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Charge 

The Bureau of Safe Drinking Water requested that the Division of Science and Research develop a rationale 
to explain whether predictive modeling is as effective as other methods to locate drinking water service 
lines made of lead. The location of lead service lines can be determined by different methods, including 
screening records (such as municipal codes, plumbing codes, and construction specifications), visual 
examination of plumbing, water quality sampling, excavation of water service line, and predictive modeling 
(Hensley et al. 2021). However, each of these methods provide differing levels of accuracy for predictions 
and differing levels of costs. In most cases, predictive models can both improve the accuracy of locating 
lead service lines and reduce the costs associated with replacing lead service lines by excavating fewer 
unnecessary (i.e., non-lead) service lines. 

Rationale 

Although the use of lead pipes in the United States was not formally banned until 1986, lead pipes were 
used less frequently starting in the 1940s (Calabrese 1989). Prior to the Environmental Protection Agency’s 
(EPA) promulgation of the Lead and Copper Rule (LCR) in 1991, municipalities rarely maintained accurate 
records of water service line material (Blackhurst et al. 2019). To comply with the LCR, water systems that 
exceeded the lead action level under certain circumstances were required to annually replace 7% of the 
lead service lines that it owned until the water system met the action level. In many cases, water systems 
could not rely on existing historical records to locate and replace lead service lines for compliance with the 
7% replacement rule.  

The EPA’s revised LCR, which became effective on December 16, 2021, requires that utilities submit lead 
service line inventories and make that information available to the public, which may entail further 
investigation and evaluation by water systems using the list of sources outlined in the revised LCR (US EPA 
2021). On July 22, 2021 in New Jersey, the Governor signed legislation into law for mandatory lead service 
line replacement, “NJ Bill A5343/S3398”, P.L.2021, Ch.183, effective immediately upon signature. Under 
this law, the first deadline for community water systems to submit information on service line inventories 
occurred in September of 2021. Initial service line inventories were required in January of 2022, with 
updated inventories required in July of 2022 and annually in July thereafter.  Further, the law requires that 
public water systems also make their most recent lead service line inventories publicly available.  

Thus, there is an urgent need to develop and validate efficient methods to identify the locations of lead 
service lines for many reasons including (1) the human health consequences associated with lead exposure 
from lead service lines, (2) the public’s desire to reduce lead exposure, and (3) the costs associated with 
accurately identifying lead service line locations for replacement. When deciding how to determine the 
location of lead service lines, there are many considerations, including costs, staffing requirements, and 
time (Hensley et al. 2021). Predictive modeling can help reduce the uncertainty associated with locating 
lead service lines in a cost-efficient manner. 

Different Types of Predictive Models 

There are two main categories of predictive models that are currently being utilized to locate lead service 
lines: (1) geospatial models and (2) machine learning models. Geospatial models use Geographic 
Information Systems (GIS) to analyze spatial relationships between known lead service line locations and 
other predictive environmental parameters (i.e., construction year and lead concentration in the water) to 
predict the likelihood of a lead service line at locations with unknown service line types. In response to the 
drinking water crisis in Flint, Michigan, both geospatial (Goovaerts 2017) and machine learning models 
(Abernethy et al. 2018) were developed in an attempt to locate potential lead services lines. Overall, the 
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machine learning models were found to be more accurate than the geospatial model (Abernethy et al. 
2018). 

Machine learning models expand on geospatial models by incorporating computer algorithms that 
improve over time as new data (e.g., historical records, water samples, city records, etc.) are incorporated 
into the models (Mitchell 1997, Hensley et al. 2021). In regard to locating lead service lines, machine 
learning models use a subset of the sample data, referred to as the “training data”, to predict the locations 
of lead service lines at houses with an unknown service line type (Mitchell 1997). The other subset of the 
sample data is referred to as the “testing data”, and this subset is used to evaluate how accurate the 
model is at predicting lead service line locations. Machine learning modeling techniques have been applied 
in several water systems nationwide (e.g., Flint, Michigan; Pittsburgh, Pennsylvania; Denver, Colorado) to 
improve the accuracy of lead service line inventories (Abernethy et al. 2016, 2018, Blackhurst et al. 2019, 
CO DPHE 2019, Kontos et al. 2019). The trend of municipalities and water suppliers utilizing predictive 
models to locate lead service lines will likely continue. For example, the City of Toledo, Ohio was recently 
awarded an EPA grant to create a machine learning model to predict lead service line locations (Goldstein 
2020, Smith 2020). 

Predictive Models are More Accurate than Historical Records 

Utilizing machine learning techniques to model the locations of lead service lines is often more accurate 
than using historical data alone. In September 2016, the city of Flint, Michigan selected 171 homes for 
service line replacement (Abernethy et al. 2018). The homes were selected for replacement based on the 
presence of high lead levels in water or high-risk individuals (i.e., pregnant women, children under six years 
of age, or elderly people). During this study, which was referred to as Phase One, the rate of lead pipes 
discovered in houses during excavations was 96% (165/171 houses) whereas the city records suggested 
only 40% (68/171) of those homes would contain lead (Abernethy et al. 2018). The overall accuracy of the 
machine learning predictive model performed in Flint was 91.6%, suggesting that the model would be 
better at predicting the presence of lead than the historical records alone. In 2018, the city of Flint chose 
to contract with a different engineering firm who stopped utilizing the machine learning model results to 
prioritize locations for replacement (Fussell 2021). Instead of targeting residences with high likelihood of 
lead service lines, Flint’s mayor demanded that the new firm excavate every house on randomly selected 
blocks across each of the city’s wards (Madrigal 2019). The accuracy of locating lead service lines 
decreased by more than 15% when the new firm stopped using the predictive modeling results (Fussell 
2021). 

Similar trends where models more accurately predicted lead service line locations than historical records 
alone have been found in other areas. In Pittsburgh, many different types of machine learning models 
were tested to predict the probability of locating lead service lines (Gurewitsch 2019). In Gurewitsch’s 
study, approximately 80% of lead service lines were correctly identified using the best fit model1. Although 
the overall predictive accuracy of machine learning models is generally much higher than that of using 
historical data alone, the development of machine learning models is not always easy. Oftentimes, the 
initial model needs to be improved and refined as new data become available. For example, in another 
Pittsburgh study, the initial machine learning model was only 73% accurate when predicting the presence 
of lead service lines, whereas the historical data was 63% accurate (Blackhurst et al. 2019). In addition, the 
model predicted that many residences had an equal chance of having lead or non-lead service lines. Thus, 

 
1 The best fit model was selected based on the relative area under a Receiver Operating Characteristics (ROC) curve 
plot. An ROC curve displays the probability of false positive versus the probability of detection. The area under the 
curve can range from 0 to 1 where values closer to 1 suggest better fitting models. 
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the predicted model results did not offer the clarity needed to be able to distinguish between lead and 
non-lead service lines. Due to the fairly low accuracy rate and the complications with differentiation 
capability of this prediction model, this initial model was not recommended to be used to estimate lead 
service line inventories in Pittsburgh. Researchers are currently retraining the model using 5,000 new 
customer samples, aiming to improve the predictive outcome. 

Geospatial models have also been utilized to predict locations of lead service lines. However, the 
geospatial models tend to perform less well than the machine learning models because the geospatial 
models do not include a learning component that improves model accuracy over time as new data is 
acquired. In Flint, Michigan, geospatial methods were used to predict the likelihood of a home having lead 
and galvanized service lines (Goovaerts 2017). In particular, kriging models were generated using 
neighboring field data (i.e., locations with known service line type) and secondary information (e.g., 
construction year, city records, etc.). A kriging model is a geostatistical method to predict a probability (in 
this case, the likelihood of lead or galvanized service line) in unknown locations based on a given set of 
measurements. In Flint, the accuracy of the geospatial models for predicting lead service lines was 
approximately 72% (Goovaerts 2017), which was about 20% lower than the 91.6% accuracy of the best fit 
machine learning model (Abernethy et al. 2018). 

Cost Effectiveness of Predictive Modeling 

Furthermore, prioritizing locations for excavations based on the results from predictive modeling of lead 
service line locations is often more cost effective than depending solely on historical records. However, the 
costs may vary for water suppliers based on factors such as the size of the service area and the age of the 
town. Replacing lead service lines has a high financial impact because much of the necessary information is 
buried underground. It costs thousands of dollars to mechanically excavate a water service line pipe in a 
resident’s yard to determine what material the line is made of (Abernethy et al. 2018). Considering that 
historical records are often inaccurate for determining service line material at individual houses, there are 
major cost implications because many pipes end up being excavated that do not need to be replaced. 
Another option is vacuum excavation, where a small hole is dug to inspect the service line (Hensley et al 
2021). Vacuum excavation is more cost-effective, with costs being as low as $77 to $400 per inspection 
point (Hensley et al 2021, Abernethy et al 2018). Unfortunately, some lead service lines may be missed 
during vacuum excavations because only a small portion of the line is visually inspected. To lower costs, it 
is essential to be able to accurately determine where lead service lines are most likely to be found, and the 
results of predictive models may reduce the number of unnecessary excavations (i.e., excavations of non-
lead service lines). 

One of the first major cities in the United States to implement and complete a full lead service line 
replacement was Madison, Wisconsin (Madison Water Utility 2012, Gurewitsch 2019). The city of Madison 
stopped using lead for service lines in the 1920s and maintained accurate historical records, so predictive 
modeling was not necessary to determine the locations of lead service lines. From 2000 to 2012, more 
than 8,000 lead service lines were removed with a cost of approximately $15.5 million (Madison Water 
Utility 2012). The cost of major lead service line removal projects is commonly even higher than in 
Madison. Currently in Denver, Colorado, there are 64,000 suspected lead service lines, and the fiscal 
impact of Denver Water’s lead service line removal program is expected to be between $190 and $272 
million over the next fifteen years (CO DPHE 2019). 

In Pittsburgh, predictive modeling is being utilized to reduce the number of unnecessary excavations 
(Blackhurst et al. 2019). The predictive model is expected to improve accuracy to 90%, which would greatly 
reduce the number of unnecessary excavations. By the end of 2019, 9,080 locations were excavated in 
Pittsburgh. Approximately 4,000 of these 9,080 excavations had non-lead service lines (44%). If the 9,080 
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excavations had been performed by following the likelihood rankings from the model, only approximately 
910 service lines of the excavated service lines would be non-lead and the remaining 3,090 would have 
been lead service lines. In this area, the estimated cost is $1,300 per excavation. Thus, Pittsburgh spent 
$5.2 million excavating non-lead locations ($1,300 per excavation X 4,000 residences) originally, and they 
would have saved $4 million (3,090 excavations of lead service lines that were originally non-lead X $1,300) 
had the excavations been at the locations were predicted most likely to be lead. Similarly, in Flint, 
Michigan, the estimated cost to replace a single home’s water service line was around $5,000 (Chojnacki et 
al. 2017). The predictive modeling conducted in Flint yielded approximately $10 million in cost savings due 
to the reduction in unnecessary excavations of service lines (Abernethy et al. 2018). 

The potential cost of developing models or even paying for a consulting firm to develop and run the 
predictive models would likely be significantly less than the cost attributed to the trial and error associated 
with accurately locating lead service lines. In 2021, BlueConduit informed the Department that it was 
charging between $40,000-$55,000 for the first year to develop a predictive model and to test the model’s 
accuracy (i.e., perform cross validation), and then between $15,000-20,000 per update after the first year 
to update the model with new data (pers. comm. with Andy Rosenblatt, 2021).  

Model Criteria 

Although there are many advantages to the predictive modeling of lead service line locations, the model 
must meet certain criteria to ensure that the results are statistically accurate. A poorly designed model is 
more likely to make incorrect predictions of lead service line locations. First, the baseline dataset should 
be generated using a randomized sampling approach where each sample has an equal probability of being 
selected. A randomized sampling approach ensures that the sample is an unbiased representation of the 
whole population of interest (i.e., area where lead service line locations will be predicted). Second, the 
sample size of known lead service line locations must be large enough to have the statistical power2 
necessary to accurately predict where lead service lines may be located. For example, 8,100 training data 
points were utilized in the Pittsburgh machine learning model (Blackhurst et al. 2019) and 15,447 data 
points were utilized in the machine learning model in Flint (Abernethy et al. 2016). Third, an appropriate 
type of model must be selected. In many of the cases mentioned thus far, the researchers utilized machine 
learning techniques to predict lead service line locations, but the types of machine learning models varied: 
in Pittsburgh the Recursive Feature Elimination with Random Forest model was performed (Blackhurst et 
al. 2019); in Flint the XGBoost model was utilized (Chojnacki et al. 2017); and in Denver the Random Forest 
model was used (Kontos et al. 2019). In most studies, multiple types of models were performed, and the 
model with the best fit was selected. Although machine learning models (Abernethy et al. 2018) tend to be 
more accurate than geospatial models (Goovaerts 2017), geospatial models may be appropriate for 
determining the location of lead service lines if the model results (i.e., estimated lead service line 
locations) are demonstrated to be accurate. Finally, the accuracy of the models (both geospatial and 
machine learning) must be validated using a model cross-validation technique3 (Chojnacki et al. 2017, 
Goovaerts 2017, Blackhurst et al. 2019). 

Due to the nature of statistical prediction, predictive modeling has its own limitations and uncertainties 
including: 1) the prediction accuracy and robustness largely depend on the sample size of training data sets 
(i.e., known lead service lines); 2) the accuracy of the input data directly affects the prediction outcome; 

 
2 Statistical power is the probability of detecting an effect if there is a true effect present to be detected. Power 
ranges from 0 to 1, with values closer to 1 being more powerful. 
3 Cross-validation is a way to assess whether a model is robust by holding out a portion of the original data (i.e., hold-
out sample) to use after the model is generated to test whether the model results are correct.  
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and 3) technical statistical support may be needed by the utilities. Therefore, these factors must be 
considered in advance before utilizing predictive modeling. 

Other Uses of Predictive Modeling 

Predictive modeling is a commonly employed approach to solving many environmental problems. In Flint, 
Michigan, geospatial modeling was utilized to predict lead levels in samples of drinking water (Goovaerts 
2019), and the location of lead service lines (Goovaerts 2017). However, cross-validation of this model 
suggested that the model performed poorly in predicting the presence of lead in drinking water at 
locations where the service line material was unknown (Goovaerts 2018). Machine learning models have 
also been implemented in Pittsburgh to predict locations with high tap water lead concentrations 
(Hajiseyedjavadi et al. 2020). Overall, these machine learning models were able to accurately predict high 
tap water lead concentrations 71.6% of the time.  

In addition to utilizing predictive models for locating lead service lines and lead water levels, previous 
research has utilized predictive modeling successfully to predict the risk of fires in residences (76% 
accuracy, Lau et al. 2015) and pipe failures in water systems (~60% accuracy depending on model type; Li 
et al. 2014). Predictive modeling is a highly effective scientific technique that is commonly used to solve a 
plethora of environmental problems. 

Potential Caveats to the Usage of Predictive Modeling 

Some residents in communities impacted by lead water crises (especially Flint, Michigan) have reported 
distrust with the predictive modeling of lead service line locations (Fussell 2021). The city of Flint 
prioritized households for lead service line replacement according to the likelihood of a lead service line 
being present in that home according to the results of the machine learning model. Residents reported 
frustration when the model led the city to inspect their neighbor’s house, but not their own. Information 
about vulnerable populations (i.e., children, pregnant women, and elderly) was then included as inputs in 
the predictive models to allow for prioritization of houses for replacement (Abernethy et al. 2018, Hensley 
et al. 2021). In Toledo, Ohio, officials are hoping to lessen or avoid this problem of residents mistrusting 
model results by expanding community outreach and involvement (Goldstein 2020, Smith 2020). The 
current plan in Toledo is to include the knowledge of homeowners (e.g., the number of children under 6 in 
a residence, the presence of pregnant women, the presence of senior citizens, etc.) to complement the 
modeling efforts to prioritize service lines for replacement based on likelihood of lead being present in an 
attempt to lessen community distrust. 

Another potential limitation of modeling the location of lead service lines is that there is some uncertainty 
associated with the results, and thus the material of some service lines will remain unknown in the 
inventory. According to BlueConduit (pers. comm. with Eric Schwartz and Jacob Abernethy, 2021), the 
distribution of lead likelihoods produced by the machine learning models are commonly bimodal, where 
the majority of service lines are classified as either very likely to be lead (e.g., > 90%) or very unlikely to be 
lead (e.g., < 10%). Therefore, model outputs are beneficial for prioritizing houses for replacement projects, 
by allowing municipalities to start with houses that are very likely to have lead service lines. However, 
some locations will be assigned likelihoods that are closer to 50% where it is unknown whether the service 
line is lead. At these locations, the service line material will likely remain unknown until visual inspection. 
In order to determine which locations to include in the inventory as lead service lines, the water suppliers 
would either need (1) to demonstrate the inflection point4 in the distribution of lead likelihoods produced 

 
4 An inflection point is the point in a curve where the curve changes direction. 
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by the predictive model where the locations are very likely to have lead service lines or (2) to select and 
defend a threshold where any property with a likelihood of lead higher than the threshold should be 
considered a lead service line (see guidance document for more information). Water suppliers would also 
be required to continue to test and improve the predictive model as new data are collected.  

Conclusion 

In conclusion, using predictive modeling to determine potential lead service line locations is an effective 
and scientifically-sound approach. Although predictive modeling has its own limitations and uncertainties, 
in the majority of the studies presented above, the uncertainty associated with other techniques (e.g., 
historical records, excavation, etc.) tended to be higher than the uncertainty associated with predictive 
modeling results. Furthermore, by replacing the lead service lines based on the more accurately predicted 
locations from models, the resources needed for lead service line replacement projects would be greatly 
reduced. Therefore, predictive modeling is an accurate and cost-effective approach to identify lead service 
line locations. 

  

https://dep.nj.gov/wp-content/uploads/dsr/lsl-predictive-modeling-guidance.pdf
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