed in all segments of the Project Area, including Berry's Creek.

### 3.2.2 Double Sheet Pile Wall (Central and Southern Segments)

A double sheet pile wall structure consists of two sheet pile walls connected by walers and struts and the space between filled with sand. The waler was designed to be located at two-thirds the height of each sheet pile, and struts connect the walers at every 10 feet. Double sheet pile walls were considered for the height above grade from 5 feet to 8 feet.

Two sections of double sheep pile wall were proposed: 6 feet and 8 feet height. For the segment whose height above grade is greater than 5 feet and less than or equal to 6 feet, "6 feet double sheet pile wall" section was suggested to be used. For the height above grade greater than 6 feet and less than or equal to 8 feet, "8 feet double sheet pile wall" section was suggested. Both double sheet pile wall sections are 5 feet wide.

The double sheet pile wall section was also proposed for the 10'-wide cantilever walkway section in the Central Segment, which would be from station 67+00 to station 72+45. In this section, a concrete walkway was proposed to be installed on the light weight soil fill between the sheet piles.

### 3.2.3 Grading with Sheet Pile at Fluvial Park (Central Segment)

Fluvial Park, part of the Central Segment, is a park proposed from station 56+50 to station 67+05, which stretches underneath US Route 46. In the proposed Fluvial Park, the boardwalk was designed to be located near the Hackensack River, where the public would have access to a better waterfront view. Underneath and inland from the boardwalk, a planting zone was proposed. More inland from the planting zone would be the grading area with sheet piles embedded for the purpose of stable soil ground.

Sheet pile wall was proposed to be embedded 5 feet inland the boundary of riparian planting zone. The purpose of the embedded sheet pile wall would be to stabilize the inland area and to cut-off seepage. The crest elevation of the grade would be no lower than +8 feet (NAVD 88). The grading with sheet pile was proposed from station 56+50 to station 66+00.

#### 3.3 Walkway

Several walkway sections were proposed as both flood protection strategies and boardwalks. The walkway sections were proposed for the Northern Segment and Central Segment.

# 3.3.1 Cantilever Sheet Pile Walkway (Northern Segment)

The 16-feet wide cantilever sheet pile walkway would consist of driven sheet pile and backfill behind the sheet pile. On top of the backfill, a concrete cap would be placed for a pedestrian and vehicle passage. Planting zone would be implemented on the protected side of the concrete cap for public realm purpose. Concrete eco panels would be mechanically attached to the front of sheet pile. The cantilever sheet pile walkway was proposed for the Northern Segment from station 00+00 to 38+77.

Two sections of cantilever sheet pile walkway were developed: with and without the lateral support system. The section without the lateral support system was proposed for the soil profile where the bedrock layer is found to be lower than -27 feet (NAVD 88), while the section with the system was proposed for the profile where bedrock is encountered above -27 feet (NAVD 88). Once the actual soil profile is investigated, either section could be used in the next level of development.

# 3.3.2 Cantilever Walkway (Central Segment)

The cantilever walkway sections were developed to serve as both flood-protection structures and boardwalks near the Hackensack River in the Central Segment. The cantilever walkway sections stretch

from station 67+00 to station 85+40. Four different walkway sections were designed based on their widths and locations.

Two 25-feet wide walkway options were designed. Both options would use a single sheet pile wall as the means of flood protection on the flood side, but one option would utilize a vertical concrete wall, while the other would implement a 1V:2H slope of soil fill on the protected side. The option with the vertical concrete wall is 8 feet maximum height, while the option with the sloped soil fill has the maximum height of 6 feet. Either detail could be applicable and is to be determined in the next level of development.

The 25-feet wide walkway sections were also proposed for the transitional station from 10-feet wide walkway to 25-feet wide walkway, by varying the width of the walkway. The section was proposed for segment from station 75+90 to 85+40 as the 25-feet wide walkway and from station 72+45 to 75+17 as the transitional walkway.

A separate, proposed 25-feet wide walkway section was developed to accommodate the existing pump station, which is located between stations 75+00 and 76+00. While the other 25-feet wide walkway sections would include light weight soil fill below the concrete walkway, the walkway section near the pump station would not include the fill. Instead, it would implement a concrete column at every 24 feet on the flood side to allow the discharge from the existing pipe lines. Breaking wave loads were considered in the design of the concrete column. On the protected side there would be a deep foundation concrete floodwall as a flood protection strategy. This section was proposed from station 75+17 to station 75+90.

For the narrow segment where 25-feet wide walkway is not available, a 10-feet wide walkway section was considered using a double sheet pile wall. The 10-feet wide walkway section could be realized by installing a concrete walkway on the light weight soil fill between the sheet pile walls. Each sheet pile would be cased with concrete by 6 inches on its exposed surfaces. The maximum height of the 10-feet wide walkway would be 8 feet and 6 inches. This section was proposed from station 67+00 to 72+45.

# 3.3.3 Fluvial Park Elevated Walkway (Central Segment)

An elevated walkway section was developed to serve as a boardwalk in the proposed Fluvial Park. The 25-feet wide walkway section has the concept of a pier bridge, where two columns would support the walkway at every 24 feet. Since the elevated walkway section would only serve as a boardwalk, it is not considered part of the flood protection strategy and does not follow the station line. The elevated walkway was designed to be a concrete frame system with wood slat decking as a floor system.

#### 3.4 Cross Section Summary

**Table C2-2** shows the structural cross sections and their features. Details are provided in Alternative 1 Plan Sheets S-401 to S-409 in **Appendix F**. The crest elevation of all sections is set to +8 feet (NAVD 88), which includes 1 foot of freeboard.



# Table C2-2: Section Summary

Туре	Segment	Length	Typical Section View	Features	Summary of Analysis
Concrete Floodwall (Shallow Foundation)	Central Segment	2,500 lf.		The shallow foundation concrete floodwall is designed from 1 ft. to 10 ft. height for Soil Areas 1, 2, and 3. Total 9 sections are developed with an increment of 1 ft.	Targeted sliding safety factor = 1.33 Actual smallest sliding safety factor = 1.40 Targeted base area in compression = 75% Actual smallest base area in compression = 100% Targeted bearing capacity safety factor = 2 Actual smallest bearing capacity safety factor = 2.01
Concrete Floodwall (Deep Foundation)	Central Segment	90 lf. (solely used for cantilever walkway at pumping station)		The deep foundation concrete floodwall incorporates two battered H- Piles (3V:1H) and continuous sheet pile wall at the center of the footing. The section is implemented as the protected part of cantilever walkway section near the existing pump stations at Central Segment.	Compression capacity of H-Pile 14x73 is 15 ton. The maximum deflection of H-Pile 14x73 is 0.31 in.
Single Sheet Pile Wall	Northern Segment, Central Segment, Southern Segment, Berry's Creek	10,900 lf. (including 400 lf. for Berry's Creek)		The single sheet pile wall consists of driven sheet pile capped by a concrete wall. The section is considered for the height above grade from 2 ft. to 5 ft.	2 ft. wall: AZ12 Maximum deflection = 0.04 in. Maximum bending moment = 34 kip-in. Allowable moment = 1,934 kip-in. 5 ft. wall: AZ12 Maximum deflection = 0.25 in. Maximum bending moment = 264 kip-in. Allowable moment = 1,934 kip-in.



# Table C2-2: Section Summary (Continued)

Туре	Segment	Length	Typical Section View	Features	Summary of Analysis
Double Sheet Pile Wall	Central Segment, Southern Segment	2,000 lf.	Bitmanetifications	The double sheet pile wall consists of two sheet piles connected by struts and the space between the sheet piles filled with sand. Two sections of double sheet pile wall are developed: 6 ft. and 8 ft. height.	6 ft. wall: AZ19 Maximum deflection = 0.40 in. Maximum bending moment = 345 kip- in. Allowable moment = 3,996 kip-in. 8 ft. wall: AZ26 Maximum deflection = 0.77 in. Maximum bending moment = 648 kip- in. Allowable moment = 5,558 kip-in.
Cantilever Sheet Pile Walkway Bedrock -27 ft. (NAVD88) or Lower	Northern Segment	3,900 lf.		The cantilever sheet pile walkway consists of driven sheet pile and backfill behind the sheet pile. On the top of backfill, concrete cap will be placed for pedestrians and vehicles passage. Planting zone will be implemented on the protected side of the concrete cap. Concrete eco panel will be mechanically attached to the front of sheet pile. Drainage pipe will be located inside the backfill.	15 ft. wall: AZ25 (with 2 ft. thick grout) Maximum deflection = 0.79 in. Maximum bending moment = 3,320 kip-in. Allowable moment = 4,028 kip-in.



DEPARTMENT OF ENVIRONMENTAL PROTECTION

Cantilever Sheet Pile Walkway Bedrock Higher than -27 ft. (NAVD88)				When the bedrock elevation is higher than - 27 ft. (NAVD88), a lateral support system is considered for the cantilever sheet pile walkway. The lateral support system consists of battered rock anchor and concrete deadman. Drainage pipe will be located inside the backfill.	15 ft. wall: AZ25 Maximum deflection = 0.77 in. Maximum bending moment = 648 kip- in. Allowable moment = 4,028 kip-in.
--------------------------------------------------------------------------------	--	--	--	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------

### Table C2-2: Section Summary (Continued)

Туре	Segment	Length	Typical Section View	Features	Summary of Analysis
Cantilever Walkway 25 ft. Width Option 1	Central Segment	1,250 lf.		Both 25'-wide cantilever walkway options use single sheet pile wall section as means of flood-protection. Option 1 utilizes vertical concrete wall on the protected side. The maximum height of the section is 8 ft. Drainage pipe will be located inside the light weight soil fill.	8 ft. wall: AZ12 Maximum deflection = 1.1 in. Maximum bending moment = 900 kip-in. Allowable moment = 1,934 kip-in. Retaining Wall on the protected side Targeted sliding safety factor = 1.5 Actual sliding safety factor = 2.51 Targeted overturning safety factor = 1.5 Actual overturning safety factor = 3.49



Cantilever Walkway 25 ft. Width Option 2			The 25'-wide cantilever walkway option 2 implements a 1V:2H slope of light weight soil fill on the protected side. The maximum height of the sections is 6 ft. Drainage pipe will be located inside the light weight soil fill.	6 ft. wall: AZ12 Maximum deflection = 0.41 in. Maximum bending moment = 400 kip-in. Allowable moment = 1,934 kip-in.
Cantilever Walkway 25 ft. Width Pump Station	Central Segment	90 lf.	The 25'-wide cantilever walkway near the existing pump station utilizes the deep foundation concrete floodwall as a flood- protection strategy on the protected side. Concrete column is implemented at every 24 ft. on the flood side to accommodate the discharge of the existing pipeline from the pump station. Drainage channel will be located between the existing pump station and the walkway section.	Slab efficiency = 95.44% Wall efficiency = 2.13% (bearing strength), 3.48% (axial compression) Column efficiency = 14.04% (breaking wave loads considered)



# Table C2-2: Section Summary (Continued)

Туре	Segment	Length	Typical Section View	Features	Summary of Analysis
Cantilever Walkway 10 ft. Width	Central Segment	540 lf.		For the narrow segment where 25'- wide walkway is not available, 10'-wide walkway section is considered, using double sheet pile wall. The maximum height of the section is 8 ft6 in. Drainage pipe will be located inside the light weight soil fill between sheet piles.	6 ft. wall: AZ19 Maximum deflection = 0.40 in. Maximum bending moment = 345 kip- in. Allowable moment = 3,996 kip-in. 8 ft. wall: AZ26 Maximum deflection = 0.77 in. Maximum bending moment = 648 kip- in. Allowable moment = 5,558 kip-in.
Fluvial Park- Elevated Walkway	Central Segment (Fluvial Park)	1,250 lf.		The 25'-wide walkway section at Fluvial Park has the concept of pier bridge, where two columns support the walkway at every 24 ft. Since the elevated walkway section only serves as a boardwalk, it is not a part of flood protection strategies. Wood slat decking system is used for the floor system of the walkway section.	Center beams efficiency = 61.82% Side beams efficiency = 58.02% (moment), 92.79% (torsion) Girder efficiency = 43.11% Column efficiency = 4.83%

	DEPARTMENT	OF ENVIRONMENTAL PROTECTION	
--	------------	-----------------------------	--

Fluvial Park- Grading with Sheet Pile	Central Segment (Fluvial Park)	950 lf.		The grading with sheet pile at Fluvial Park includes a sheet pile wall embedded below grade 5 ft. inland of riparian planting zone. The embedded sheet pile wall will stabilize the existing grade and cut-off seepage.	
---------------------------------------------	-----------------------------------	---------	--	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

If = linear feet

ft = feet

in = inches

kip-in = kilopound-inches

# 4.0 Applicable Codes, Standards, and Guidelines

All structural design and construction shall be in accordance with the following codes:

- International Code Council (ICC), International Building Code New Jersey Edition: 2015 (New Jersey Building Code)
- ICC, International Residential Code New Jersey Edition: 2015 (New Jersey Residential Code)
- American Concrete Institute (ACI) 318-14, Building Code Requirements for Structural Concrete and Commentary
- American Society of Civil Engineers (ASCE) 7-10, Minimum Design Loads for Buildings and Other Structures
- United States Army Corps of Engineers (USACE) Engineer Manual (EM) 1110-2-2502, Retaining & Floodwalls
- USACE EM 1110-2-2504, Design of Sheet Pile Walls
- USACE EM 1110-2-2906, Design of Pile Foundations
- USACE Engineer Technical Letter (ETL) 1110-2-575, Evaluation of I-Walls
- Federal Emergency Management Agency (FEMA), P-55, Coastal Construction Manual: Principles and Practices of Planning, Siting, Designing, Constructing, and Maintaining Residential Buildings in Coastal Areas
- FEMA, P-259, Engineering Principles and Practices of Retrofitting Floodprone Residential Structures
- United States Steel (USS), Steel Sheet Piling Design Manual, 1984

# 5.0 Geotechnical Design Criteria

The Project Area was divided into seven soil areas based on the subsurface conditions and the bedrock elevations (**Figure C1-1** in **Subappendix C1**). Based on the existing borings, no organic soil layer was identified in Soil Areas 1 to 3, while an organic clay or peat layer was found in Soil Areas 4 to 7. Information on the soil profiles of Soil Areas 1 to 7 can be found in **Figure C1-2** to **Figure C1-9** and **Table C1-1** to **Table C1-7** in **Subappendix C1**.

# 6.0 Design Loading

Since the failure of the flood protection strategy could lead a substantial risk to human life, the risk category of the sections was determined to be Category IV. The structural sections were designed based on the minimum design load, referred to ASCE 7-10.

#### 6.1 Dead Loads (*D*)

Dead Loads include the self-weight of building materials and permanent loads on all structures. **Table C2-3** shows a list of common building materials and their self-weight.



#### Table C2-3: Materials and Self-weights

Material	Weight
Concrete, Normal Weight	150 pcf
Soil Fill	120 pcf
Light Weight Soil Fill	60 pcf
Structural Compacted Fill	130 pcf
Walkway Railing	10 plf
Wood Slat Deck	10 psf
Wood Slat Deck Finishing	5 psf
pcf = per cubic foot	

psf = per square foot

Mechanical and electrical equipment Dead Load are based upon the manufacturer's technical specification sheets, when available.

### 6.2 Live Loads (*L*)

- Walkway and Elevated Platforms: 60 psf (ASCE 7-10 Table 4-1)
- Sidewalks, Vehicular Driveways, and Yards subject to Trucking: 250 psf (ASCE 7-10 Table 4-1)
- Handrails and Guardrails: 200 lb. of concentrated load and 50 per linear foot (plf) of uniformly distributed load (ASCE 7-10 4.5.1)
- Vehicle Barrier Systems: 6,000 lb. of concentrated load (ASCE 7-10 4.5.3)

#### 6.3 Fluids (F) & Flood ( $F_a$ ) Loads

- Hydrostatic Loads
  - o Include lateral water pressures and uplift pressures under the concrete floodwall (T-wall)
  - $\circ$  Unit weight of water,  $\gamma_w$  = 62.4 pcf for fresh water or 64.0 pcf for salt water
- Wave Loads
  - Result from water waves propagating over the water surface and striking a building or other structure
  - o Coefficient of drag for breaking waves, C_D = 2.25 for square piles or columns
  - Design still water depth, d_s, will be given by the coastal modelling report (retrieved from Flood Insurance Study by FEMA for feasibility report)

Note: Parameters are listed in ASCE 7-10 Chapter 5: "Flood Loads"

#### 6.4 Soil Loads (H)

In the design of structures below grade, the lateral pressure of adjacent soil shall be considered. Using Rankine's theory, active and passive coefficient of earth pressure was estimated with a given internal friction angle of soil.

#### 6.5 Design Loading Combinations

The loads designed for in the Proposed Project follow Load and Resistance Factor Design (LRFD) Load Combinations from ASCE 7-10 and Flood Load Combinations from Chapter 16 of the New Jersey Building code, 2015. **Table C2-4** shows design load combinations in LRFD.



The sliding and overturning stability and bearing capacity of concrete floodwall (T-wall) was checked using service load combination, not LRFD combination. In the next phase of design, load combinations of USACE will be used for reinforced concrete design of the concrete floodwall (T-wall), by referring to EM 1110-2-2104.

LRFD Load Combinations with ASCE 7-10 2.3.3				
1	1.4(D + F)			
2	1.2(D + F) + 1.6(L + H)			
3	$1.2(D + F) + 1.6H + f_1L$			
4	$1.2(D + F) + f_1L + 1.6H + 1.0F_a$			
5	$1.2(D + F) + f_1L + 1.6H$			
6	0.9D + 1.6H + 1.0Fa			
7	0.9(D + F) + 1.6H			

### Table C2-4: Design Load Combinations (New Jersey Building Code [2015] Section 1605)

Where:

- D = dead load
- F = load due to fluids with well-defined pressures and maximum heights (hydrostatic and uplift pressure included in this category)
- Fa = flood load (breaking wave load included in this category)
- H = load due to lateral earth pressure, ground water pressure, or pressure of bulk materials (active, at-rest, and passive soil pressure included in this category)
- L = live load
- f1 = 1 for places of public assembly live loads in excess of 100 pounds per square foot, and parking garages; and 0.5 for other live loads

# 7.0 Material Specifications

# 7.1 Structural Concrete

- Normal Weight Concrete (150 pcf)
- Concrete Compressive Strength, f'c = 5,000 psi compressive strength at 28 days

#### 7.2 Reinforcing Steel

• #4 bars or higher, Grade 60 in accordance with ACI 318-14

#### 7.3 Steel

- Sheet Pile Sections: ASTM A572 Grade 50
- HP Sections: ASTM A572 Grade 50
- W Sections: ASTM A992
- C Sections: ASTM A36
- Steel Rods: ASTM A36
- Anchor Bolts: ASTM F1554 Grade 36 or 55


- Machine Bolts: ASTM A307, Grade A or B
- High Strengths Bolts: ASTM A325-N (Bearing Type)
- Heavy Hex Nuts: ASTM A563, Galvanized
- Plate Washers: ASTM A36, Galvanized
- Hardened Steel Washers: ASTM F436, Galvanized
- Filler Weld Metal: E70XX Structural Steel or E90XX Reinforcing Steel
- Electrodes: E70XX General Structural Steel Welding, E7018 Complete Penetration Structural Steel Welding, or E90XX – Reinforcing Steel Welding
- Galvanization: ASTM A123 or A153 and Repairs per ASTM A780
- Stainless Steel: ASTM A240 and A276, Type 316

# 8.0 Structural Analysis

Structural analysis consists of shallow foundation concrete floodwall design, cantilever sheet pile walkway design, cantilever walkway design and its relevant designs, and Fluvial Park elevated walkway design. Microsoft Excel Spreadsheet and hand-written calculation were used for calculating equations and SAP2000 was used for structural modeling, SAP2000.

For the shallow foundation concrete floodwall, nine sections were designed for wall heights from 2 feet to 10 feet with an increment of 1 foot. Each section has been checked for sliding and overturning stability and soil bearing capacity with service load combination. In accordance with USACE EM 1110-2-2502, the load case of I2 was considered, an Inland Flood Wall case of water to top of wall. **Table C2-5** shows stability criteria used in the design of the shallow foundation concrete floodwall.

Criteria	Minimum Required
Sliding Factor of Safety	1.33
Minimum Base Area in Compression in Soil Foundation (Overturning Criteria)	75%
Bearing Capacity Safety Factor	2.0

Table C2-5: Inland Flood Wall Stability Criteria Load Case I2: Water to Top of Wall

The cantilever walkway design consisted of the retaining wall design on the protected side of Cantilever Walkway 25' Width Option 1 and global stability check of Cantilever Walkway at Pumping Station. The sliding and overturning stability has been checked for the retaining wall on the protected side of the Cantilever Walkway Option 1. For the Cantilever Walkway at the Pumping Station, the concrete slab, the wall on the protected side, and the column on the flood side were designed. The breaking wave load was included in the design of the column on the flood side.

The concrete frame of the Fluvial Park Elevated Walkway consists of two central beams, two side beams, one girder connecting those four beams at every 24 feet, and two columns below every intersection of the girder and two central beams. Torsional capacity has been checked in the design of the side beams due to the presence of the walkway railing on them. Based on the loads from the concrete frame design, a spread footing has been designed with the assumption of 7 feet column length.

Below is a list of the structural analyses completed for the Feasibility Study:

- Concrete Floodwall (T-wall) Design 1' to 2'
- Concrete Floodwall (T-wall) Design 2' to 3'
- Concrete Floodwall (T-wall) Design 3' to 4'
- Concrete Floodwall (T-wall) Design 4' to 5'
- Concrete Floodwall (T-wall) Design 5' to 6'
- Concrete Floodwall (T-wall) Design 6' to 7'
- Concrete Floodwall (T-wall) Design 7' to 8'
- Concrete Floodwall (T-wall) Design 8' to 9'
- Concrete Floodwall (T-wall) Design 9' to 10'
- Concrete Retaining Wall Design for Cantilever Walkway Option 1
- Cantilever Walkway at Pumping Station
- Cantilever Walkway at Pumping Station Column on Breaking Wave Loads Check
- Fluvial Park Elevated Walkway Concrete Frame Design
- Fluvial Park Elevated Walkway Footing Design

SUB-APPENDICES

Appendix C2-A

Shallow Foundation Concrete Flood Wall Design for Soil Area 3

	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 1' to 2'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



H =	4.5 ft	
D _h =	2.5 ft	
D _t =	2.5 ft	
t _{fta} =	1 ft	
A _b =	1.25 ft	
С –	1.25 ft	
t _	1.25 It 1 ft	
u _{wall} –	25.6	
В =	3.5 11	
	150 6	
$\gamma_{conc} =$	150 pcf	unit weight of concrete (pcf)
$\gamma_w =$	62.4 pcf	specific weight of water (pcf)
$\gamma_{soil} =$	120 pcf	unit weight of the soil (pcf)
γ _{buoy} =	57.6 pcf	specific weight of submerged soil (pcf)
-		
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _n =	2.46	passive soil pressure coefficient
Ka =	0./1	active soil pressure coefficient
	0.41	coefficient of friction between the feeting and the soil
μ –	0.40	coefficient of miction between the rooting and the soli
Land Care	10	fram FN41110 0 0000 Table 4 0
Load Case	12	If om EIVETTTU-2-2502 Table 4-2
Sliding F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	

Gravity Forces acting downaward		
Wwall =	675.0 lb/lf	weight of the stem of wall
Wftg =	525.0 lb/lf	weight of the footing of wall
Wst = Wsb =	180.0 lb/lf	weight of the soil above beel
Wwh =	351.0 lb/lf	weight of the water above heel
WG =	2106.0 lb/lf	total gravity forces acting downward
Uplift Forces acting upward	218.4 lb/lf	total unlift forces acting unward
WG -	210.110/11	
Sliding Forces		
ta _w =	943.80 lb/lf	lateral hydrostatic force due to standing water from riverside
la _{buoy} = f	143.19 ID/II 1086.00 lb/lf	active saturated soll force over neel
- 15	1000.7710/11	
Resisting Forces		
fp _{buoy} =	869.27 lb/lf	passive saturated soil force over toe
tp _w =	382.20 lb/lf	lateral hydrostatic force from landside
ftr = fp =	842.40 lb/lf 2093.87 lb/lf	friction force between the footing and the soil total resisting forces
٠ĸ	2070107 1271	
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	1.75 ft	
u _{Wftg} =	1.75 IL 0.625 ft	
d _{Wst} –	2 875 ft	
d _{Wsh} =	2.875 ft	
d _{fpbuoy} = d _{fpw} =	1.2 ft	
Moment Arms of Overturing Moment		
d _{faw} =	1.833 ft	
d _{fabuoy} =	1.167 ft	
d _{WU} =	1.944 ft	
Stabilizing Moment about Toe		
M _{ST} =	5321.05 lb-ft/ft	
Overturning Moment about Toe	0000.00 11 01/0	
M _{OT} =	2322.02 lb-ft/ft	
Resultant		
$\Sigma V =$	1887.60 lb/ft	↓ +
ΣΗ =	1006.88 lb/ft	<b>↓</b> ← +
ΣM =	2999.03 lb-ft/ft	+5
X _R =	1.59 ft	
Resultant Ratio =	0.45	
Sliding Stability Check		
FS(SL) =	1.93	Acceptable
Our stand in a Chald lith of the sta		
Overturning Stability Check	100 %	
base Area in compression -	100 %	
Bearing Capacity Check (from EM 1	110-2-2502, Depa	artment of the Army, U. S. Army Corps of Engineers
N' =	1887.6 lb	
=	0.00 °	
α = e =	0.00 0.16 ft	
$\overline{B} =$	3.18 ft	
δ =	28.08°	(Figure 5-1)
γ [,] =	57.6 pcf	
D =	3.5 ft	
= op	201.6 psf	[5-8a]
β =	0 °	
Nq =	10.662 [5-3a]	ξqt = 1 [5-6a]
Nc =	20.721 [5-3b]	ξγt = 1 [5-6a]
Νγ =	6.766 [5-3d]	ξct = 1 [5-6c]
ξcd =	1.346 [5-4a]	ξγg = 1 [5-7a]
ξqd = s.d -	1.1/3 [5-4C] 1.173 [5.4c]	ξ(g = Ϊ [5-/a] εca = 1 [5-7d]
ςγu = εαi =	0.473 [5-5a]	ςcg - τι [5-τα]
541 - Eci =	0.473 [5-5a]	
ξγi =	0.000 [5-5b]	
0 -	3702 /8 lb	[5,2]
U = FS =	2.01 [5-1]	Acceptable

<b>ATCOM</b> SUB	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 2' to 3'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



H =	5.5 ft	
D _h =	2.5 ft	
D _t =	2.5 ft	
t _{fta} =	1 ft	
A _b =	2 ft	
C =	2 ft	
t _{wall} =	1 ft	
B =	5 ft	
V _{conc} =	150 pcf	unit weight of concrete (pcf)
$v_{w} =$	62.4 pcf	specific weight of water (pcf)
$\gamma_{soil} =$	120 pcf	unit weight of the soil (pcf)
V _{buov} =	57.6 pcf	specific weight of submerged soil (pcf)
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _p =	2.46	passive soil pressure coefficient
Ka =	0.41	active soil pressure coefficient
μ =	0.40	coefficient of friction between the footing and the soil
r.,		
Load Case	12	from EM 1110-2-2502 Table 4-2
Sliding F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	
bouring not	-	

Gravity Forces acting downaward			
Wwall =	825.0 lb/lf	weight of the stem of wall	
Wftg =	750.0 lb/lf	weight of the footing of wall	
Wst =	600.0 lb/lf	weight of the soil above toe	
VVSN =	288.0 ID/IT	weight of the water of the line has	
vvvn =	080.4 ID/II	total gravity forece enting downword	
WG =	3149.4 ID/II	total gravity forces acting downward	
Unlift Forces acting unward			
WU =	468.0 lb/lf	total uplift forces acting upward	
WG -	100.0 15/11	total apint forces acting apward	
Sliding Forces			
fa _w =	1318.20 lb/lf	lateral hydrostatic force due to standing water from rive	rside
fa _{buoy} =	143.19 lb/lf	active saturated soil force over heel	
f _s =	1461.39 lb/lf	total sliding forces	
Resisting Forces			
fp _{buoy} =	869.27 lb/lf	passive saturated soil force over toe	
fp _w =	382.20 lb/lf	lateral hydrostatic force from landside	
ffr =	1259.76 lb/lf	friction force between the footing and the soil	
f _R =	2511.23 lb/lf	total resisting forces	
Moment Arms from Toe			
Moment Arms of Stabilizing Moment			
d _{Wwall} =	2.5 ft		
d _{Wftg} =	2.5 ft		
d _{wst} =	1 ft		
d _{Wsh} =	4 ft		
a d	4 TT 1 2 ft		
U _{fpbuoy} = U _{fpw} =	1.2 II		
Noment Arms of Overturing Moment	2 147 ft		
d _{faw} =	2.107 ft		
d _{tabuoy} =	2.847 ft		
5W0	2.017 11		
Stabilizing Moment about Toe			
Mer =	9895 15 lb-ft/ft		
Overturning Moment about Toe			
Mor =	4355.65 lb-ft/ft		
10101 -	4353.03 10-10/10		
Resultant			
<u>5// –</u>	2681 /0 lb/ft	.l. +	
ΣV – ΣH =	1049 84 lb/ft		
$\Sigma M =$	5539 50 lb-ft/ft		
X _P =	2.07 ft	+	
Resultant Ratio =	0.41		
Sliding Stability Check			
FS(SL) =	1.72	Acceptable	
Overturning Stability Check			
Base Area in Compression =	100 %	Acceptable	
Bearing Capacity Check (from EM 1	110-2-2502, Depa	artment of the Army, U. S. Army Corps of Engi	neers)
N' =	2681.4 lb		
Τ =	1049.8 lb		
α =	0.00 °		
e =	0.43 ft		
<i>B</i> =	4.13 ft		
δ =	21.38 -	(rigule 5-1)	
γ' = D =	57.6 pci 3.5.ft		
D - 00 -	201.6 nsf	[5-8a]	
чо – ß =	201.0 psi 0 °	[5-08]	
– H	0		
Na =	10.662 [5-3a]	ξqt = 1 [5-6a]	
Nc =	20.721 [5-3b]	ξγt = 1 [5-6a]	
Νγ =	6.766 [5-3d]	ξct = 1 [5-6c]	
ξcd =	1.266 [5-4a]	ξγg = 1 [5-7a]	
ξqd =	1.133 [5-4c]	ξqg = 1 [5-7a]	
ξγd =	1.133 [5-4c]	ξcg = 1 [5-7d]	
ξqi =	0.581 [5-5a]		
ξci =	0.581 [5-5a]		
ξγι =	0.021 [5-50]		
0 -	5928.00 lb	[5-2]	
0 = FS =	2.21 [5-1]	Acceptable	
	1 LT 11		

	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 3' to 4'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18





Gravity Forces acting downaward		
Wwall =	900.0 lb/lf	weight of the stem of wall
Wftg =	1350.0 lb/lf	weight of the footing of wall
Wst = Wsb =	288.0 lb/lf	weight of the soil above heel
Wwh =	936.0 lb/lf	weight of the water above heel
WG =	4074.0 lb/lf	total gravity forces acting downward
Uplift Forces acting upward	740.0 15 /16	
VVU =	/48.8 ID/IT	total uplift forces acting upward
Sliding Forces		
fa _w =	1755.00 lb/lf	lateral hydrostatic force due to standing water from riverside
fa _{buoy} =	143.19 lb/lf	active saturated soil force over heel
$f_{S} =$	1898.19 lb/lf	total sliding forces
Resisting Forces	0/0.07 # ///	
ip _{buoy} =	382.27 ID/II 382.20 Ib/If	passive saturated soll force over toe
ιρ _w – ffr =	1629.60 lb/lf	friction force between the footing and the soil
f _R =	2881.07 lb/lf	total resisting forces
		, , , , , , , , , , , , , , , , , , ,
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	3 ft	
d _{Wftg} =	3 ft	
d _{Wst} =	1.25 IL 4 75 ft	
d _{Wsh} =	4.75 ft	
$d_{fpbuoy} = d_{fpw} =$	1.2 ft	
Moment Arms of Overturing Moment		
d _{faw} =	2.500 ft	
d _{fabuoy} =	1.167 ft	
d _{WU} =	3.462 ft	
Stabilizing Momont about Too		
<u>Stabilizing Moment about 10e</u> Mer =	14774 05 lb-ft/ft	
14121 -	11771.00 10 1010	
Overturning Moment about Toe		
M _{OT} =	7146.55 lb-ft/ft	
Resultant		
$\Sigma V =$	3325.20 lb/ft	¥ +
2H = 5M -	982.88 ID/11 7627.50 lb ft/ft	$\leftarrow$
ZIVI – X _P =	2.29 ft	+
Resultant Ratio =	0.38	
Sliding Stability Check	1.50	
F 5(5L) =	1.52	
Overturning Stability Check		
Base Area in Compression =	100 %	
p		Acceptable
Bearing Capacity Check (from EM 1	110-2-2502, Depa	artment of the Army, U.S. Army Corps of Engineers)
N' =	3325.2 lb	
[ = -	982.9 lb	
α =	0.00 0.71 ft	
$\overline{B}$ =	4.59 ft	
δ =	16.47 °	(Figure 5-1)
γ =	57.6 pcf	
D =	3.5 ft	
= op	201.6 psf	[5-8a]
β =	0 -	
Na =	10.662 [5-3a]	£qt = 1 [5-6a]
Nc =	20.721 [5-3b]	ξγt = 1 [5-6a]
Ny =	6.766 [5-3d]	ξct = 1 [5-6c]
ξcd =	1.240 [5-4a]	ξγg = 1 [5-7a]
ξqd =	1.120 [5-4c]	$\xi qg = 1 [5-7a]$
ζγd = ζαί –	1.120 [5-40] 0.668 [5.53]	ςuy = τ [5-7α]
çqi = \$ci =	0.668 [5-5a]	
ςσ. – ξγi =	0.117 [5-5b]	
- -	-	
Q =	7906.07 lb	[5-2]
F3 =	2.30 [3-1]	Acceptable

	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 4' to 5'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18





Gravity Forces acting downaward		
Wwall =	1050.0 lb/lf	weight of the stem of wall
vvrtg = Wst =	480.0 lb/lf	weight of the soil above toe
Wst = Wsh =	518.4 lb/lf	weight of the soil above heel
Wwh =	1965.6 lb/lf	weight of the water above heel
WG =	5701.5 lb/lf	total gravity forces acting downward
Liplift Forces acting unward		
<u>Uplint Forces acting upwaru</u> WU =	1170.0 lb/lf	total uplift forces acting upward
Sliding Forces		
fa _w =	2254.20 lb/lf	lateral hydrostatic force due to standing water from riverside
ta _{buoy} =	143.19 lb/lf	active saturated soil force over heel
1 ² =	2397.39 10/11	total sharing forces
Resisting Forces		
fp _{buoy} =	869.27 lb/lf	passive saturated soil force over toe
fp _w =	382.20 lb/lf	lateral hydrostatic force from landside
ttr = f_=	2280.60 lb/lf 3532.07 lb/lf	friction force between the footing and the soil
ч <del>к</del> —	5552.07 15/11	total resisting forces
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	2.5 ft	
d _{Wftg} =	3.75 ft	
u _{Wst} =	5 25 ft	
d _{warb} =	5.25 ft	
$d_{fobuoy} = d_{fow} =$	1.2 ft	
Moment Arms of Overturing Moment		
d _{faw} =	2.833 ft	
d _{fabuoy} =	1.167 ft	
d _{WU} =	4.397 ft	
Stabilizing Moment about Toe		
M _{st} =	23934.17 lb-ft/ft	
Overturning Moment about Toe	11 ( 07 00 11 51 /6	
IVI _{OT} =	11697.92 ID-TT/TT	
Resultant		
$\Sigma V =$	4531.50 lb/ft	¥ +
ΣΗ =	1134.68 lb/ft	<b>←</b> +
ΣΜ =	12236.25 lb-ft/ft	+_5
X _R =	2.70 ft	
Resultant Ratio =	0.36	
Sliding Stability Check		
FS(SL) =	1.47	Acceptable
OVERTURNING STADILITY CHECK Base Area in Compression -	100 %	
	100 /0	
Bearing Capacity Check (from EM 1	110-2-2502, Depa	artment of the Army, U.S. Army Corps of Engineers)
N' =	4531.5 lb	
=	1134.7 lb	
α =	0.00 1.05.ft	
$\overline{B} =$	5.40 ft	
δ =	14.06 °	(Figure 5-1)
<b>γ</b> · =	57.6 pcf	
D =	3.5 ft	
= op	201.6 psf	[5-8a]
β =	0 °	
Nq =	10.662 [5-3a]	ξqt = 1 [5-6a]
NC =	20.721 [5-3b]	ξγt = 1 [5-6a]
Ny =	6.766 [5-3d]	$\xi ct = 1 [5-6c]$
ξcd =	1.203 [5-4a]	$\xi \gamma g = 1 [5-7a]$
ξqd = εvd -	1.102 [5-4C] 1.102 [5-4c]	ςųy = Ι [5-/a] εca = 1 [5-7d]
ςγu = εαi =	0,712 [5-5a]	ςcg - τ [5-τα]
εςι =	0.712 [5-5a]	
ξγi =	0.192 [5-5b]	
0 -	10305 // lb	[5-2]
0 = FS =	2.27 [5-1]	Acceptable

	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 5' to 6'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



<u> </u>		
H =	8 ft	
D _h =	2 ft	
D _t =	2 ft	
t _{fta} =	1.5 ft	
A _b =	5 ft	
C =	2.5 ft	
t _{wall} =	1.5 ft	
B =	9 ft	
V _{conc} =	150 pcf	unit weight of concrete (pcf)
$\gamma_{w} =$	62.4 pcf	specific weight of water (pcf)
v _{soil} =	120 pcf	unit weight of the soil (pcf)
V _{buov} =	57.6 pcf	specific weight of submerged soil (pcf)
1000		
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _n =	2.46	passive soil pressure coefficient
Ka =	0.41	active soil pressure coefficient
μ =	0.40	coefficient of friction between the footing and the soil
F.		
Load Case	12	from EM 1110-2-2502 Table 4-2
Slidina F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	
Doaring Hor	-	

Gravity Forces acting downaward		
Wwall =	1800.0 lb/lf	weight of the stem of wall
witg = Wst =	2025.0 ID/II 600.0 Ib/If	weight of the soil above toe
Wsh =	576.0 lb/lf	weight of the soil above heel
Wwh =	2496.0 lb/lf	weight of the water above heel
WG =	7497.0 lb/lf	total gravity forces acting downward
Liplift Forces acting unward		
WU =	1684.8 lb/lf	total uplift forces acting upward
Sliding Forces		
ta _w =	2815.80 lb/lf	lateral hydrostatic force due to standing water from riverside
fs =	2958.99 lb/lf	total sliding forces
Resisting Forces		
fp _{buoy} =	869.27 lb/lf	passive saturated soil force over toe
tp _w =	382.20 lb/lf	lateral hydrostatic force from landside
111 = fp =	4250.27 lb/lf	total resisting forces
ĸ		
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	3.25 ft	
d _{Wftg} =	4.5 IL 1 25 ft	
d _{Wst} =	6.5 ft	
d _{Wwb} =	6.5 ft	
$d_{fpbuoy} = d_{fpw} =$	1.2 ft	
Moment Arms of Overturing Moment		
d _{faw} =	3.167 ft	
d _{fabuoy} =	1.167 ft 5.244 ft	
dWD -	5.544 11	
Stabilizing Moment about Toe		
M _{ST} =	37140.55 lb-ft/ft	
Overturning Memort shout Tee		
<u>Overturning Woment about Toe</u>	18086 90 lb-ft/ft	
	10000.70 10 1011	
<u>Resultant</u>		
ΣV =	5812.20 lb/ft	<b>↓</b> +
ΣΗ =	1291.28 lb/ft	← <u>+</u>
ΣΜ =	19053.65 lb-ft/ft	<u>+</u> _+
X _R = Resultant Ratio =	3.28 IL 0.36	
Sliding Stability Check	1 44	
F3(3L) =	1.44	
Overturning Stability Check		
Base Area in Compression =	100 %	Acceptable
Boaring Canacity Chack (from EM 1	110 2 2502 Dong	artmont of the Army LLS Army Corps of Engineers)
	5812.2 IN	arment of the Army, 0. S. Army corps of Engineers)
T =	1291.3 lb	
α =	0.00 °	
e =	1.22 ft	
$\overline{B}$ =	6.56 ft	
δ =	12.53 °	(Figure 5-1)
γ· =	57.6 pcf	
D = 00 =	201.6 nsf	[5-8a]
φο = β =	0 °	
Nq =	10.662 [5-3a] 20.721 [5.3b]	ξqt = 1 [5-6a] εvt - 1 [5-6a]
INC = Nv -	6.766 [5-3d]	ςγι = Ι [0-0d] {ct = 1 [5-6c]
$\delta \varphi = $	1.168 [5-4a]	$\xi y q = 1 [5-7a]$
ξqd =	1.084 [5-4c]	ξqg = 1 [5-7a]
ξγd =	1.084 [5-4c]	ξcg = 1 [5-7d]
ξqi =	0.741 [5-5a]	
ξci = c.i _	0.741 [5-5a]	
ξγι =	0.247 [5-50]	
Q =	13578.28 lb	[5-2]
FS =	2.34 [5-1]	Acceptable

ATCOM	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 6' to 7'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



H =	9 ft	
D _h =	2 ft	
D _t =	2 ft	
t _{ftg} =	2 ft	
A _h =	6.5 ft	
C =	3 ft	
t _{wall} =	1.5 ft	
B =	11 ft	
$\gamma_{conc} =$	150 pcf	unit weight of concrete (pcf)
γ _w =	62.4 pcf	specific weight of water (pcf)
γ _{soil} =	120 pcf	unit weight of the soil (pcf)
γ _{buoy} =	57.6 pcf	specific weight of submerged soil (pcf)
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _p =	2.46	passive soil pressure coefficient
Ka =	0.41	active soil pressure coefficient
μ =	0.40	coefficient of friction between the footing and the soil
Load Case	12	from EM 1110-2-2502 Table 4-2
Sliding F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	

Gravity Forces acting downaward		
Wwall =	2025.0 lb/lf	weight of the stem of wall
Wftg =	3300.0 lb/lf	weight of the footing of wall
VVSt =	720.0 ID/IT	weight of the soil above toe
Wwb =	3650 4 lb/lf	weight of the water above heel
WG =	10444.2 lb/lf	total gravity forces acting downward
	1011112 10/11	
Uplift Forces acting upward		
WU =	2402.4 lb/lf	total uplift forces acting upward
Sliding Forces		
fa _w =	3775.20 lb/lf	lateral hydrostatic force due to standing water from riverside
fa _{buoy} =	187.02 lb/lf	active saturated soil force over heel
t _s =	3962.22 lb/lf	total sliding forces
Desisting Frances		
Resisting Forces	1125 27 lb/lf	passive saturated soil force over too
ip _{buoy} =	/100 20 lb/lf	lateral hydrostatic force from landside
ffr =	4177.68 lb/lf	friction force between the footing and the soil
f _P =	5812.25 lb/lf	total resisting forces
IX.		
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	3.75 ft	
d _{Wftg} =	5.5 ft	
d _{Wst} =	1.5 ft	
d _{Wsh} =	7.75 ft	
a _{Wwh} =	7.75 TT 1.2 ft	
Uppoint Arms of Overturing Memory	1.3 IL	
	3.667.ft	
d _{fabuov} =	1.333 ft	
d _{WU} =	6.561 ft	
Stabilizing Moment about Toe		
M _{ST} =	63096.98 lb-ft/ft	
Overturning Moment about Toe		
M _{OT} =	29854.88 lb-ft/ft	
<u>Resultant</u>		
$\Sigma V =$	8041.80 lb/ft	¥ +
$\Sigma H =$	1850.03 lb/ft	←+ ►
21VI = X ₂ =	23242.10 ID-11/11 2 13 ft	+
Resultant Ratio =	0.38	
Sliding Stability Check		
FS(SL) =	1.47	Acceptable
		· · ·
Overturning Stability Check		
Base Area in Compression =	100 %	Acceptable
Descript Consolt, Check (from EN 1	110 0 0F00 Dame	when out of the Armony LLC, Armony Corresponding sores)
Bearing Capacity Check (Irom Elvi T	110-2-2502, Depa	artment of the Army, U. S. Army Corps of Engineers)
N = T _	8041.8 ID 1850.0 lb	
= 0 -	0.00 °	
e =	1.37 ft	
$\overline{B}$ =	8.27 ft	
δ =	12.96 °	(Figure 5-1)
γ =	57.6 pcf	
D =	4 ft	
= Op	230.4 psf	[5-8a]
β =	0 -	
No -	10 662 [5-39]	tot = 1 [۲.62]
NC =	20.721 [5-3b]	$\xi y t = 1$ [5-6a]
Ny =	6.766 [5-3d]	ξct = 1 [5-6c]
ξcd =	1.152 [5-4a]	ξγg = 1 [5-7a]
ξqd =	1.076 [5-4c]	ξqg = 1 [5-7a]
ξγd =	1.076 [5-4c]	$\xi cg = 1 [5-7d]$
ξqi =	0.733 [5-5a]	
ξCI = 5.11 -	0.733 [5-58] 0.232 [5.56]	
ζγι =	0.232 [0-30]	
Q =	19339.14 lb	[5-2]
FS =	2.40 [5-1]	Acceptable

ATCOM	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 7' to 8'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



<u> </u>		
H =	10 ft	
D _h =	2 ft	
D _t =	2 ft	
t _{ftg} =	2 ft	
A _h =	7.5 ft	
C =	3.5 ft	
t _{wall} =	1.5 ft	
B =	12.5 ft	
$\gamma_{conc} =$	150 pcf	unit weight of concrete (pcf)
γ _w =	62.4 pcf	specific weight of water (pcf)
γ _{soil} =	120 pcf	unit weight of the soil (pcf)
γ _{buoy} =	57.6 pcf	specific weight of submerged soil (pcf)
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _n =	2.46	passive soil pressure coefficient
Ka =	0.41	active soil pressure coefficient
μ=	0.40	coefficient of friction between the footing and the soil
Load Case	12	from EM 1110-2-2502 Table 4-2
Slidina F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	
J. J. J.		

Gravity Forces acting downaward		
Wwall =	2250.0 lb/lf	weight of the stem of wall
Wftg =	3750.0 lb/lf	weight of the footing of wall
Wst = Wsh =	864.0 lb/lf	weight of the soil above heel
Wwh =	4680.0 lb/lf	weight of the water above heel
WG =	12384.0 lb/lf	total gravity forces acting downward
Unlift Foress esting unword		
Upint Forces acting upward WII =	3120.0 lb/lf	total uplift forces acting upward
W0 -	3120.0 15/11	total apint forces acting apinal a
Sliding Forces		
fa _w =	4492.80 lb/lf	lateral hydrostatic force due to standing water from riverside
fa _{buoy} =	187.02 lb/lf	active saturated soil force over heel
12 =	4679.82 ID/II	total sliding forces
Resisting Forces		
fp _{buoy} =	1135.37 lb/lf	passive saturated soil force over toe
fp _w =	499.20 lb/lf	lateral hydrostatic force from landside
ffr =	4953.60 lb/lf	friction force between the footing and the soil
I _R =	11/01 11.0000	total resisting forces
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	4.25 ft	
d _{Wftg} =	6.25 ft	
d _{Wst} =	1.75 ft	
a _{Wsh} =	8.75 TT	
$d_{Wwh} = d_{e_{W}} - d_{e_{W}} - d_{e_{W}}$	0.70 IL 13 ft	
Moment Arms of Overturing Moment	1.0 10	
d _{faw} =	4.000 ft	
d _{fabuoy} =	1.333 ft	
d _{WU} =	7.520 ft	
Stabilizing Moment about Teo		
<u>Stabilizing Moment about 10e</u> Mer =	85159 43 lb-ft/ft	
Overturning Moment about Toe		
M _{OT} =	41683.97 lb-ft/ft	
Pocultant		
<u>Resultant</u>	0264.00 lb/ft	.l
ΣV = ΣH =	1908 35 lb/ft	
ΣΜ =	43475.45 lb-ft/ft	+ <del>C</del>
X _R =	4.69 ft	
Resultant Ratio =	0.38	
Sliding Stability Check		
FS(SL) =	1.41	Acceptable
Overturning Stability Check		
Base Area in Compression =	100 %	Acceptable
Bearing Capacity Check (from EM 1	110-2-2502, Depa	rtment of the Army, U. S. Army Corps of Engineers)
N' =	9264.0 lb	$\frac{1}{1} + \frac{1}{1} + \frac{1}$
Τ =	1908.4 lb	
α =	0.00 °	
e =	1.56 ft	
B =	9.39 IL	(Figure F 1)
0 – V =	57.6 pcf	(ingule 5-1)
D =	4 ft	
= qo	230.4 psf	[5-8a]
β =	0 °	
Ng -	10 662 [5-39]	ده.جا 1 [5.43]
NC =	20.721 [5-3b]	$\xi_{yt} = 1$ [5-6a]
Nγ =	6.766 [5-3d]	ξct = 1 [5-6c]
ξcd =	1.134 [5-4a]	ξγg = 1 [5-7a]
ξqd =	1.067 [5-4c]	ξqg = 1 [5-7a]
ξγd =	1.067 [5-4c]	ξcg = 1 [5-7d]
ξqi = c ₂ :	U. /58 [5-58]	
ςu = ξvi =	0.286 [5-5b]	
n -		
Q =	23877.91 lb	[5-2]
= 61	2.30 [3-1]	

ATCOM	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 8' to 9'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18



arameters		
H =	11 ft	
D _h =	2 ft	
D _t =	2 ft	
t _{ftg} =	2.5 ft	
A _h =	8 ft	
C =	4 ft	
t _{wall} =	2 ft	
B =	14 ft	
$\gamma_{conc} =$	150 pcf	unit weight of concrete (pcf)
$\gamma_w =$	62.4 pcf	specific weight of water (pcf)
γ _{soil} =	120 pcf	unit weight of the soil (pcf)
γ _{buoy} =	57.6 pcf	specific weight of submerged soil (pcf)
Soil Area	3	
Φ =	25 °	internal friction angle of drained soil
K _p =	2.46	passive soil pressure coefficient
Ka =	0.41	active soil pressure coefficient
μ =	0.40	coefficient of friction between the footing and the soil
Load Case	12	from EM 1110-2-2502 Table 4-2
Sliding F.S. =	1.33	
Overturning Base Area in Compression =	75 %	
Bearing F.S. =	2	

Gravity Forces acting downaward		
Wwall =	3300.0 lb/lf	weight of the stem of wall
Wftg =	5250.0 lb/lf	weight of the footing of wall
vvst = Wsb =	900.0 lb/ll 921.6 lb/lf	weight of the soil above loe
Wwh =	5491.2 lb/lf	weight of the water above heel
WG =	15922.8 lb/lf	total gravity forces acting downward
Uplift Forces acting upward		
WU =	3931.2 lb/lf	total uplift forces acting upward
Sliding Forces		
<u>situing rortes</u>	5686 20 lb/lf	lateral hydrostatic force due to standing water from riverside
fa _{buov} =	236.70 lb/lf	active saturated soil force over heel
$f_{S} =$	5922.90 lb/lf	total sliding forces
Resisting Forces		
tp _{buoy} =	1436.95 lb/lf	passive saturated soil force over toe
ip _w =	031.80 ID/II 4240.12 lb/lf	friction force between the feating and the coll
111 = f _P =	8437.87 lb/lf	total resisting forces
٠ĸ		······································
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	5 ft	
d _{Wftg} =	7 ft	
d _{Wst} =	2 TT 10 ft	
u _{Wsh} =	10 IL 10 ft	
d _{fobuoy} = d _{fow} =	1.5 ft	
Moment Arms of Overturing Moment		
d _{faw} =	4.500 ft	
d _{fabuoy} =	1.500 ft	
d _{WU} =	8.420 ft	
Stabilizing Moment about Tee		
<u>Stabilizing Moment about Toe</u>	122/01 13 lb_ft/ft	
ivist –	122401.13 10-11/11	
Overturning Moment about Toe		
M _{ot} =	59044.79 lb-ft/ft	
<u>Resultant</u>		
ΣV =	11991.60 lb/ft	V +
ΣΗ =	2514.98 lb/ft	←+ €
ΣIVI = Υ	63356.34 ID-TT/TT 5 28 ft	+
Resultant Ratio =	0.38	
Sliding Stability Check		
FS(SL) =	1.42	Acceptable
Overturning Stability Check		
Over turning Stabinty Check Base Area in Compression –	100 %	
base Area in compression –	100 %	Acceptable
Bearing Capacity Check (from EM 1	110-2-2502, Depa	rtment of the Army, U. S. Army Corps of Engineers)
N' =	11991.6 lb	
T =	2515.0 lb	
α =	0.00 °	
e = <b>R</b> _	1.72 IL 10.57 ft	
<b>Β</b> - δ =	10.37 ft 11.84 °	(Figure 5-1)
ν· =	57.6 pcf	(inguise s)
D =	4.5 ft	
= qo	259.2 psf	[5-8a]
$\beta =$	0 °	
Na -	10 662 [5-39]	£at = 1 [5-62]
NG = NC =	20.721 [5-3b]	$\xi_{yt} = 1$ [5-6a]
Nv =	6.766 [5-3d]	$\xi ct = 1 [5-6c]$
ξcd =	1.134 [5-4a]	ξγg = 1 [5-7a]
ξqd =	1.067 [5-4c]	ξqg = 1 [5-7a]
ξγd =	1.067 [5-4c]	ξcg = 1 [5-7d]
ξqi =	0.754 [5-58]	
ζCl = Fvi =	0.754 [5-58] 0.277 [5-5h]	
ζγι –	0.277 [0-00]	
Q =	29920.62 lb	[5-2]
FS =	2.50 [5-1]	Acceptable

ATCOM	SUBJECT:	Rebuild by Design Meadowlands			SHEET NO.	OF
		Concrete Flood Wall (T-wall) Design 9' to 10'			JOB NO.	
	COMPUTED BY:	YK	CHECKED BY:	LC	DATE	03/09/18





Gravity Forces acting downaward		
Wwall =	3600.0 lb/lf	weight of the stem of wall
Wftg =	6000.0 lb/lf 1200.0 lb/lf	weight of the footing of wall
Wst = Wsh =	1036.8 lb/lf	weight of the soil above heel
Wwh =	6739.2 lb/lf	weight of the water above heel
WG =	18576.0 lb/lf	total gravity forces acting downward
Liplift Forece esting unward		
Upint Forces acting upward	1002 0 lb/lf	total uplift forces acting upward
W0 -	4772.0 10/11	total apint forces acting apward
Sliding Forces		
fa _w =	6559.80 lb/lf	lateral hydrostatic force due to standing water from riverside
fa _{buoy} =	236.70 lb/lf	active saturated soil force over heel
I _S =	0/90.50 10/11	total sliding forces
Resisting Forces		
fp _{buoy} =	1436.95 lb/lf	passive saturated soil force over toe
fp _w =	631.80 lb/lf	lateral hydrostatic force from landside
ffr =	7430.40 lb/lf	friction force between the footing and the soil
I _R =	9499.15 10/11	total resisting forces
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	6 ft	
d _{Wftg} =	8 ft	
d _{Wst} =	2.5 ft	
d _{Wsh} =	11.5 TT 11 E ft	
d _{Wwh} =	11.5 IL 15 ft	
Moment Arms of Overturing Moment	1.0 11	
d _{faw} =	4.833 ft	
d _{fabuoy} =	1.500 ft	
d _{WU} =	9.707 ft	
Stabilizing Moment about Tee		
<u>Stabilizing Moment about roe</u> Mer =	165127 13 lb-ft/ft	
	10012/110 10 1010	
Overturning Moment about Toe		
M _{ot} =	80516.43 lb-ft/ft	
Docultant		
<u>Kesuitani</u>	13584 00 lb/ft	ale a
ΣV = ΣH =	2702.66 lb/ft	
$\Sigma M =$	84610.71 lb-ft/ft	+ <del>C</del>
X _R =	6.23 ft	
Resultant Ratio =	0.39	
Sliding Stability Check		
FS(SL) =	1.40	Acceptable
Overturning Stability Check		
Base Area in Compression =	100 %	Acceptable
Bearing Capacity Check (from EM 1	110-2-2502. Depa	rtment of the Army, U. S. Army Corps of Engineers)
N' =	13584.0 lb	
T =	2702.7 lb	
α =	0.00 °	
e =	1.77 ft	
<b>B</b> =	12.46 ft	(Figure E 1)
0 = V =	57.6 pcf	(Figure 5-1)
γ – D =	4.5 ft	
qo =	259.2 psf	[5-8a]
β =	0 °	
Na –	10 662 [5 25]	8at - 1 [5 6a]
Nq = Nc =	20.721 [5-3b]	εγι - τι [3-00] εγt = 1 [5-62]
Nv =	6.766 [5-3d]	$\xi ct = 1$ [5-6c]
ξcd =	1.113 [5-4a]	ξγg = 1 [5-7a]
ξqd =	1.057 [5-4c]	ξqg = 1 [5-7a]
ξγd =	1.057 [5-4c]	ξcg = 1 [5-7d]
ξqi =	0.766 [5-58]	
ξCl = ενi =	0.302 [5-5b]	
.16		
Q =	37513.36 lb	[5-2]
FS =	2.76 [5-1]	Acceptable

Appendix C2-B

Concrete Retaining Wall Design for 25'-wide Cantilever Walkway Option 1



H =	<mark>8</mark> ft	
D _h =	1 ft	
D _t =	1 ft	
t _{fta} =	2 ft	
Ă =	4 ft	
C =	2 ft	
t _{wall} =	1 ft	
B =	7 ft	
t =	1 ft	
h =	7 ft	
$\gamma_{conc} =$	150 pcf	unit weight of concrete (pcf)
γ _{lightsoil} =	60 pcf	unit weight of light soil (pcf)
γ _{soil} =	120 pcf	unit weight of soil (pcf)
φ =	25 °	internal friction angle of soil
φ,light =	40 °	internal friction angle of light soil
Soil Area	3	
Kp =	2.46	passive pressure coefficient of soil
Ka =	0.41	active pressure coefficient of soil
Kp,light =	4.60	passive pressure coefficient of light soil
Ka,light =	0.22	active pressure coefficient of light soil
-		
qallowable =	1420 psf	allowable soil bearing pressure below the footing
μ =	0.5	coefficient of friction between the footing and the soil
Live Load on walkway =	310 psf	walkway (60 psf) + driveway (250 psf)
Dead Load on walkway =	150 psf	weight of concrete slab
S (Surcharge on walkway) =	460 psf	LL + DL

Gravity Forces acting downaward	<u> </u>	
Wwall =	1350.0 lb/lf	weight of the stem of wall
Wftg =	2100.0 lb/lf	weight of the footing of wall
Wst =	240.0 lb/lf	weight of the soil above toe
Wsh =	480.0 lb/lf	weight of the soil above heel
vvwn =	1680.0 ID/If	weight of the light soil above neel
VVC =	600.0 lb/lf	weight of the concrete slab above light soil
WG =	6450.0 ID/IF	total gravity forces acting downward
Sliding Forces		
fa _{light} =	319.64 lb/lf	active lightweight soil force
fa _{soil,1} =	273.98 lb/lf	active soil force rectangular
fa _{soil,2} =	219.16 lb/lf	active soil force triangular
fa _{concrete} =	1000.24 lb/lf	lateral force by concrete (surcharge effect)
t _s =	1813.02 lb/lf	total sliding forces
Resisting Forces		
fp =	1330.51 lb/lf	passive soil force
ffr =	3225.00 lb/lf	friction force between the footing and the soil
f _R =	4555.51 lb/lf	total resisting forces
Moment Arms from Toe		
Moment Arms of Stabilizing Moment		
d _{Wwall} =	2.5 ft	
d _{Wftg} =	3.5 ft	
d _{Wst} =	1 ft	
d _{Wsh} =	5 ft	
d _{Wwh} =	5 ft	
d _{wc} =	5 ft	
d _{fp} =	1 ft	
Moment Arms of Overturing Moment		
d _{falight} =	5.3 ft	
d _{fasoil,1} =	1.5 ft	
d _{fasoil,2} =	2 ft	
d _{faconcrete} =	5 ft	
Stabilizing Moment about Toe		
M _{ST} =	26095.51 lb-ft/ft	
Overturning Moment about Toe		
M _{OT} =	7482.18 lb-ft/ft	
Eccentricity		
e =	0.61 ft	
Soil Pressure created by the Force	s acting on the Wa	11
Soli i ressure created by the force	1406.53 pcf	soil prossure at too
q _{toe} –	1400.33 psi 136 33 nsf	soil pressure at heel
	430.33 p3i	
Sliding Stability Check		
FS(SL) =	2.51	Acceptable
Overturning Stability Check		
	3 49	
13(01) -	5.17	
Soil Bearing Capacity Check		
qallowable =	1420 psf	
qmax =	1406.53 psf	Acceptable

Appendix C2-C

Cantilever Walkway at Pumping Station Design

SUBJECT:	Rebuild by Design Meadowlands		SHEET NO.	OF
	Cantilever Walkway at Pumping Station		JOB NO.	
COMPUTED BY:	YK	CHECKED BY:	DATE	10/17/17



Material Properties		
γC =	150 pcf	concrete density
fc' =	5 ksi	28 day compressive strength
fy =	60 ksi	steel reinforcing stress
β ₁ =	0.8	ACI 318-14 Table 22.2.2.4.3
λ =	1	normal-weight concrete
Geometric Properties		
	25 ft	total width of walkway
L =	24 ft	distance between columns
<u>Loads</u> Dead Loads Walkway Railing	10 plf	
Live Loads		
Walkway and Elevated Platforms	60 nsf	
Vehicular Driveway	250 psf	

## Slab Design



## Wall Design



## Column Design



Appendix C2-D

Breaking Wave Loads Check for Column of Cantilever Walkway at Pumping Station

AE	C	0	M				Ĭ	PROJI	ECT/J	OB NO	)	605	13	217	1600	<u> w 15</u>	~10	3 - 0		LCUL		1 NO.	/		1	<u> </u>	<u>- 194</u> 1
							(	COMP	UTEC	BY_				-							(						<u>`</u>
							`	VERIF	IED B	Y											[						
							:	SCALI	=											s	HEET	<mark>г NO</mark> .		/	OF	·	
		-									_												-				
																						F	1 1	01			
				,		•	٩	1.		1		۵										5		0			
				4	-	1			1	-	L	•		N								-	1				
																							6	<b>T</b> , <b>1</b> ,			
	_											-	-														
												3															
													8														
									.1			-,	/														
							2	×	2				-														
							C	ohu	nη	$\left< \right>$		~										— E		<del>15</del> ′			
													6	<u> </u>									(5	も正	wat	er	
											$\backslash$	3	_										e	leve	ふちわ	n	
													ר										0	f I	0-y	ear-	flood
													-									_	£		FEL	ŧΔ_	FT
												~	-										1701	De	Dov	+	
	_												2	-										140	pur		
			$\sim$									1	<i>r</i>														
					~	~						-	Δ			7	7					F		+1'	CMI	111	J.
									~			,	1			, TH	2					-	5		C	1110	9
										~	_													~/			
												a	- 3	5								-E		0.			
	_												-		5												
												4	~				$\sim$	2									
																				5							
												1	-														
													12												,		
																						– E		-3.	5		
				]							4		r	77													
										7		2	AA	20	Г							F	1.	-5	5'		
																							6	).			
de	=	5	- 1	$\mathbf{b}'$	= 5	5																					
decia				F																							
stilw	ato	Y											-														
dept	hÌ	ď																									
-							12		10	~~	-					-	- 11	11	n			127		1			
Tp	-	0	ΡŐ	ω(	-D	$\mathcal{V}^{+}$	Ь	(	AS	tt	-1-	110	1	-9u	ation	13	++		Rie	aki	g	wa	ve	40	ads	0	
						_											-		Ve	t tic	al	Pili	195	an	- C	<del>614</del>	mns
	-	0-!	5×	62	4	pcf	×2	2.2	5×	(1.	4×:	2/	×	(0.	18×	5'	)*										
					/					-																	
E	-	2	ac	0	10	1		0	ar	ki	ps			k	eh-		-11-		tor	مام	-	1000					
	-	-7	177		b O		ns -	+ Z	1		1 (	V/T	TG.	D.T	1775	1 5	1119	Wa	IC/	CR	Vent	IVT					

ECOM		JOB TITLE RBDM	- Cantilever Walk	Walkway at Pumping Station Column on Bre										
	•	PROJECT/JOB NO(	50513717	CALCULATION NO										
		COMPUTED BY		DATE										
		VERIFIED BY	<u> </u>											
		SCALE		SHEET NOOF										
		Clear Cover	diameter of tie	- diameter of longitudinal reinforcement										
		+	1.128"											
	24+3	$2 \times 3 - 2 \times 0.5$	75 - 2× 2	= 16.12 = 8h										
1														
			X= 16.12	-=0.677										
			24"											
24"			3 ties											
				/ ~2										
		6#	19 bars (As=6	$in^2 \Rightarrow \rho_q = 0$										
				0 24*24										
	24	"=h												
	From SA	P-2000,												
	Pu =	=203.09K												
	$P_n =$	203.09 = 2	12.45K											
		0.65												
	From Bre	aking Wave	Loads,											
	Mae =	$= F_{D} \times (5' - (-1))$	$(.5')) \times 1.6 = 2.$	99 × 8.5'×1.6=40.66A+-k										
		40.66 ft *	CO FT CI L											
	1012-	0.65 =	62-55 TT-K											
	A	In 62.55 ft.	* OON											
	$e = \frac{1}{\mu}$	2 812.45	K = 0.2tt = :	2-4										
	From Col	umn Interact	ion Diparam											
		P 21'	45 ^K											
	Kn=-	File th	Six CONVERTAN)	0.108										
			/ (201-21)											
	Rn=	rne = 312	.+> × 2.4	= 0.01										
		$c \pi g n = 3^{-1}$	**************************************											
	From the	attached int	eraction diagram	MS (8=0.6 & 8=0-1), it is de										
	that the	coordinate of	(Rn, Kn) is v	within the area under pg=0.01										
	For V= O.	67.												
	(The inter	raction diagram	s are based on	te=4 ^{ksi} , a rother conservative										
	value.)	<b>V</b>												



**GRAPH2** Column interaction diagrams for rectangular tied columns with bars on end faces only. (Published with the permission of the American Concrete Institute.)



**GRAPH3** Column interaction diagrams for rectangular tied columns with bars on end faces only. (Published with the permission of the American Concrete Institute.)

Appendix C2-E

Fluvial Park Elevated Walkway Concrete Frame Design


Material Properties		
γC =	150 pcf	concrete density
fc' =	5 ksi	28 day compressive strength
fy =	60 ksi	steel reinforcing stress
β ₁ =	0.8	ACI 318-14 Table 22.2.2.4.3
λ =	1	normal-weight concrete
Geometric Properties		
	25 ft	total width of walkway
L =	24 ft	distance between columns
Loads		
Dead Loads		
Wood	10 psf	
Finishes	5 psf	
Walkway Railing	10 plf	
Live Loads		
Walkway and Elevated Platforms	60 psf	

#### Beam 1 Design



b1

#### Beam 2 Design (Spandrel Beam: Torsion Considered)

Vu =



ACI 318-14 Chapter 9.6.3.1

b2

Ô.

x2







φ _b ivin = Mu =	92.68 ft-kips	Acceptable efficiency = 43.11%
<u>Minimum Width</u> bmin = b1 =	9.075 in 18 in	Acceptable
<u>Steel Area Check</u> ρ = ρmax = ρmin =	0.0037 0.0212 0.0035	Acceptable p when at equals 0.005 Acceptable ACI 318-14 Chapter 9.6.1.2
Spacing of Reinforcement Check (A spacing,min = spacing =	<u>CI 318-14 Chapte</u> 1.00 in 5.31 in	Acceptable
Shear Check Vc = $\phi_v$ =	69.21 kips 0.75	ACI 318-14 Equation 22.5.5.1 ACI 318-14 Table 21.2.1
$\Phi_v Vc = Vu =$	51.91 kips 20.22 kips	Shear Stirrups Not Required ACI 318-14 Chapter 9.6.3.1

#### Column Design



Appendix C2-F

Fluvial Park Elevated Walkway Footing Design



								ЈОВ Т	ITLE	RBD	M-	Flu	vial	Parl	k E	eva	red	Wal	kwa	×y 1	Foot	ing	pe	sign	)	
· .	<u>-</u> C	U	Δ.				F	PROJ	ECT/J	IOB N	o. <u>6</u>	051	371	<u> </u>					_ CA	LCUL	ATION	NO.				
							(	COMF	UTE	DBY_											[					 
							١	VERIF	FIED B	3Y												DATE				 
							5	SCAL	E											5	SHEE	TNO.	2	2	_ OF _	
		Mo	Rab	+	P,	-	M10								-											
		vve	18-11			NIN NO	(T\Y)		0		1 0															-
				2	×2	×')	×/	50p	ict	z 4	†- <del>-</del>	- 151	ps													_
		~																								
		P	x =	60	1.9	3 *	ips																			
																										_
		To-	tal	Fa	cta	PA	1.	ما	De	- CC	1	~~														
		1 -	101	10		2 K					k.		74	9 N	kip	s /_										_
				0	1.7	S	7	/•:	2	T• 2			/ <del>-</del> T.	11	1	10	PIUN	nn								 _
		_																								_
		Fo	0 <i>†;</i> ,	9	Ar	ea	a		ļ																	
				2	)'×	5	-	10	07	42																
		Re	ar	na	p,	ess	Sure	+	or .	St	eno	th	De	sig	n											
					,	Π	49	n K	kolu	n m	X	) c	lum	15	,			0								
				a.	1=		00	f+2				<b>—</b>			=	1.5	1	\$								-
								//																		
								∕ C	olu	m	\$ \								1.							_
	3	Ŋ.4	91/44	1	1	~		(:	2′×.	2')			J	•		Þ	η4	1.9'	)ĸ	~		a k	/NL			
0	1	11		•		-							1	-				2'		2	/	1	τŢ			
/	-0				7	1							-	+ -												
(					-								-	0												
							6	٨		1	V						6									
$\rightarrow$			9	1		*	-	-	4	6		-	<u>}</u>	2	W.	ন্										-
_		6	•	•	·	1	A .	1			-	1	3													
	<u>/</u>							<b>^</b>		F			1		~ 7			+ /	5	csf	x 5	1-	n	- k	/14	 _
									-		-	-									r u		/		14	
		/			1								1		1											
		2	1-	<i>"</i>	2!	-0″′		1	<u> '</u> -	- 6	11		2'	.0″	2	-3	1/	1								
									-																	
				16	88K						43.1															
				/	1								<b>1</b>													 
												-														 
														1					Sh	ear	Di	aa	hav	h		
														$\backslash$							-	[V	- 18	'		
						$\backslash$																				
													/	6.88	ĸ											
					42	11)	-																			
					11-	TIL											1	_				1	1	1		 



<b>ECOM</b>	JOB TITLE RBDM-	Fluvial Park El	evated Walkway Foo	ting Design
	PROJECT/JOB NO6	0513711	CALCULATION	NO
	COMPUTED BY		D	ATE
	VERIFIED BY		D	ATE
	SCALE		SHEET	NO OF
	121	OD NI V		
	-/3/-	28 7t-K		
+		+	Moment Dr	agram
+ 19.08++-			208 ++++	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Footing Thickne	ss = 2'-6" =	= 30″		
Assume d=:	25.5"			
NE Double Depuise		last also a c		
* Depan Require	a Tor Une=u	Jay Shear		- 4 Hins
From Shea	r diagram, t	:he largest sl	near torce is 4	3.11 rps.
$V_{i} = 1$	21K DE	1+ x 25 5' x	= = > 1 1 × 1 P	s
VUI-T	D-11 7-2		12"	
	Vui	27.	17K×1K -	1 00 11
dregd	02 Fb	0.15+2+ 500	0 psix +1 /2"	4.21
				~~~~
JC D. J. Drawal				
* Depth Required	Tor Iwo-W	ry snear		
From sym	metry,			
Vu2 of 1	right column =	= Vuz at left	: column = VU2	
$\lambda I = h$	ADAK SCOA!	LOF 51)x 1/3	L KST AO AT	- Kips
Vu ₂ - /*	7. 77 - (24-	2.3 12"]	×1> = + 1+	
h - 4x	(24"+25 51);	= 198"		
	Vue V	AD AFK	00026	
dregid, 1=	- VM2	= 41.45 ×		1.18"
· · · · ·	PAN fr bo	0.75×4×1×、	5000 psi * 198" -	~~
	- Vuz			0=1
a regid,2 -	4	710	T applicable since	20-1
	\$(2+ Br)?	Te Do	(square coun	(n)
				A).
			49.45 - 1000	
A yeard 2 =				
	of als al +2	DAFTLO DI	15 (40×25.5"+2)×1×	5000 psix 198"
	1400		1921	
			10	

4x4 = 1 in

AECOM	JOB TITLE RBDM-FILV PROJECT/JOB NO. 60513	ial Kark Elevate 3717	d Walkway CALCULATIO	NNO.
	SCALE		SHEE	T NO. 4 OF
Since d=25	j' is greater t	han all req	nired dept	hs,
design is O	<.		J	
* Design of Longit	adinal Steel			
$M_{\rm W} = 131.$	28-Ft-k from	moment diagr	am	
$R_n = \frac{M_n}{\alpha h d}$	2 = 131.28 TE-K>	11 1K A	4-87 psi	
- 9.85 fe	1/1 28-	_ 0.85×5000ps		2×44.81 ps;
P fy	1- 0-85fc'	60,000 psi	-(1-)1-0	85×5000psi
		= 0.000752	2 CPmm	for flexure
Use D= large	of 200 = 200	= 0.0033		
1	2157 25	hen		
		0.0035	1 <	
			2	
As= ip Dol	- 0-00354×60	×25-5=5.42	2 m -	
Use	7#8 bars (As	$= 5.53 in^2$		
. * Design of Steel	in Short Direct	Noi		
	$M_{\rm u} = 1.5' \times$	15.044t x 1-5	, -= 16.88 f t	-k
74.0	Assume stee	l spread over u	width $=$ colu	nm width+2
			= 24".	$+2\times\frac{2515^{7}}{2}=4^{1}$
	74.915/ = 15	0 K/44		
615 72 415	\$ 15'	121	10000b	
K-5	$R_n = \frac{M_{H}}{1}$	- 16.88 H+k x	XK	6.99 psi
08561	pod	0.9×49.5"×	(25.5")	
p= Fy (1-1-2KM 0.85fe')	: 0.00012KP	mm for fle	xure = p= 0.0
	TO DOTEN / DE FI	1 0 - 1 / 40	22	

n

This Page has been Intentionally Left Blank.

Subappendix C3: Berry's Creek Storm Surge Barrier Design

This Page has been Intentionally Left Blank.

Table of Contents

1.0	De	sign Requirements	C3-1						
2.0	Exi	xisting Conditions and Site SelectionC3							
3.0	Pu	Pump Selection							
4.0	Flo	ood Gate Selection	C3-3						
5.0	Str	ructural Analysis and Design	C3-4						
5.1	(General	C3-4						
5.2		Codes and Standards	C3-4						
5.3	(General Design Load Parameters	C3-5						
5.	3.1	Load Combinations	C3-5						
5.	3.2	Hydraulic Stages	C3-5						
5.	3.3	Dead Loads (D)	C3-6						
5.	3.4	Live Loads (L)	C3-6						
5.	3.5	Soil Pressures (S)	C3-7						
5.	3.6	Hydrostatic Loads (H)	C3-8						
5.	3.7	Uplift Loads (U)	C3-8						
5.	3.8	Wind Loads (W)	C3-8						
5.	3.9	Impact Loads (I)	C3-8						
5.	3.10	0 Access Bridge	C3-9						
5.	3.1 ⁻	1 Settlement Loads (ST)	C3-9						
5.4	(Concrete Design Criteria	C3-9						
5.5	5	Steel Design Criteria	C3-9						
5.6	F	Pile Foundation Design Criteria	C3-10						
5.7	(Operation	C3-10						
5.	7.1	Flood Gate	C3-10						
5.	7.2	Pump Station	C3-11						

List of Figures

Figure C3-1: Example Contours at Berry's Creek Surge Barrier Site	C3-2
Figure C3-2: Schematic of Pump	C3-3
Figure C3-3: Schematic of Steel Gates and Steel Pile Structure	C3-10

List of Tables

Table C3-1: Strength Load Combinations (Concrete Design)	C3-5
Table C3-2: Hydraulic Stages and Design Water Surface Elevations	C3-6
Table C3-3: Unit Weights	C3-6

Acronyms and Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ACI	American Concrete Institute
AISC	American Institute of Steel Construction, Inc.
ASD	Allowable Strength Design
ASCE	American Society of Civil Engineers
ASTM	American Society for Testing and Materials
AWI	American Welding Society
ASTM	American Society for Testing and Materials
CFD	Computational Fluid Dynamics Model
CFR	Code of Federal Regulations
cfs	Cubic feet per second
DM	Design Manual
EM	Engineer Manual
ETL	Engineer Technical Letter
FEMA	Federal Emergency Management Agency
HEC-HMS	Hydrologic Engineering Center – Hydrologic Modeling System
ICC	International Code Council
ksi	Kilopounds per square inch
LRFD	Load and Resistance Factor Design
NAVD 88	North American Vertical Datum of 1988
NAVFAC	Naval Facilities Engineering Command
pcf	Per cubic foot
psf	Per square foot
psi	pounds per square inch
RBDM	Rebuild by Design Meadowlands
UNS	Unified Numbering System
USACE	United States Army Corps of Engineers

1.0 Design Requirements

A Recon Study of Berry's Creek Option 1, surge barrier (floodgate) and pump station, was prepared to a level needed to develop a cost estimate for comparison purposes. The floodgate and pump station was part of the Rebuild by Design Meadowlands (RBDM) Flood Protection Project's (the Proposed Project's) Alternative 1 (Structural Flood Protection) system. The alternative was compared to several levee/floodwall solutions. Drawings of gates and pump stations with similar load conditions along with a stability analysis were used in preparing the Recon Plans. The stability analysis consisted of a pile foundation design. Only load cases that typically govern design were considered. A more detailed design would be required if a future re-evaluation led to the selection of the Surge Barrier option.

The water stage of elevation 7.0 feet (referenced to the North American Vertical Datum of 1988 [NAVD 88] was used as the design stage for the Alternative 1, Berry's Creek Option 1 system. This stage does not meet the 1 percent storm event criteria mandated for Federal Emergency Management Agency (FEMA) Certification. An elevation of 7.0 feet (NAVD 88) was selected largely for economic reasons. In holding 7.0 feet (NAVD 88), the Paterson Plank Road (Route 120) embankment and adjacent higher natural ground would provide a shorter line of protection, thus reducing the overall cost of the Proposed Project. The floodgate and pump stations were considered critical structures and were designed adding 3 feet of freeboard above the system design stage. This adjustment in elevation satisfied the 2.6 feet future Sea Level Rise and also complies with the 3 feet increase over the Base Flood Elevation as specified in 33 Code of Federal Regulations (CFR) 65.10. The floodgate width of 100 feet (two 50 feet gates) matched the existing width of Berry's Creek channel immediately south of the Paterson Plank Road Bridge. The 1,000 cubic feet per second (cfs) pump capacity was estimated based on Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) modeling of Berry's Creek drainage area under the design events. A detailed drainage study would be required if this option is advanced. The pumps are only used when the floodgates are closed. The pumps prevent the protected side stage from increasing due to impounded water. There are no navigation demands. Approach guide walls and fenders were not required.

2.0 Existing Conditions and Site Selection

The site for the Berry's Creek surge barrier protection located to the flood side of Paterson Plank Road was selected for four main reasons (see **Figure C3-1**). The site allows for an easy tie into the Paterson Plank embankment which would act as a permanent levee. The width of Berry's Creek is narrower and the channel invert higher than other sections along Berry's Creek. Also, a trucking lot to the west of Berry's Creek canal has adequate acreage to construct the complex in its entirety; only one property would need to be acquired. Lastly, the close proximity to Paterson Plank Road allows easy access for construction and future maintenance.

The ground elevation ranges from 5.0 to 7.0 feet (NAVD 88) on both banks of Berry's Creek as shown below. The channel invert is at -9.6 feet (NAVD 88). The soil profile consists of a combination of fill and organic upper layer, followed by a thin sand strata with clay extending down to glacial till at a depth of 80 feet. The elevation of bedrock ranges from 80 to 100 feet below ground. The pile foundation would tip in bedrock.

Figure C3-1: Example Contours at Berry's Creek Surge Barrier Site

3.0 Pump Selection

Submersible and vertical lift pumps were considered. The low head, high capacity vertical lift pump was recommended for the Proposed Project. The pumps would be self-priming. The 1,000 cfs drainage would require three 350 cfs pumps, intakes are 96-inch diameter pipe. Pumps would be electric powered with a backup diesel or natural gas generator. The concrete intake basin invert would be at -16 feet (NAVD 88). The open bell intake was selected as a cost saving measure. The more proficient formed suction intake should be evaluated in the detailed design. The pumps would be housed in a pre-engineered metal building designed to withstand hurricane force winds. The building would enclose the pumping equipment and control office. The pump station and intake basin are pile founded, as shown in **Figure C3-2**. A more economical pump station design was also considered. The alternative station is similar to the more durable alternative except that the intake basin would be directly below the pump station and would include a minimal pre-engineered shelter that houses four 250 cfs vertical lift pumps powered by diesel engines. The intake basin walls would be constructed of driven sheet piling which also serves as the braced excavation. The base would be a pile supported concrete slab. The maintenance costs for the alternative are therefore greater.

If advanced, the pump capacity would require modeling to assure the station functions at its designed capacity without cavitation and flow regime issues to the pumps. This would lend itself to Computational Fluid Dynamics Model (CFD) done to confirm that the flow to the station and that the flows would be laminar and not turbulent and of sufficient capacity and velocity for the various storm events for which the station is being designed. The model could be quickly accomplished and helps to define the inlet geometry and overall configuration leading to the station.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Figure C3-2: Schematic of Pump

As noted above for the pump types, electric, fuel oil, and/or natural gas could be options for the types of engines driving the pumps. Therefore, consideration for the types of fuel and storage needs to be further investigated. Commercial electrical power would be considered the primary source, a backup generator is recommended to operate the system should power be unavailable during a storm event. The backup generator would provide power to both the pumps and the floodgate. Trash racks would also be required; the type can range from simple, fixed trash grates to catenary type mechanized systems.

4.0 Flood Gate Selection

Several gate types were considered. They include tainter, vertical lift, sluice, and a floating barge gate. Miter gates were not considered due to the presence of reverse heads. The miter gate only operates under a static condition as found in a lock where the chamber stage is adjusted to create a steady state condition. The torque tube, as well as any bottom hinged gate, was not considered due to the concern for siltation. High degrees of sediment affect operability and greatly increase maintenance cost. The floating barge gate has lower first costs, but is difficult to operate and like the miter gate and only operates smoothly in a static head condition. The floating gate is more economical, but less reliable, durable, and operable than the tainter gate. The tainter gate and vertical lift gates cost and footprint are similar. The tainter gate was selected for the Proposed Project as it has a long history of successful long, lasting operation and is the most dominant gate type found on hydraulic structures operated by the United States Army Corps of Engineers (USACE) and Bureau of Reclamation.

The tainter gate would be a truss-frames with all the water load placed on the hinge bushing, which is located high above the water. The tainter is commonly used for drainage structures and spillways where overhead obstruction of the hinge axis is not a concern. Tainter gates are not common where marine traffic is present as the tainter gate, even in the raised position, presents an overhead obstruction. The minimal recreational marine traffic at Berry's Creek is not a factor when considering the tainter gate. The tainter gate can be used to pass direct or reverse flows and can resist significant heads from both directions. The tainter gate can be readily operated against a reverse head and can be opened regardless of the level of impounded rainfall. This is a consideration if internal pump capacity is minimal and draining

trapped water is a design consideration. The tainter gate would be supported in a reinforced concrete monolith that is pile founded. The gate hinge would be mounted to a concrete trunnion that would be built into the monolith piers. The trunnion would be located above the high water stage. Either a cable drive or hydraulic struts would operate the gates. Piers would be built to an elevation to allow full operation of the struts or cables and to support the winch or strut hydraulics. Gate operations would be controlled from an operating room built into the adjacent pump station. The backup power would be supplied by the pump station generator.

A lower cost sluice gate alternative was also considered. The sluice gate housing would be an all-steel construction. The gate structure would be constructed in the wet and no braced excavation would be required. Support bents would be all-welded pipe trusses with steel sheet piles providing the closure walls. The gate sill would be a concrete sill tremied between two rows of sheet piling approximately 10 feet wide. The first cost would be less than the conventional, concrete flood gate. The maintenance of the steel frames both below water and in the splash zone would require a significant amount of inspection and repairs during the life of the structure.

5.0 Structural Analysis and Design

5.1 General

This design criterion includes a general description and definition of the basic structural design criteria that would control the design of the pump station and flood gate at the Berry's Creek Surge Barrier. The design elements defined herein represent a recon level conceptual design using the best available information and representative projects. A thorough analysis was not conducted.

5.2 Codes and Standards

The following is a list of general references and industry codes and standards which are applicable to structural design. Local codes would govern in case of conflicting requirements. All of the general codes and standards listed below apply to design elements, such as the pump station, operations/control buildings, and bridge, but are not necessarily limited to, the following:

- American Association of State Highway and Transportation Officials (AASHTO), Load and Resistance Factor Design (LRFD) 3rd Edition, 2004 with Interim Revisions excluding Section 6 of 2006
- American Concrete Institute (ACI) 318-14, Building Code Requirements for Structural Concrete
- ACI 350R-06, Concrete Sanitary Engineering Structures
- American Institute of Steel Construction, Inc. (AISC), Manual of Steel Construction, 14th Edition
- American Society of Civil Engineers (ASCE) 7-10, Minimum Design Loads for Buildings and Other Structures
- International Code Council (ICC), International Building Code New Jersey Edition: 2015
- American Society for Testing and Materials (ASTM)
- American Welding Society (AWS) D1.1-10, Structural Welding Code, or latest edition
- AWS D1.6-10, Stainless Steel Welding Code, or latest edition

- USACE Engineer Manual (EM) 1110-2-2000 Standard Practice for Concrete for Civil Works Structures
- USACE EM 1110-2-2102, Water Stops and Other Preformed Joint Material for civil Works
 Structures
- USACE EM 1110-2-2104, Strength Design for Reinforced Concrete Hydraulic Structures
- USACE EM 1110-2-2100, Stability Analysis of Concrete Structures
- USACE EM 1110-2-2502, Retaining and Flood Walls
- USACE EM 1110-2-2906, Design of Pile Foundations
- USACE EM 1110-2-3104, Structural and Architectural Design of Pumping Stations
- USACE Engineer Technical Letter (ETL) 1110-2-584, Design of Hydraulic Steel Structures
- 44 CFR 65.10, FEMA Levee Mapping and Certification

5.3 General Design Load Parameters

-

5.3.1 Load Combinations

Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in USACE EM1110-2-2104 or ASCE 7-10. Load combinations per EM 1110-2-2104 would be applicable to Berry's Creek and are listed in **Table C3-1**:

		Strength Design U=Rf*Hf*(D+L+…)												
Load Combinations		Reduction Factor (Rf)	Hydraulic Factor (Hf)	Dead (D)	Live (L)	Hydro- Static (H)	Uplift (U)	Wind (W)	Soil (S)	Settle- ment (ST)	Impact (I)			
Construction														
Construction Condition	A1	0.86	1.3	1.7	-	-	-	1.7	-	1.7	-			
	Operation													
Normal Operation Condition	B1	1	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7			
Start-up Condition	B2	1	1.3	1.7	1.7	1.7	1.7		1.7	-	1.7			
High Head Condition	В3	1	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7			
Reverse Head	B4	0.86	1.3	1.7	1.7	1.7	1.7		1.7	-	1.7			
				Hurri	cane									
Storm Surge Condition	C1	0.75	1.3	1.7	1.7	1.7	1.7	1.7	1.7	-	1.7			
				Mainte	nance	e								
Maintenance Conditions	D1	0.86	1.3	1.7	1.7	1.7	1.7	-	1.7	-	1.7			

Table C3-1.	Strongth Load	Combinations	(Concrete	Docian)
	Suengui Luau	Compinations	Concrete	Design)

5.3.2 Hydraulic Stages

See Table C3-2 for hydrulic stages and designed water surface elevations (in feet NAVD 88).

Stage	Flood Side (elevation feet NAVD 88)	Protected Side(elevation feet NAVD 88)			
Normal	1.0	1.0			
Max. Direct Water*	7.0	0.0			
Max. Reverse Water	0.0	5.0			

Table C3-2: Hydraulic Stages and Design Water Surface Elevations

* Stages do not meet the 100-year levels required for FEMA Certification

5.3.3 Dead Loads (D)

Dead loads will be determined in accordance with applicable engineering manuals and ASCE 7-10, and will include the self-weight of all permanent construction components including foundations, slabs, walls, roofs, actual weights of equipment, overburden pressures, and all permanent non-removable stationary construction (see **Table C3-3**).

Item	Weight [Pcf]
Water (Fresh)	62.4
Semi-compacted Fill	110
Fully Compacted Granular Fill, wet	120
Fully Compacted Granular Fill, Effective	58
Fully Compacted Clay Fill, wet	110
Fully Compacted Clay Fill, Effective	48
Riprap	130
Silt	94
Reinforced Concrete (Normal weight)	150
Steel	490

Table C3-3: Unit Weights

pcf = per cubic foot

5.3.4 Live Loads (L)

Live loads for building structures will be determined in accordance with applicable engineering manuals and ASCE 7-10.

5.3.4.1 Roof Live Loads

Roof Live Loads are as follows:

• Roof Live Loads: 60 per square foot (psf)

5.3.4.2 Equipment weight

Equipment weights were not included in the recon design stability analysis. Equipment weights will be included in a detailed design, the effects of vibrations shall be included in the design of the pump supports. To help dampen vibration, equipment would be supported on concrete having a weight at least 3 times the total weight of the equipment or 15 times the rotating weight, whichever is greater. Vibration during the pumps operation would include a dynamic factor of 1.3. A refined analytical approach will be performed if required.

5.3.4.3 Floor Live Loads

Floor Live Loads are as follows:

- Minimum unless noted otherwise: 100 psf
- Grating floors: 100 psf or a 200-pound concentrated load
- Stairs and landings: 100 psf or a 200-pound concentrated load
- Operating Floors: 250 psf
- Equipment and Storage Rooms: 300 psf
- Control room: 125 psf
- Service Bridge: The minimum condition of the following vehicles: 50 tons crane or AASHTO H-20 truck.

5.3.4.4 Live Load Surcharge (LS)

A minimum vertical live load surcharge of 200 psf will be applied on floor slab and base slab during construction.

A minimum horizontal live load surcharge of 300 psf will be applied to all abutment walls and wing walls of hydraulic structures in addition to other live loads that may be applicable in accordance with AASHTO.

5.3.5 Soil Pressures (S)

Structures are designed for lateral and vertical soil pressures. Lateral pressures are determined using the at-rest coefficients, K₀ obtained from the Geotechnical Report:

- Lateral Soils at-rest Pressure Coefficients:
 - \circ K0 = 0.8 for Clay; and
 - \circ K0 = 0.48 for Granular Material.

Per Naval Facilities Engineering Command (NAVFAC) Design Manual (DM) 7.2, the following coefficients of friction are recommended:

- Mass Concrete on Rock: tan(35) = 0.70;
- Mass Concrete on Medium Clays: tan(18) = 0.32; and
- Mass Concrete on Medium Sands: tan(26) = 0.48.

Per the values of K_0 provided above, Active and Passive Earth Pressure Coefficients have been determined as follows:

- Clays:
 - o K₀=0.8, the corresponding friction angle is \emptyset =11.54° (K₀=1-sin(\emptyset))
 - o Assume level backfill, and use Rankine Theory
 - o K_a=tan²(45-Ø/2) = tan²(45-11.54/2) = 0.667
 - o $K_p = \tan^2(45 + \emptyset/2) = \tan^2(45 + 11.54/2) = 1.500$
- Granular Material:

- o K₀=0.48, the corresponding friction angle is \emptyset =31.6° (K₀=1-sin(\emptyset))
- o Assume level backfill, and use Rankine Theory
- o $K_a = tan2(45-\emptyset/2) = tan2(45-31.6/2) = 0.316$
- o $K_p = \tan 2(45 + \emptyset/2) = \tan 2(45 + 31.6/2) = 3.170.$

5.3.6 Hydrostatic Loads (H)

Hydrostatic loads for which structures will be designed refer to the vertical and horizontal loads induced by a static water head and buoyant pressures, excluding uplift pressures. Dynamic Wave Load is neglected in this RECON Design but must be considered in advanced design. The inland location would preclude a wind driven wave.

5.3.7 Uplift Loads (U)

Uplift loads for which structures will be designed are defined by two uplift conditions: Uplift Condition A, assumes the sheet pile cutoff wall is fully effective, and Uplift Condition B, assumes the sheet pile cutoff wall is ineffective (pressure assumed to be vary linearly across the base). The dewatered construction case may govern; however, a reduced load factor should be considered for the short-term loading.

5.3.8 Wind Loads (W)

Structures are designed for wind loads established by ASCE No. 7, "Minimum Design Loads for Buildings and Other Structures."

5.3.9 Impact Loads (I)

Elements supporting reciprocating or rotating equipment and cranes proper allowance, or as determined by analysis, will be made for impact in addition to other loads. The following minimum impact loads shall be used:

- Traveling cranes and hoists: 25 percent of the lifted loads;
- Rotating equipment: 20 percent of the total machine weight;
- Reciprocating equipment: 50 percent of the total machine weight (consideration will be given to the deflection of beams supporting reciprocating and rotating machines); and
- The use of isolators can be considered in reducing the effects of machinery impact (the reduction shall be based on manufacturers' recommendations).

5.3.9.1 Operational Impact Loads

Elements supporting reciprocating or rotating equipment and cranes proper allowance, or as determined by analysis, will be made for impact in addition to other loads. The following minimum impact loads shall be used:

- Traveling cranes and hoists: 25 percent of the lifted loads;
- Rotating equipment: 20 percent of the total machine weight;
- Reciprocating equipment: 50 percent of the total machine weight (consideration will be given to the deflection of beams supporting reciprocating and rotating machines); and

• The use of isolators can be considered in reducing the effects of machinery impact (the reduction shall be based on manufacturers recommendations).

5.3.9.2 Pedestrian Railing Loads

Pedestrian railing loads are as follows:

- 200 pounds (minimum) concentrated load at top of railing in any direction and any location;
- 50 pounds per feet transverse and vertical simultaneously on all longitudinal members (rails).=; and
- 50 pounds per feet x post spacing at height to center of top rail at each post.

5.3.10 Access Bridge

Access bridge will be designed per AASHTO for highway truck railing loadings.

5.3.11 Settlement Loads (ST)

Structures are designed for forces generated by settlement (downdrag) in coordination with the Geotechnical Design. Downdrag forces are applied to sustained load cases (i.e., construction). The downdrag force exerted by settling soil adjacent to the proposed pump station and floodgate is applied to the perimeter of the structure. Downdrag forces are also included in the structural check of the piles. Downdrag loads are obtained from the geotechnical engineer on a case-by-case basis as applicable. An explanation of the computation of downdrag forces on piles is provided in the Geotechnical Report.

5.4 Concrete Design Criteria

Concrete structures that would be permanently exposed to water and the splash zone will be designed in accordance with EM 1110-2-2104 or the ACI 350R Concrete Sanitary Engineering Structures and would comply with the ACI 318 latest edition strength design method, unless otherwise required. Concrete structures that would not be exposed to water, nor harsh environment, will be designed in accordance with ACI-318-14. Typical design materials are as follows unless otherwise noted:

- Structural concrete: 5,000 pounds per square inch (psi) @ 28 days with a maximum water/cement ratio = 0.40; and
- Steel reinforcement: 60,000 psi (ASTM A615).

5.5 Steel Design Criteria

Steel design shall utilize the ETL 1110-2-584 and the AISC Steel Construction Manual, 15th edition. Either Allowable Strength Design (ASD) or LRFD design methods are permissible. Typical design materials are as follows unless otherwise noted:

- Structural steel rolled shapes: ASTM 572, Grade 50 or ASTM A992, Grade 50
- Plates: ASTM A36, Grade 36
- Bolts and nuts: ASTM A325, min. ³/₄" or ASTM A490
- Anchor Bolts: ASTM F1554, (3/4" diameter or greater)
- Corrosion stainless steel: ASTM A240 (freshwater) or ASTM A316 (saltwater)
- Sheet Piles: ASTM A572, Grade 50

 Stainless Steel Embedded Anchors: ASTM A276, Type 316 or Unified Numbering System (UNS) S21800

Components that would be exposed to the elements would be either hot-dipped galvanized or primed, painted and sealed with coats of (16 mils minute) epoxy, see

Figure C3-3. Steel gates and steel sheet pile structures would be painted with an epoxy painting system.

5.6 Pile Foundation Design Criteria

All forces applied to the primary concrete structures would be resisted by the pile foundation. The pump station and floodgate would be supported independently and are not designed to transmit load to any adjoining structure. Pile designs are based on a soil structure interactive analysis, with the pile supports input as springs in accordance with EM 1110-2-2906. Group effects would be applied as required.

Piles could be steel pipe piles, steel H-piles, or square pre-stressed concrete piles. Pipe piles satisfy ASTM A252 with a minimum yield strength of 45 kilopound per square inch (ksi). H-piles satisfy ASTM A572, Grade 50. Steel piles are designed structurally per AISC ASD, 15th Edition, as modified by EM 1110-2-2906. Concrete square piles require a design strength equal to 6,000 psi at 28 days. Pre-stressed concrete piles (hollow or solid) are designed to satisfy both strength and serviceability requirements. Strength design follows the basic criteria set forth by ACI, except the strength reduction factor is 0.7 for all failure modes and the load factor is 1.9 for both dead and live loads. The pre-stressed concrete pile is designed for an axial strength limited to 80 percent of pure axial strength and a minimum eccentricity equal to 10 percent of the pile width. Control of cracking is achieved by limiting the concrete compressive stress to 0.4f'c and the tensile stress to zero. Combined axial and bending are considered when analyzing the stresses in the piles. Loads, deflections and stresses are presented for each design case.

5.7 Operation

5.7.1 Flood Gate

The flood gate would operate against the maximum 10 feet direct differential head and 4 feet reverse head. Both gate types, tainter and the alternative sluice, are suitable for operation against the Proposed Project differentials. The multiple sluice gates provide redundancy since if one gate does not function, the volume of flood waters entering the protected side would be reduced. The tainter gate is a more durable

gate and would reduce the risk of operation. This is supported by years of successful operation in USACE and Bureau of Reclamation civil works projects. Given the short warning of tidal storms, it is doubtful that a backup gate (emergency bulkhead) could be installed in advance of the fast approaching surge; none were included in the cost. The sluice gate, not a slide gate, would include rollers and guides that extend below water. The tainter gate would have all the moving parts above water, which would allow a continuous visual inspection, less maintenance, and easy access when maintenance is required. The tainter gate could operate against a head and could be closed as the storm approaches. The tainter gate could also be opened against a reversed head. This capability would greatly reduce the duration that the adjacent pumps must be operated. The tainter and sluice gates could be stored above the water surface sufficiently to reduce corrosion. Both gate types can be monitored and operated remotely by the inclusion of a supervisory control and data acquisition (SCADA) system.

The tainter gate design includes bulkhead recesses needed to dewater the gate bay for inspections and repair while the sluice gate alternative does not. Minor repairs to the sluice gate guides could be made with divers. A braced excavation would need to be installed around the alternative sluice gate structure should major underwater repairs be required.

It is anticipated that the alternative all-steel sluice gate would need a full inspection and repair every 15 years. Recoating of the steel walls and sluice gates would be needed at each dewatering. The concrete structure and tainter gate would need to be dewatered for inspection every 20 to 25 years. Repairs are expected to be minor. The gates, regardless of type, would need to be exercised at least 3 times per year.

5.7.2 Pump Station

The vertical lift pumps are self-priming. Pumps would be be activated in advance of floodgate closures. Pumps could be automated, provided a manual override is available. The electric motors would work off available commercial power. A back up diesel generator would be included, as commercial power is not reliable in storm events. A trash rack would also be included on the intake side. It is recommended that a mechanical rake also be included in the design. The more economical mechanical trash rake would be sufficient. An enhancement would be the inclusion of a catenary driven rake or a hydraulic strut actuated rake. This Page has been Intentionally Left Blank.