

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

FINAL REPORT

RTC Study No.: 8837-008

Sponsor: AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

Commercial Office

RTC S.p.A.
Via Tito Speri, 12
00040 Pomeria (Roma) - IYALY
Tel:: + 39.06.910.95.73
e-met: mkt@rtc.it
www.rtc.it

RTC S.p.A Va Tito Speri, 12 00040 Pomezia (Roma) - ITALY Tet:: +39.05 91095.1 Fax:: +39.05 912 2233 P.O. Box 15301-00143 - Rome Eur Laurentino

COMPLIANCE STATEMENT

We, the undersigned, hereby declare that the following report constitutes a true and faithful account of the procedures adopted, and the results obtained in the performance of the study. The aspects of the study conducted by Research Toxicology Centre S.p.A. were performed in accordance with:

- A. "Good Laboratory Practice Regulations" of the U.S. Food and Drug Administration, Code of Federal Regulations, 21 Part 58, 22 December 1978 and subsequent revisions.
- B. Commission Directive 1999/11/EC of 8 March 1999 adapting to technical progress the principles of good laboratory practice as specified in Council Directive 87/18/EEC on the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications, for tests on chemical substances (adoption of the "OECD principles on Good Laboratory Practice - as revised in 1997") and subsequent revisions.
- C. Decreto Legislativo 27 Gennaio 1992, n. 120 published in the Gazzetta Ufficiale della Repubblica Italiana 18 Febbraio 1992 (adoption of the Commission Directive of 18 December 1989 adapting to technical progress the Annex to Council Directive 88/320/EEC on the inspection and verification of Good Laboratory Practice (90/18/EEC)) and subsequent revisions.

O. Scarcella, Biol.D. (Study Director)

Quela Scraella

09 Ton 2003

J. Brightwell, Ph.D. (Scientific Director)

Date: 9.01.03

QUALITY ASSURANCE STATEMENT

(Relevant to the aspects of the study conducted by RTC)

Study phases monitored by RTC's		y Assurance Ins Day Month Yea	
QAU according to current relevant Standard Operating Procedures	Inspection	Report to Study Director	Report to Company Management
PROTOCOL CHECK	08.08.2001	09.08.2001	09.08.2001
PROCESS-BASED INSPECTIONS			
Dose preparation Treatment Plating out Plate scoring	15.01.2002 22.03.2002 22.03.2002 08.02.2002		19.01.2002 29.03.2002 29.03.2002 15.02.2002
Other routine inspections of a proced directly related to this type of study. although specific inspection dates are no	The relevant	documentation	
FINAL REPORT Review of this report by RTC's Queen reported methods and procedures to			completed

M.M. Brunetti, Biol.D.

representation of the recorded raw data.

used and the results to constitute an accurate

Date

(Head of Quality Assurance)

Contents

		Page
1.	SUMMARY	5
2.	INTRODUCTION	6
4.	2.1 Purpose	6
	2.2 Principles of the method	6
	2.3 Study organisation	6
3.	MATERIALS AND METHODS	8
٠.	3.1 Test item	8
	3.2 Control items	8
	3.3 Media	9
	3.4 S9 tissue homogenate	9
	3.5 Bacterial strains	10
	3.6 Methods	10
	3.6.1 Preliminary toxicity test	10
	3.6.2 Main experiments	11
	3.6.3 Incubation and scoring	.11
4.	RESULTS	12
	4.1 Solubility test	12
	4.2 Toxicity test	12
	4.3 Assay for reverse mutation	12
5.	ANALYSIS OF RESULTS	13
	5.1 Criteria for outcome of the assays	13
	5.2 Evaluation	13
	CONCLUSION	
6.	CONCLUSION	
7.	KEY TO TABLES 1-12	15
/•	7.1 Structure of Tables 3 - 12	.15
	7.1 Structure of Tables 5 = 12	.15
8.	TABLES 1 TO 12	.16
9.	APPENDIX I - Historical Control Data	.29
10.	APPENDIX II - Study Protocol	.32
11.	APPENDIX III - Certificate of analysis	.48

1. SUMMARY

- 1.1 The test item was examined for the ability to induce gene mutations in tester strains of Salmonella typhimurium and Escherichia coli, as measured by reversion of auxotrophic strains to prototrophy. The five tester strains TA1535, TA1537, TA98, TA100 and WP2 uvrA were used. Experiments were performed both in the absence and presence of metabolic activation, using liver S9 fraction from rats pre-treated with phenobarbitone and betanaphthoflavone. Test item solutions were prepared using sterile distilled water.
- 1.2 In the toxicity test, the test item was assayed at a maximum dose-level of 5000 μg/plate and four lower dose-levels spaced at approximately half-log intervals: 1580, 500, 158 and 50.0 μg/plate. No signs of toxicity were observed at any dose-level tested, in any tester strain, in the absence or presence of S9 metabolic activation.
- 1.3 Two main experiments were performed.

 In Main Assay I, using the plate incorporation method, the test item was assayed at a maximum dose-level of 5000 μg/plate and at four lower dose-levels, separated by two-fold dilutions: 2500, 1250, 625 and 313 μg/plate.

 As no increases in revertant numbers were observed, all treatments of Main Assay II included a pre-incubation step and used the same dose-range employed in Main Assay I.
- 1.4 The test item did not induce two fold increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism.
- 1.5 It is concluded that the test item does not induce reverse mutation in *Salmonella typhimurium* and *Escherichia coli* under the reported experimental conditions.

Page 5

2. INTRODUCTION

2.1 Purpose

This report describes experiments performed to assess the mutagenic activity of the test item to *Salmonella typhimurium* strains TA1535, TA1537, TA98 and TA100, and to *Escherichia coli* strain WP2 *uvr*A using the procedures developed by Ames *et al.*, 1975 and revised by Maron and Ames, 1983.

The study was designed to comply with the experimental methods indicated in:

- EEC Council Directive 2000/32, Annex 4D.
- OECD Guideline for the testing of chemicals No. 471 (Adopted July 1997).

2.2 Principles of the method

Reverse mutation assays employ bacterial strains which are already mutant at a locus whose phenotypic effects are easily detected. The *Salmonella* tester strains have mutations causing dependence on a particular amino acid (histidine) for growth. The ability of test items to cause reverse mutations (reversions) to histidine-independence can easily be measured. The *E. coli* tester strains of the WP2 series are similarly mutant at the tryptophan locus.

Since many chemicals only demonstrate mutagenic activity after metabolism to reactive forms, in order to detect these "indirect mutagens" the test is performed in the presence and absence of a rat liver metabolising system.

2.3 Study organisation

Sponsor:

AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

RTC Study No.: 8837-008 Page 6

Location of Study:

Research Toxicology Centre S.p.A. Genetic Toxicology Department Via Tito Speri, 12 00040 Pomezia (Roma) Italy

Principal dates:

Study protocol approved by Study Director: 20-Jul-2001 Study commenced: 22-Feb-2002 (Toxicity assay treatment) Study completed: 08-Mar-2002 (Completion of scoring Main Assay II)

Study Director:

O. Scarcella, Biol.D.

Archiving:

The original data arising from this study and a copy of the final report consigned will be stored in the archives of Research Toxicology Centre S.p.A. for a period of five years from the date of consignment of the report. At the completion of this period the Sponsor will be contacted for despatch or disposal of the material, or further archiving. An aliquot of the test item will be retained within the archives of the testing facility for a period of ten years after which it will be destroyed.

RTC Study No.: 8837-008 Page 7

MATERIALS AND METHODS 3.

Test item 3.1

Details of the test item received at RTC were as follows:

Name

: 90215/91

Lot or Batch Number Concentration of active ingredient: 5% w/w

Expiry date

: 01-02-2004

Received from

: AUSIMONT S.p.A.

Date received

: 11-02-2002

Amount received

: 2000 grams

Description

: Colourless liquid

Container

: Opaque plastic tank

Storage at RTC

: Ambient conditions

RTC reference number

: 6535

On 20-Feb-2002 the test item was transferred from the Formulation Unit to the Department of Genetic and Cellular Toxicology and stored under the same conditions. A certificate of analysis, supplied by the Sponsor, can be found in Appendix III of this report.

Solutions of the test item, as received, were prepared, immediately before use, on a weight/volume basis without correction for the displacement due to the volume of the test item. All test item solutions were used within 3 hours and 10 minutes of the initial formulation. Concentrations are expressed in terms of active ingredient. No assay of test item stability, nor its concentration and homogeneity in solvent were undertaken. All dose-levels in this report are expressed to three significant figures.

Control items 3.2

The solvents used in this study were: sterile distilled water (Bieffe Medital, batch 01C02-01). dimethylsulphoxide (DMSO) (Fluka AG, batch 421649/1 13001).

Positive control treatments used solutions prepared as follows:

Sodium azide (Fluka AG, batch 221999 1081) in distilled water.

9-Aminoacridine (ICN K&K Laboratories, batch 12058-A) in DMSO.

2-Nitrofluorene (EGA Chemie, batch 12532) in DMSO.

2-Aminoanthracene (Sigma, batch 58F-3462) in DMSO.

Methylmethanesulphonate (MMS) (Fluka AG, batch 359316/153696)

in distilled water.

- 3.3 Media

The following growth media were used:

Nutrient Broth: Oxoid Nutrient Broth No 2 was prepared at a concentration of 2.5% in distilled water and autoclaved prior to use.

This was used for the preparation of liquid cultures of the tester strains.

Nutrient Agar: Oxoid Nutrient Broth No 2 (25g) and Difco Bacto-agar (15g) were added to distilled water (1 litre) and autoclaved.

The solutions were then poured into 9 cm plastic Petri dishes and allowed to solidify and dry before use. These plates were used for the non-selective growth of the tester strains.

Minimal Agar: Minimal medium agar was prepared as 1.5% Difco Bacto-agar in Vogel-Bonner Medium E, with 2% Glucose, and poured into 9 cm plastic Petri dishes.

Top Agar: "Top Agar" (overlay agar) was prepared as 0.6% Difco Bacto-agar + 0.5% NaCl in distilled water. Prior to use 10 ml of a sterile solution of 0.5 mM Biotin + 0.5 mM Histidine (or 0.5 mM tryptophan) was added to the top agar (100 ml).

3.4 S9 tissue homogenate

Two batches of S9 tissue homogenate (designated 2002/1 and 2002/2) were used in this study and had the following characteristics:

S9 Batch	Protein content (mg/ml)	Aminopyrine demethylase activity (µM/g liver/5 min, formaldehyde production)
2002/1	33.1 ± 1.69	4.14 ± 0.09
2002/2	35.8 ± 2.66	4.04 ± 0.07

Each S9 tissue fraction was prepared from the livers of five young male Sprague-Dawley rats which had received prior treatment with phenobarbital and betanaphthoflavone to induce high levels of xenobiotic metabolising enzymes. The efficacy of the S9 tissue fraction was previously checked in an Ames test and produced acceptable responses with the indirect mutagens 2-aminoanthracene and benzo(a)pyrene, using S. typhimurium tester strain TA100.

Page 9

The mixture of S9 tissue fraction and cofactors (S9 mix) was prepared as follows (for each 10 ml):

S9 tissue fraction	1.0 ml
NADP (100 mM)	0.4 ml
G-6-P (100 mM)	0.5 ml
KCl (330 mM)	1.0 ml
MgCl2 (100 mM)	0.8 ml
Phosphate buffer	5.0 ml
(pH 7.4, 200 mM)	
Distilled Water	1.3 ml
	10.0 ml

3.5 Bacterial strains

Four strains of Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) and a strain of Escherichia coli (WP2 uvrA) were used in this study. Permanent stocks of these strains are kept at -80°C in RTC. Overnight subcultures of these stocks were prepared for each day's work.

Bacteria were taken from vials of frozen cultures, which had been checked for the presence of the appropriate genetic markers, as follows:

Histidine requirement

No Growth on Minimal plates + Biotin.

Growth on Minimal plates + Biotin + Histidine.

Tryptophan requirement:

No Growth on Minimal agar plates

Growth on Minimal plates + Tryptophan.

uvrA, uvrB

Sensitivity to UV irradiation. Sensitivity to Crystal Violet.

rfa

Resistance to Ampicillin.

pKM101 : Resista

Bacterial cultures in liquid and on agar were clearly identified with their identity.

3.6 Methods

3.6.1 Preliminary toxicity test

A preliminary toxicity test was undertaken in order to select the concentrations of the test item to be used in the main assays. In this test a wide range of dose-levels of the test item, set at half-log intervals, was used. Treatments were performed both in the absence and presence of S9 metabolism using the plate incorporation method; a single plate was used at each test point and positive controls were not included.

3.6.2 Main experiments

Two experiments were performed including negative and positive controls in the absence and presence of an S9 metabolising system. Three replicate plates were used at each test point.

In addition, plates were prepared to check the sterility of the test item solutions and the S9 mix, and dilutions of the bacterial cultures were plated on nutrient agar plates to establish the number of bacteria in the cultures.

The first experiment was performed using a plate-incorporation method. The components of the assay (the tester strain bacteria, the test item and S9 mix or phosphate buffer) were added to molten overlay agar and vortexed. The mixture was then poured onto the surface of a minimal medium agar plate, and allowed to solidify prior to incubation.

The overlay mixture was composed as follows:

(i)	Overlay agar (held at 45°C)	2	ml
(ii)	Test or control item solution	0.1	ml
(iii)	S9 mix or phosphate buffer (pH 7.4, 0.1 M)	0.5	ml
(iv)	Bacterial suspension	0.1	ml

The second experiment was performed using a pre-incubation method. The components were added in turn to an empty test-tube:

(i)	Bacterial suspension	0.1	ml
(ii)	Test item solution or solvent control	0.1	ml
(iii)	DMSO or positive control solution	0.05	ml
(iv)	S9 mix or phosphate buffer (pH 7.4, 0.1 M)	0.5	ml

The incubate was vortexed and placed at 37°C for 30 minutes. Two ml of overlay agar was then added and the mixture vortexed again and poured onto the surface of a minimal medium agar plate and allowed to solidify.

3.6.3 Incubation and scoring

The prepared plates were inverted and incubated for approximately 72 hours at 37°C. After this period of incubation, the scoring was effected by counting the number of revertant colonies on each plate.

Page 11

4. RESULTS

4.1 Solubility test

As indicated by the Sponsor, the test item is an aqueous solution at a concentration of 5% w/w. Since 100 μ l of the test item solution are used in the preparation of each plate, this permitted a maximum concentration of 5000 μ g/plate to be used in the toxicity test.

4.2 Toxicity test

The test item was assayed at a maximum dose-level of 5000 μ g/plate and at four lower dose-levels spaced at approximately half-log intervals: 1580, 500, 158 and 50.0 μ g/plate. Results are presented in Tables 1 and 2.

No signs of toxicity were observed at any dose-level tested, in any tester strain, in the absence or presence of S9 metabolic activation. On the basis of these results a maximum concentration of 5000 μ g/plate was selected for the Main Assay with all tester strains.

4.3 Assay for reverse mutation

Two experiments were performed; individual plate counts for these tests, and the mean and standard error of the mean for each test point, together with statistical analysis are presented in Tables 3 to 12.

In Main Assay I, using the plate incorporation method, the test item was assayed at a maximum dose-level of 5000 μ g/plate and at four lower dose-levels, separated by two-fold dilutions: 2500, 1250, 625 and 313 μ g/plate. No signs of toxicity were observed.

As no increases in revertant numbers were observed, all treatments of Main Assay II included a pre-incubation step and used the same dose-range employed in Main Assay I. Toxicity, as indicated by thinning of the background lawn and/or reduction in revertant numbers, was observed both in the absence and presence of S9 metabolic activation, at the two higher dose-levels, with TA1537 and TA100 tester strains.

The test item did not induce two-fold increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism.

The sterility of the S9 mix and the test item solutions was confirmed by the absence of colonies on additional agar plates spread separately with these solutions. Marked increases in revertant numbers were obtained in these tests following treatment with the positive control items, indicating that the assay system was functioning correctly.

5. ANALYSIS OF RESULTS

5.1 Criteria for outcome of the assays

For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose-levels or at the highest practicable dose-level only. In addition, there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose-levels.

5.2 Evaluation

The test item does not induce increases in the number of revertant colonies, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism. On the basis of the stated criteria it must be concluded that the test item is not mutagenic to S. typhimurium and E. coli under the reported experimental conditions.

RTC Study No.: 8837-008 Page 13

6. CONCLUSION

It is concluded that the test item does not induce reverse mutation in *Salmonella typhimurium* and *Escherichia coli* under the reported experimental conditions.

RTC Study No.: 8837-008 Page 14

7. KEY TO TABLES 1-12

7.1 Structure of Tables 3-12

These tables show, for each Salmonella typhimurium or Escherichia coli tester strain, the individual plate counts obtained for the negative and positive controls, and at each dose-level of the test item. The mean number of revertant colonies and standard error of the mean are also presented. The "untreated" plates receive no treatment. The titre of the bacterial cultures is given (million cells/plate).

7.2 Regression line

i) The regression analysis fits a regression line to the data by the least squares method, after square root transformation of the plate counts to satisfy normal distribution and homoscedasticity assumptions. The regression equation is expressed as:

```
y = a + bx
where y = transformed revertant numbers
a = intercept
b = slope value
x = dose-level (in the units given).
```

ii) Regression lines are calculated using a minimum of the three lowest dose-levels, and then including the further dose-levels in turn. The correlation co-efficient (r), the value of students "t" statistic, and the p-value for the regression lines are also given.

Page 15

8. TABLES 1 TO 12

Page 16

RACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 1 - WITHOUT METABOLIC ACTIVATION

STUDY NO.: 8837-008

SOLVENT: Sterile distilled water

EXPERIMENT: Toxicity test

Dose-level (µg/plate)	TA-1535 Rev/pl.	TA-1537 Rev/pl.	TA-98 Rev/pl.	TA-100 Rev/pl.	WP2 uvrA Rev/pl.	
Untreated	19	18	30	142	23	
50.0	17	16	34	148	24	
158	20	18	31	139	30	
500	23	17	28	142	26	
1580	17	15	32	128	30	
5000	19	18	35	134	22	
	•					

: BACTERIAL, MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 2 - WITH METABOLIC ACTIVATION

STUDY NO.: 8837-008

SOLVENT: Sterile distilled water

EXPERIMENT: Toxicity test

TA-1535 Rev/pl.	TA-1537 Rev/pl.	TA-98 Rev/pl.	TA-100 Rev/pl.	WP2 uvrA Rev/pl.
17	20	42	139	37
20	23	40	157	38
19	19	43	156	38
17	25	4 4	139	34
21	21	44	143	31
15	20	43	148	27
	17 20 19 17 21	Rev/pl. Rev/pl. 17 20 20 23 19 19 17 25 21 21	Rev/pl. Rev/pl. Rev/pl. 17 20 42 20 23 40 19 19 43 17 25 44 21 21 44	Rev/pl. Rev/pl. Rev/pl. Rev/pl. 17 20 42 139 20 23 40 157 19 19 43 156 17 25 44 139 21 21 44 143

RTC Study No.: 8837-008 Page 18

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. ccli)

TABLE 3 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-008

Strain	: TA1	535					Ti	tre:	225		
Dose-level Without metabolic act					tivati	on Wi	th met	e activ	vatíon		
[µg/pl])	Plat	te co	unts	Mean	S. E.	Pl	ate co	unts	Mean	S. E
Untreat	ted	22	27	20	23	2.1	14	18	16	16	1.2
313		25	19	23	22	1.8	14		20	18	1.9
625		23	20	24	22	1.2	20		19	18	1.5
1250		18	18	17	18	0.3	13		16	16	1.7
2500		-20	19	22	20	0.9	17		19	16	1.8
5000		23	18	21	21	1.5	17	11	13	14	1.8
Regress	sion	analys.	is:								
Points	S9	Inter	cept	sl	ope	Corr.	coeff.	t		P-value	
1 - 3	_	4	.774	-0.0	001	-0	.10127	0.26	93	0.79545	
	_		. 863	-0.0		-0	.66582	2.82	19	0.01810	
1 4				0.0	003	-0	40000	1.67	0.1	0.11879	
_	_	4	. 721	-0.0	LOOT	-0	.42030	1.07			
1 - 5	-		. 721 . 645	0.0			.42030	0.98		0.33695	
1 - 5 1 - 6		4		0.0		-0			99 54	0.33695 0.36650	
1 - 5 1 - 6 1 - 3	•••	4	. 645	0.0	000	-0 0	.24023	0.98	99 54 26	0.33695 0.36650 0.85879	
1 - 5 1 - 6 1 - 3 1 - 4	+	4 4 4	.645 .020	0.0 0.0	000	-0 0 -0	.24023 .34279	0.98 0.96	99 54 26 44	0.33695 0.36650 0.85879 0.69970	
1 - 5 1 - 6 1 - 3 1 - 4 1 - 5	++	4 4 4 4	.645 .020 .123	0.0 0.0	000 004 000 000	-0 0 -0 -0	.24023 .34279 .05764	0.98 0.96 0.18	99 54 26 44	0.33695 0.36650 0.85879	
1 - 4 1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	++++	4 4 4 4	.645 .020 .123 .123	0.0 0.0 0.0 0.0	0000 0004 0000 0000	-0 0 -0 -0	.24023 .34279 .05764 .10873	0.98 0.96 0.18 0.39	99 54 26 44	0.33695 0.36650 0.85879 0.69970	
1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	+ + + +	4 4 4 4	.645 .020 .123 .123	0.0 0.0 0.0 0.0	0000 0004 0000 0000	-0 0 -0 -0	.24023 .34279 .05764 .10873	0.98 0.96 0.18 0.39 1.90	99 54 26 44 23	0.33695 0.36650 0.85879 0.69970	
1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	+ + + + ve ar	4 4 4 4	.645 .020 .123 .123	0.0 0.0 0.0 0.0	0000 0004 0000 0000 0001	-0 0 -0 -0 -0	.24023 .34279 .05764 .10873 .42949 te count	0.98 0.96 0.18 0.39 1.90	99 54 26 44 23 an S	0.33695 0.36650 0.85879 0.69970 0.07528	
1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6 Positiv	+ + + + ve ar	4 4 4 4 4	.645 .020 .123 .123	0.0 0.0 0.0 0.0	0000 0004 0000 0000 0001	-0 0 -0 -0 -0 -0	.24023 .34279 .05764 .10873 .42949 te count	0.98 0.96 0.18 0.39 1.90	99 54 26 44 23 an S 23 99 1	0.33695 0.36650 0.85879 0.69970 0.07528 . E. 2.1 0.5	
1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	+ + + + ve ar	4 4 4 4 4	.645 .020 .123 .123 .159	0.0 0.0 0.0 -0.0	000 004 000 000 001 21s S9	-0 0 -0 -0 -0	.24023 .34279 .05764 .10873 .42949 te count	0.98 0.96 0.18 0.39 1.90	99 54 26 44 23 an S 23 99 1	0.33695 0.36650 0.85879 0.69970 0.07528	

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 4 - Experiment 1

- Plate incorporation method -

STUDY NO.: 8837-008

SOLVENT: Sterile distilled water

Strain: TA1537							Titre: 222				
Dose-level		ut mei count	abolic s Mea		ivatí S. E.	on		n meta		activ Mean	
Untreated 313 625 1250 2500 5000	15 15 16 17	12 12 12 15	17 19 14	17 15 15 14 15	0.9 1.5 2.0 1.2 0.9		22 19 20 18 17 18	24 24 23 23 17 20	22 18 19 22 21 16	23 20 21 21 18 18	0.7 1.9 1.2 1.5 1.3
Regression Points S9	analysis Interce		Slope		Corr.	coef	f.	ŧ	;	P-value	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	4.0 4.0 3.9 3.9 4.7 4.6 4.6	09 · 25 · 39 · 10 · 49 · 71 · ·	-0.0003 -0.0002 0.0000 -0.0001 -0.0001 -0.0001 -0.0003		-0 -0 -0 -0 -0 -0	. 2479 . 3606 . 1247 . 3257 . 3796 . 1956 . 4980 . 5527	2 1 3 3 1.	0.67 1.22 0.45 1.37 1.08 0.63 2.07 2.65	27 32 79 57 08	0.52003 0.24949 0.65788 0.18719 0.31358 0.54234 0.05884 0.01737	
Positive an Treatment DMSO 9-Aminoacri DMSO 2-Aminoanth	dine	100 50 100	pl/pl pg/pl pg/pl pg/pl	S9 - + +	Pla 20 149 19 107	15 138 24 113	12 106 21	1;	16 . 31 1:	. E. 2.3 2.9 1.5 6.9	

RTC Study No.: 8837-008 Page 20

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 5 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-008

Strain: WP2 uvrA			Titre: 2	76	
Dose-level Withou	t metabolic	activation	With meta	bolic activa	ation
[µg/pl] Plate			Plate cou	nts Mean	S. E.
Untreated 24 2	5 33 2	7 2.8	31 30	38 33	2.5
313 24 2		3 0.7	30 35	39 35	2.6
625 21 2	7 28 2	5 2.2	34 36	32 34	1.2
1250 26 2	3 21 2	3 1.5	36 31	30 32	1.9
2500 28 2	6 19 2	4 2.7	32 39	34 35	2.1
5000 18 2	5 21 2	1 2.0	25 32	30 29	2.1
Regression analysis:	NO. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				
Points S9 Intercep	t Slope	Corr. coet	ff. t	P-value	
1 - 3 - 5.11	8 -0.0003	-0.2375	0.647	0 0.53827	
1 - 4 - 5.10	0 -0.0002	-0.3394	13 1.141	1 0.28040	
1 - 5 - 5.03	1 -0.0001	-0.1934	18 0.711	0 0.48962	
1 - 6 - 5.03	9 -0.0001	-0.4042	24 1.767	8 0.09615	Å.
1 - 3 + 5.76	9 0.0001	0.1394	12 0.372		
1 - 4 + 5.82	3 -0.0001	-0.1306	66 0.416	0.68566	
1 - 5 + 5.77	5 0.0000	0.1154	12 0.418	9 0.68210	
1 - 6 + 5.85	6 -0.0001	-0.4072	24 1.783	6 0.09347	
Positive and negative	e controls				
Treatment		9 Plate co	ounts Mea	n S. E.	
UNTREATED		- 24 25	23 2	4 0.6	
MMS	500 µg/pl	208 205	202 20		
DMSO	100 µl/pl	+ 32 33	34 3	3 0.6	
2-Aminoanthracene		232 218	225 22	5 4.0	

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 6 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-008

SOLVENT: Sterile distilled water

_						Titz	re· 2	43		
Strain: TA98							-			
	ithout m late cou	etabolic nts Me		ivation S. E.	on		n meta te cou		c activa Mean	s. E.
Untreated 3 313 3 625 3 1250 2 2500 2 5000 2	0 33 0 28 7 34 7 26	34 34 35 34	32 32 31 32 29	1.5 1.2 1.8 2.5 2.5 2.1		41 37 36 37 41 34	45 35 42 36 38 37	47 40 38 40 37 39	44 37 39 38 39 37	1.8 1.5 1.8 1.2 1.2
Regression anal	ysis:				6	r	L		P-value	
Points S9 Int	ercept	Slope		Corr.	coei:	Ε.	t		r-varue	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	5.709 5.661 5.692 5.655 6.547 6.453 6.355 6.330	-0.0002 0.0000 -0.0001 -0.0007 -0.0003 -0.0001		-0 -0 -0 -0 -0	.30596 .08461 .36428 .38821 .59783 .52101 .31961 .40689	1 3 1 3 7	0.850 0.268 1.410 1.685 1.973 1.930 1.216	5 3 0 1 6 4	0.42330 0.79375 0.18192 0.11140 0.08908 0.08236 0.24545 0.09378	
Positive and ne Treatment	gative c	controls	S9	Pla	te col	unts	Меа	n S	. E.	
DMSO 2-Nitrofluorene DMSO 2-Aminoanthrace	10	0 µl/pl 2 µg/pl 0 µl/pl 1 µg/pl	- + +	33 196 41 599	33 204 48 528	28 195 40 541	19	8	1.7 2.8 2.5 1.8	

Page 22 RTC Study No.: 8837-008

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 7 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-008

							ARROAL				
Strain:	TAl	00					Tit	re:	224		
Dose-le				metabo unts		tivati S. E.		h met ite co		c activa Mean	
Untreat	ed	150	146	155	150	2.6	164	159	169	164	2.9
313		142	143	157	147	4.8	157	167	163	162	2.9
625		149	138	151	146	4.0	168	154	162	161	4.1
1250		146	152	139		3.8	165	170	159	165	3.2
2500 5000		158 155	151 150	144 148	151 151	4.0 2.1	162 164	163 170	154 161	160 165	2.8
Regress Points	ion s	analys Inter		Sl	ope	Corr.	coeff.	t		P-value	
1 - 3	ere.	12	.248	-0.0	0003	-0	.30384	0.84		0.42668	
1 - 4	_	12	.213	-0.0			.27184	0.89		0.39270	
1 - 5	-		.138		0000		.10554	70.38		0.70816	
1 - 6	-		.138		0000		.21900	0.89		0.38261 0.55728	
1 - 3	+		.801	-0.0			.22682 .07174	0.61		0.82467	
1 - 4	+		.753 .786		0000		.21732	0.80		0.43654	
1 - 6	+		.744		0000		.08322	0.33		0.74268	
Positiv Treatme		d nega	tive	contro	ols S9	Pla	te counts	: Me	an S	S. E.	
Untreat	ed				_	150	146 155		50	2.6	
Sodium	Azid	e		1 µg/	-	985				23.4	
DMSO				00 pl/	-	1.67	151 158		59	4.6	
2-Amino	anth:	racene		1 μg/	pl +	1146	1121 1167	11	40 J	.3.3	

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 8 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-008

SOLVENT: Sterile distilled water

Strain: TA1535					Tit	re: 22.	5	
	Without Plate co	metaboli ounts M	.c ac lean	tivatio		h metabo te coun	olic activ ts Mean	ation S. E.
313 625 1250 2500	21 19 17 22 19 19 19 19 18 18 10 18	15 18 23 17 19 16	18 19 20 18 18 15	1.8 1.5 1.3 0.7 0.3 2.4	19 17 15 19 17	14 18 16 20	16 18 16 16 15 16 14 16 14 17 14 15	1.2 0.9 1.0 1.5 1.7 0.3
Regression ana Points S9 In	lysis: tercept	Slop	oe	Corr.	coeff.	t	P-value	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	4.259 4.349 4.363 4.424 4.217 4.141 4.085 4.114	0.000 0.000 0.000 -0.000 -0.000 0.000	00 00 01 04 01	0. -0. -0. -0. -0.	35306 01228 10749 54707 50056 26970 04016 34367	0.9984 0.0388 0.3898 2.6141 1.5298 0.8857 0.1449 1.4638	0.35134 0.96980 0.70297 0.01879 0.16992 0.39659 0.88700 0.16261	
Positive and non- Treatment Untreated Sodium Azide DMSO 2-Aminoanthrace		1 µg/pl 50 µl/pl 1 µg/pl	S9 - - +	19	e counts 20 16 581 592 19 17 99 102	18	S. E. 1.2 7.5 1.8 2.0	

Page 24 RTC Study No.: 8837-008

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 9 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-008

Strain: TA153	7					Tit:	re: 2	23		
Dose-level [µg/pl]	Without Plate c	metabol ounts	lic ac Mean	tivati S. E.			n meta te cou		activ Mean	ation S. E.
Untreated 313 625 1250 2500 5000	16 15 17 20 16 18 15 18 19* 17 15* 14	21 19 * 15*	17 18 18 17 17	1.2 1.2 1.5 1.2 1.2	•	20 20 19 20 20* 11*	22 18 22 21 16* 16*	16 23 20 19 17* 26*	19 20 20 20 18 14	1.8 1.5 0.9 0.6 1.2
Regression an	alysis:									
Points S9 I	ntercept	Slo	pe	Corr.	coef	f.	t	P	-value	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	4.085 4.149 4.177 4.212 4.406 4.441 4.505 4.540	0.00 -0.00 0.00 0.00	001 000 001 002 000	0 -0 -0 0 0	.3504 .1056 .0491 .4334 .2098 .1072 .3700	8 3 2 9	0.989 0.335 0.177 1.923 0.567 0.341 1.435 4.120	8 0 5 0 8 0 8 0 3 0 9 0	.35519 .74395 .86183 .07235 .58792 .73997 .17464 .00080	
Positive and Treatment	negative	control	.s S9	Pla	te co	ounts	Mea	n S.	E.	
DMSO 9-Aminoacridi DMSO 2-Aminoanthra		50 μl/p 50 μg/p 50 μl/p 1 μg/p	01 -	20 168 26 97	18 175 28 108	19 129 20 99	15	7 14 5 2		

^{* =} Thinning of the background lawn

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 10 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-008

Strain:	WP2	uvrA						Tit	re: 2	281		
Dose-le [µg/pl]			ut met count	abolic s Me		tivati S. E.	on		n meta te cou		c activa Mean	stion S. E.
Untreat 313 625 1250 2500 5000	ed	32 28 27 20	30 2 25 2 31 2 24 2	2 2 2 2 8	26 29 25 27 24 24	2.5 1.8 1.7 2.6 2.3 2.2		35 35 34 31 33 30	30 39 34 32 32 33	35 32 30 27 36 31	33 35 33 30 34 31	1.7 2.0 1.3 1.5 1.2 0.9
Regress Points	sion a	analysis Interce		Slope		Corr.	coef	ff.	t		P-value	
1 - 3 1 - 4 1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	 + + +	5.2 5.1 5.2 5.1 5.8 5.8 5.7	11 - 85 18 - 75 - 36 - 86 -	0.0001 0.0000 0.0001 0.0001 0.0001 0.0003 0.0000		-0 -0 -0 -0 -0	.1151 .0609 .2970 .2970 .1011 .5162 .1215	95 02 03 15 28	0.300 0.193 1.123 1.244 0.269 1.900 0.443 1.047	31 16 13 90 54	0.76797 0.85076 0.28234 0.23132 0.79569 0.08572 0.66616 0.31050	
Positiv Treatme UNTREAT MMS DMSO 2-Amino	ent PED	d negati	500 50	pg/pl pl/pl pg/pl	S9 - + +	Pla 23 348 33 303	te cc 24 363 31 277	31 321 27 276	34	26 14 1 30	. E. 2.5 2.3 1.8 8.8	

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 11 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-008

Strain:	TA98	3						Tit	re: 2	243		
Dose-le	vel			metabo unts	lic ac Mean	tivati S. E.	on		n meta te cou		c activ Mean	ation S. E.
[µg/pl]		r J.c.	Le CC	unes	mean							
Untreat	ed	35	29	34	33	1.9		42	39	44	42	1.5
313		31	33	27	30	1.8		39	44	40	41	1.5
625		30	28	34	31	1.8		43	37	41	40	1.8
1250		27	31	35	31	2.3		38	43	40	40	1.5
2500		28	32	30	30	1.2		44	41	39	41	1.5
5000		30	29	27	29	0.9		35	38	36	36	C.9
Regress	ion a	nalys:	is:									
Points	S9	Inter	cept	Sl	ope	Corr.	coef	£ſ.	t		P-value	
1 - 3		5	. 671	-0.0	003	- C	.2946	65	0.815	58	0.44150	
1 - 4			. 622	-0.0		-0	.1485	58	0.479	51	0.64491	
1 - 5	***		.612	-0.0		0	.2126	60	0.78	15	0.44682	
1 - 6	•••		.606	-0.0	001	C	.3710)5	1.598	33	0.12953	
1 - 3	+		453	-0.0	002	- C	.2374	17	0.64	68	0.53840	
1 - 4	+		. 432	-0.0	001	- C	.2109	97	0.682	25	0.51041	*1
1 - 5	+	6	. 397	0.0	000	- C	.0097	79	0.03	53	0.97239	
1 - 6	+	6	.449	-0.0	001	- C	.5679	95	2.760)1	0.01394	
Positiv	e and	i negat	ive	contro	ls							
Treatme		_			S 9	Pla	te co	ounts	Меа	an S	Ε.	
DMSO				50 µ1/	pl -	36	31	34		34	1.5	
2-Nitro	fluor	rene		2 µg/	pl -	174	171	190			5,9	
DMSO				50 µ1/	pl +	38	40	37		38	0.9	
DEIOO										65 I	0.7	

: BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 12 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-008

Strain: T/	A100			74	Tit	re: 22	25	
Dose-level	Without Plate c	metabolio ounts Me	ac ean	tivation S. E.		h metak ite cour	oolic activ nts Mean	ation S. E.
Untreated 313 625 1250 2500 5000	139 140 145 138 130 143 133 124 125* 118 95* 84	142 137 130 * 132*	137 142 137 129 125 86	2.5 2.0 3.8 2.6 4.0 4.5	150 161 139 136 131* 113*	156 140 144 137*	156 151 157 158 151 143 145 142 143* 137 118* 120	2.9 1.5 3.8 2.8 3.5 4.4
Regression	n analysis:							
Points S	9 Intercept	Slope)	Corr. coe	ff.	t	P-value	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	11.772 11.849 11.818 11.987 12.423 12.406 12.347 12.348	-0.0003 -0.0003 -0.0003 -0.0004 -0.0003	3 5 5 1	-0.031 -0.606 -0.733 -0.935 -0.415 -0.608 -0.704 -0.883	87 72 90 53 82 37	0.0833 2.4146 3.8936 10.6274 1.208 2.4269 3.5778 7.5576	6 0.03640 6 0.00185 4 0.00000 7 0.26603 9 0.03564 8 0.00337	
Positive a	and negative	controls	S 9	Plate c	ounts:	s Mear	n S.E.	
Untreated Sodium Az DMSO 2-Aminoan		1 μg/pl 50 μl/pl 2 μg/pl	- + +	139 140 954 970 136 135 944 1012	901 148	942	2 20.9 0 4.2	

^{* =} Thinning of the background lawn

9. APPENDIX I - Historical Control Data

Page 29

WITHOUT METABOLIC ACTIVATION

	Untreated	Untreated	Positive control	Positive control
	Plate incorporation	Pre-incubation	Plate incorporation	Pre-incubation
TA1535				
Mean value	19	19	520	516
SD	2.8	2.7	74.5	83.8
n	222	105	222	105
TA1537				
Mean value	17	18	148	123
SD	2.3	1.8	50.3	37.8
n	227	105	227	105
TA98				
Mean value	31	30	224	211
SD	3.1	2.3	31.2	27.0
n	227	102	227	102
TA100				
Mean value	152	135	720	739
SD	18.8	13.7	112.2	128.6
n	228	104	228	104
WP2 uvrA				
Mean value	29	30	159	191
SD	5.2	7.0	49.6	111.5
n	6	8	6	8

SD: standard deviation n: number of experiments

RTC Study No.: 8837-008

WITH METABOLIC ACTIVATION

	Untreated	Untreated	Positive control	Positive control
	Plate incorporation	Pre-incubation	Plate incorporation	Pre-incubation
TA1535				
Mean value	17	16	154	96
SD	2.4	2.0	32.0	15.5
n	220	105	220	105
TA1537				
Mean value	22	23	120	87
SD	2.8	2.0	25.1	13.6
n	224	103	224	103
TA98				
Mean value	44	42	1079	1008
SD	5.4	4.7	226.2	194.3
n	232	98	232	98
TA100				
Mean value	166	150	1276	1144
SD	18.7	14.9	265.0	181.6
n	235	99	235	` 99
WP2 uvrA				
Mean value	36	37	295	284
SD	8.9	9.4	75.4	91.9
n	6	8	6	8

SD: standard deviation n : number of experiments

10. APPENDIX II - Study Protocol

RTC Study No.: 8837-008

Version 01/1UMB.

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

Final protocol prepared for

AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

by

RESEARCH TOXICOLOGY CENTRE S.p.A.

Via Tito Speri, 12 00040 Pomezia (Roma) Italy

RTC Study No.: 8837-008

Page 33

RTC Enquiry Number: 8837

July2001

- 1 of 15 -

Commercial Office

RTC S.p.A RYC S.p.A Vis Tito Speri, 1? 00040 Pomezis (Roma) - ITALY Tel.: + 39.06.91095.1

RTC France Tel./Fax: 432.1,47637138 Mobile: +33:6,14033223 e-mail. mkt@rtc.lt Head Office and Administration

RTC S.p.A. RTC S.p.A. Via Tito Speri, 12 00040 Pomezia (Roma) - JTALY Tei: + 39.06.91095.1 Fax: → 39.06.912.2233 RTC S.p.A. Capitale sociale 10.000.000.000 C.C.I.A.A. n' 375376 Reg. Soc. Tilb. di Roma n' 2825/72 Cod. Fisc.: 00653120584

Version 01/1UMB.

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

MANAGEMENT OF STUDY

Scientific Director

J. Brightwell, Ph.D.

Head of Genetic and Cellular Toxicology

S. Cinelli, Biol.D.

Study Director

O. Scarcella, Biol. D.

Sponsor

AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI)

Italy

Monitor

To be appointed by the Sponsor

QUALITY ASSURANCE

Quality Assurance Manager

M. M. Brunetti, Biol.D.

LOCATION OF STUDY

The study will be performed at

Research Toxicology Centre S.p.A.

Via Tito Speri, 12 00040 Pomezia (Roma)

Italy

The laboratory facilities, archives and administration are located at this site.

TIME SCHEDULE OF STUDY

The Study will be conducted with a time schedule agreed between the Sponsor and RTC.

RTC Enquiry Number; 8837

July2001

Version 01/1UMB.

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

1. <u>INTRODUCTION</u>

1.1 Objective

To assay a number of test items for the ability to induce gene mutations in Salmonella typhimurium and Escherichia coli, as measured by reversion of auxotrophic strains to prototrophy.

1.2 Regulatory requirements

The study will be conducted in compliance with the GLP regulations of the US FDA [21 CRF part 58, 22 December 1978] and subsequent revisions; with Commission Directive 1999/11/EC of 8 March 1999 (adoption of the "OECD principles on Good Laboratory Practice – as revised in 1997") and subsequent revisions and with Decreto Legislativo 27 Gennaio 1992, no. 120 and subsequent revisions. In addition, the study is designed to comply with the experimental methods indicated in the guidelines of:

- EEC Council Directive 2000/32, Annex 4D.
- OECD Guidelines for the testing of chemicals No. 471 (Adopted July 1997)

1.3 Principles of the method

Reverse mutation assays employ bacterial strains which are already mutant at a locus whose phenotypic effects are easily detected. The Salmonella tester strains have mutations causing dependence on a particular amino acid (histidine) for growth. The ability of test items to cause reverse mutations (reversions) to histidine-independence can easily be measured. The E. coli tester strains of the WP2 series are similarly mutant at the tryptophan locus.

Since many chemicals only demonstrate mutagenic activity after metabolism to reactive forms, in order to detect these "indirect mutagens" the test is performed in the presence and absence of a rat liver metabolising system.

RTC Enquiry Number: 8837

July2001

Version 01/1UMB.

2. TEST ITEM

- A number of test items will be supplied for routine testing, each identified by name and relevant univocal identity feature. Documentation of the identity and derivation of each test item will be the responsibility of the Sponsor.
- A study number will be assigned to each test item supplied for investigation. This will consist of a fixed part, identifying the protocol, followed by a sequential number differing for each test item.
- After completion of the study and submission of the final report, all unused samples of each test item will be returned to the Sponsor. An aliquot of each test item will be retained within the archives of the testing facility for a period of ten years after which they will be destroyed.
- Unless otherwise indicated by the Sponsor the storage conditions for the test items will be room temperature.
- 2.5 The test items will be treated with precautions appropriate for potential carcinogens.
- 2.6 The amount of each test item received and used will be recorded according to standard procedures.
- 2.7 Fresh solutions of the test item will be prepared for each day's work; solutions will be prepared on a weight/volume basis without correction for the displacement due to the volume occupied by the test item. Concentrations of solutions will be expressed in terms of active constituents. Preferred solvents will be sterile distilled water, culture medium, DMSO, ethanol, acetone. Other solvents may be used as necessary.
- No assay of test item stability, nor its concentration and homogeneity in vehicle will be undertaken, nor samples of formulated test item consigned to the Sponsor, without express instructions from the Sponsor. No determination of the absorption of the test item in the test system will be made without express instructions from the Sponsor.

RTC Enquiry Number: 8837

July2001

Version 01/1UMB.

3. MATERIALS

3.1 Bacterial strains

Stocks of Salmonella tester strains (TA 1535, TA 1537, TA 1538, TA 98, TA 100, TA 97 and TA 102 and some other related strains) were obtained from Dr. B.N.Ames, University of California. Stocks of E. coli tester strains (WP2, WP2 uvrA and WP2 uvrA pKM101) were obtained from Life Science Research, Occold, Suffolk, UK. Permanent stocks are kept at -80°C, and overnight subcultures of these stocks are prepared for each day's work.

The presence of the appropriate genetic markers in these strains is checked on a monthly basis for those in regular use, and as necessary for other strains, as follows:

Histidine requirement

No Growth on Minimal plates + Biotin.

Growth on Minimal plates + Biotin + Histidine.

Tryptophan requirement:

No Growth on Minimal agar plates

Growth on Minimal plates + Tryptophan.

uvrA, uvrB

Sensitivity to UV irradiation.

rfa

Sensitivity to Crystal Violet.

pKM101

Resistance to Ampicillin.

Strain identity is also confirmed by reference to the spontaneous reversion levels and responses to mutagens during use. Bacterial cultures in liquid and on agar are clearly identified with their identity.

Detailed information about the genetic constitution of the tester strains may be found in the cited publications of Dr. B.N.Ames and Drs. M.H.L. Green and W.J. Muriel.

3.2 Media

The following growth media will be used:

Nutrient Broth: Oxoid Nutrient Broth No 2 will be prepared at a concentration of 2.5% in distilled water and autoclaved prior to use.

This will be used for the preparation of liquid cultures of the tester strains.

RTC Enquiry Number: 8837

Version 01/1UMB.

Nutrient Agar: Oxoid Nutrient Broth No 2 (25g) and Difco Bacto-agar (15g) will be added to one litre of distilled water and autoclaved.

The solution will then be poured into 9 cm plastic Petri dishes and allowed to solidify and dry before use. These plates will be used for the non-selective growth of the tester strains. Incubations on Nutrient Agar will be for approximately 48 or 72 hours.

Minimal Agar: Minimal medium agar will be prepared as 1.5% Difco Bacto-agar in Vogel-Bonner Medium E, with 2% Glucose, and poured into 9 cm plastic Petri dishes.

Top Agar: "Top Agar" (overlay agar) will be prepared as 0.6% Difco Bacto-agar + 0.5% NaCl in distilled water. This solution will be autoclaved, and stored. Prior to use 10 ml of a sterile solution of 0.5 mM Biotin + 0.5 mM Histidine (or 0.5 mM tryptophan) will be added to 100 ml of the top agar.

All incubations will be at 37°C.

3.3 S9 mix

The S9 liver tissue fraction will be prepared according to RTC standard procedures. Induction of drug metabolising enzyme-levels is routinely performed using phenobarbitone and betanaphthoflavone (Mixed Induction); induction with Aroclor 1254 will be performed if specifically requested by the Sponsor. Records pertaining to the preparation of the S9 fraction are kept in file at RTC. The mixture of S9 tissue fraction and cofactors (S9 mix) will be prepared as follows (for each 10 ml):

1.0 ml
0.4 ml
0.5 ml
1.0 ml
$0.8 \mathrm{\ ml}$
$5.0~\mathrm{ml}$
1.3 ml
10.0 ml

RTC Enquiry Number: 8837

Version 01/1UMB.

3.4 Control substances

Positive control treatments will be used in each experiment. The positive control agents are obtained commercially and characterised by their labelling, and their stability determined from the scientific literature. Sodium azide and methylmethanesulphonate will usually be dissolved in distilled water; 9-aminoacridine, 2-nitrofluorene and 2-aminoanthracene will usually be dissolved in DMSO. The frequency of preparation of stock solutions will be determined by their stability.

4. PRELIMINARY TOXICITY TEST

4.1 Experimental design

In order to establish the concentrations of test item to be used in the main assay, a preliminary toxicity test will be performed.

This test follows the method described in section 6.1, using only one plate per dose level, a single S9 mix concentration (10%) and covering a wide range of concentrations of the test item.

The highest dose-level for this preliminary test, unless limited by the solubility of the test item, will be 5 mg/plate, and the lower dose-levels will be spaced at approximately half-log intervals.

4.2 Selection of dose-levels

The toxicity will be assessed on the basis of a decline in the number of spontaneous revertants or a thinning of the background lawn. The highest doselevel for the mutation assays will be selected as a concentration which elicits moderate toxicity. If there is no evidence of toxicity following treatment with the test item, then the highest dose-level will be 5 mg/plate.

5. EXPERIMENTAL DESIGN

Each experiment will include negative and positive controls, and at least five doses of the test item, tested in the absence and presence of an S9 metabolising system. Three replicate plates will be used at each test point, and two independent experiments will be performed. If a positive result is obtained in any tester strain, a confirmatory experiment will be performed under the same experimental conditions. If, however, negative results are obtained in the first experiment, the confirmatory experiment will be performed using the pre-incubation method. A further experiment may be undertaken if inconsistent results are obtained.

RTC Enquiry Number: 8837

Version 01/1UMB.

The five bacterial strains *S. typhimurium* TA1535, TA1537, TA98, TA100 and *E. coli* WP2 *uvr*A will be used in this study.

Negative controls: untreated and solvent vehicle controls will be prepared for each experiment; when the solvent is distilled water, these will be considered to be equivalent and only one set of controls is performed.

Positive controls: treatments are indicated in the following table:

Tester strain	Absence of S9	Presence of S9
TA1535	sodium azide 1 μg/plate	2-aminoanthracene 1 μg/plate
TA100	sodium azide 1 μg/plate	2-aminoanthracene 1 μg/plate (2 μg/plate)
TA1537	9-amino-acridine 50 μg/plate	2-aminoanthracene 1 μg/plate
TA98	2-nitrofluorene 2 μg/plate	2- aminoanthracene 1 μg/plate (2 μg/plate)
WP2 uvrA	methylmethanesulphonate 500 μg/plate	2-aminoanthracene 10 μg/plate (20 μg/plate)

Concentrations refer to both treatment methods. When two values are given, the figures in brackets refer to the pre-incubation method assay.

Test item: the highest dose-level of the test item to be used will be selected as described above. Further dose levels will be selected at intervals of a factor of two.

Where it seems advisable, further test points or controls may be included in experiments.

In addition, plates will be prepared to check the sterility of the test item solutions and the S9 mix, and dilutions of the bacterial cultures will be plated on nutrient agar plates to establish the number of bacteria in the cultures.

RTC Enquiry Number: 8837

Version 01/1UMB.

6. ASSAY PROCEDURE

6.1 Plate-incorporation

The components of the assay (the tester strain bacteria, the test item and S9 mix or phosphate buffer) will be added to molten overlay agar and vortexed. The mixture will then be poured on the surface of a minimal medium agar plate, and allowed to solidify prior to incubation.

The overlay mixture will be composed as follows:

(i)	Overlay agar (held at 45°C)	2	ml
(ii)	Test or control substance solution	0.1	ml
(iii)	S9 mix or phosphate buffer	0.5	ml
(iv)	Bacterial suspension	0.1	ml

The volume of test item solution, as indicated, will usually be 0.1 ml; in the event that it is necessary to alter this volume, the quantities used will be carefully recorded.

6.2 Pre-incubation

The components will be added in turn to an empty test-tube:

(i)	Bacterial suspension	$0.1 \mathrm{ml}$
(ii)	Test or control substance solution	0.05 ml
(iii)	S9 mix or phosphate buffer (pH 7.4, 0.1 M)	0.5 ml

The volume of test item solution, as indicated, will usually be 0.05 ml. Where control or test items are dissolved in aqueous solvents, the volume used may be 0.1 ml. In the event that it is necessary to alter this volume, the quantities used will be carefully recorded.

The incubate will be vortexed and placed at 37°C for 30 minutes. Two ml of overlay agar will then be added and the mixture vortexed again and poured onto the surface of a minimal medium agar plate and allowed to solidify.

RTC Enquiry Number: 8837 July2001

Version 01/1UMB.

6.3 Incubation and scoring

The prepared plates will be inverted and incubated for approximately 72 hours at 37°C. When the test item is a liquid at ambient temperature, the plates will be incubated in separate closed containers for each dose-level. After this period of incubation, the plates may be held at 4°C prior to scoring. Scoring is effected by counting the number of revertant colonies on each plate, either manually, or using a Cardinal - Automatic colony counting system (Perceptive Instruments). Contaminated plates will be considered on a case-by-case basis.

7. REPORTING

7.1 Presentation of data

The data will be presented in tabular form. The individual plate counts for each experiment will be given, together with the means and standard errors of the means, and regression analyses.

7.2 Evaluation of data

For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose-levels or at the highest practicable dose-level only. In addition there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose-levels.

Evaluation of Ames test data based on a 'doubling rate' has been shown to be as effective as statistical techniques in allowing the correct interpretation of test results (Chu et al. 1981).

7.3 Historical Data

In any case of unexpected results or analytical findings in treated or untreated plates historical data shall be included for comparison and interpretation.

RTC Enquiry Number: 8837

Version 01/1UMB.

7.4 Reporting procedure

A draft report will be despatched for comment before finalisation.

7.5 Final report

The following information and data will be included in the final report:

- name and address of the facility performing the study and the dates on which the study was initiated and completed;
- objective, and procedures stated in the approved protocol, including approved changes to the original protocol;
- data generated while conducting the study;
- statistical methods employed for analysing the data;
- the test item identified by name;
- method used:
- any unforeseen circumstances that may have affected the quality or integrity of the study;
- the name and signature of the Study Director;
- a summary of the data, an analysis of the data and a statement of the conclusions drawn from the analysis;
- the location where all raw data, specimens and final report are to be stored;
- Quality Assurance statement.

Three copies of the final report (2 bound, 1 unbound) will be supplied.

7.6 Records kept

Full records will be maintained of all aspects of study conduct, along with the results of all measurements and observations. Prior to final archiving of the study data a full list will be prepared of all records associated with the study.

RTC Enquiry Number: 8837

Version 01/1UMB.

7.7 Archiving

All raw data, records and documentation arising from this study and a copy of the final report consigned will be stored in the archives of Research Toxicology Centre S.p.A. for a period of five years from the date of consignment of the Final Report. At the end of this period, the Sponsor will be contacted for despatch or disposal of the material.

8. <u>STUDY CONDUCT</u>

. (

8.1 Language

English language and Italian language versions of the study protocol, Standard Operating Procedures and other study documents may be used interchangeably. Similarly, English and Italian renderings of chemical names, including that of the test material will be considered to be equivalent.

8.2 Scientific decisions

The procedures described in this protocol may not comprehensively cover all the circumstances that can arise in the assay of test items. When the study director considers it advisable to modify the procedures described for the selection of a solvent, selection of dose-levels, interpretation of the outcome of the study or other aspects of the study conduct, he will record carefully the decision he has reached and the reasoning which led to it.

Each scientific decision has to be discussed with the Sponsor before application.

RTC Enquiry Number: 8837

Version 01/1UMB.

8.3 Quality assurance

The study is subjected to the procedure for quality assurance as defined by the relevant GLP regulations. Specifically:

- the protocol is inspected for compliance;
- procedures of the laboratories concernéd will be inspected at intervals adequate to assure the integrity of the study;
- the final report is reviewed to ensure that it accurately describes the methods and relevant Standard Operating Procedures and that the results are in agreement with the raw data;
- periodic reports on these activities are made to management and the Study Director.

All raw data pertaining to the study will be available for inspection by the study monitor (for scientific monitoring) or the Quality Assurance Unit of the Sponsor (compliance monitoring).

RTC Enquiry Number: 8837

Version 01/1UMB.

9. REFERENCES

Ames, BN, J. McCann and E. Yamasaki (1975)

Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test.

Mutation Research 31, 347-364.

Chu K.C. et al. (1981)

Evaluating statistical analyses and reproducibility of microbial mutagenicity assays.

Mutation Research 85, 119-132.

Claxton L.D. et al. (1987)

Guide for the Salmonella typhimurium/mammalian microsome tests for bacterial mutagenicity.

Mutation Research 189, 83-91.

Gatehouse D. et al. (1994)

Recommendations for the performance of bacterial mutation assays.

Mutation Research 312, 217-233

Green M.H.L. and W.J. Muriel (1976)

Mutagen testing using TRP+reversion in Escherichia coli.

Mutation Research 38, 3-32.

Maron D.M. and B.N. Ames (1983).

Revised methods for the Salmonella mutagenicity test.

Mutation Research 113, 173-215.

Venitt S., R. Forster and E. Longstaff (1983).

Bacterial Mutation Assays

in: Report of the UKEMS Subcommittee on Guidelines for Mutagenicity testing.

U.K.E.M.S., Swansea, 1983.

Venitt S., C. Croften-Sleigh and R. Forster (1984)

Bacterial mutation assays using reverse mutation

in: Mutagenicity Testing - a practical approach

S. Venitt and J.M. Parry (eds.)

IRL Press, Oxford, 1984.

RTC Enquiry Number: 8837

Version 01/1UMB PROTOCOL APPROVAL PAGE STUDY TITLE BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli) TEST FACILITY RESEARCH TOXICOLOGY CENTRE S.p.A. Via Tito Speri, 12 00040 Pomezia (Rome) Italy RTC ENOURY NO 8837 con celes APPROVED BY O. Scarcella, Biol. D. Study Director RELEASED BY S. Cinelli, Biol. D. Head of Genetic and Cellular Toxicology **SPONSOR** AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy **AUTHORISED BY** SPONSOR* blood of Regulatory Affairs and lindustrial Toncology Name and Title

RTC Enquiry Number: 8837

July2001

- 15 of 15 -

11. APPENDIX III – Certificate of analysis

RTC Study No.: 8837-008

Bollate, 30 gennaio 2002

Certificato di analisi

Prodotto:

Batch:

Concentrazione della soluzione:

PH della soluzione:

90215/91

5 % peso

6.5

Caratteristiche del precursore acido:

Peso equivalente:

560

Metodo:

titolazione acidimetrica

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

FINAL REPORT

RTC Study No.: 8837-007

Sponsor: AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

RTC S.p.A Via Tito Speri, 12 00040 Pomezra (Ruma) - iTALY Tet. + 39.06.910.95137 e-mail.mk/@rtc.it www.rtc.it

COMPLIANCE STATEMENT

We, the undersigned, hereby declare that the following report constitutes a true and faithful account of the procedures adopted, and the results obtained in the performance of the study. The aspects of the study conducted by Research Toxicology Centre S.p.A. were performed in accordance with:

- A. "Good Laboratory Practice Regulations" of the U.S. Food and Drug Administration, Code of Federal Regulations, 21 Part 58, 22 December 1978 and subsequent revisions.
- B. Commission Directive 1999/11/EC of 8 March 1999 adapting to technical progress the principles of good laboratory practice as specified in Council Directive 87/18/EEC on the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances (adoption of the "OECD principles on Good Laboratory Practice - as revised in 1997") and subsequent revisions.
- C. Decreto Legislativo 27 Gennaio 1992, n. 120 published in the Gazzetta Ufficiale della Repubblica Italiana 18 Febbraio 1992 (adoption of the Commission Directive of 18 December 1989 adapting to technical progress the Annex to Council Directive 88/320/EEC on the inspection and verification of Good Laboratory Practice (90/18/EEC)) and subsequent revisions.

J. Breintim

O. Scarcella, Biol.D. (Study Director)

Quille scendo c Date: 09 Jan 2003

J. Brightwell, Ph.D. (Scientific Director)

9.01.03

QUALITY ASSURANCE STATEMENT

(Relevant to the aspects of the study conducted by RTC)

Study phases monitored by RTC's		y Assurance Ins Day Month Yea	-
QAU according to current relevant Standard Operating Procedures	Inspection	Report to Study Director	Report to Company Management
PROTOCOL CHECK	08.08.2001	09.08.2001	09.08.2001
PROCESS-BASED INSPECTIONS			
Dose preparation	15.01.2002		19.01.2002
Treatment	22.03.2002		29.03.2002
Plating out Plate scoring	22.03.2002 08.02.2002		29.03.2002 15.02.2002
	,		

Other routine inspections of a procedural nature were carried out on activities not directly related to this type of study. The relevant documentation is kept on file although specific inspection dates are not reported here.

FINAL REPORT	Review completed
Review of this report by RTC's QAU found the reported methods and procedures to describe those used and the results to constitute an accurate	•
representation of the recorded raw data.	

M.M. Brunetti, Biol.D.

(Head of Quality Assurance)

Date

Contents

	F	age
1.	SUMMARY	5
2.	INTRODUCTION	6
	2.1 Purpose	6
	2.2 Principles of the method	6
	2.3 Study-organisation	6
3.	MATERIALS AND METHODS	8
•	3.1 Test item	8
	3.2 Control items	8
	3.3 Media	9
	3.4 S9 tissue homogenate	9
	3.5 Bacterial strains	10
	3.6 Methods	10
	3.6.1 Preliminary toxicity test	10
	3.6.2 Main experiments.	11
	3.6.3 Incubation and scoring	11
4.	RESULTS	12
4.		12
	4.1 Solubility test	12
	4.3 Assay for reverse mutation	12
	·	
5.	ANALYSIS OF RESULTS	13
	5.1 Criteria for outcome of the assays	13
	5.2 Evaluation	13
6.	CONCLUSION	14
7.	KEY TO TABLES 1-12	15
	7.1 Structure of Tables 3 - 12	15
	7.2 Regression line	15
8.	TABLES 1 TO 12	16
9.	APPENDIX I - Historical Control Data	29
10.	APPENDIX II - Study Protocol	32
	A STATE OF A CONTRACT OF A CON	18

1. SUMMARY

- 1.1 The test item was examined for the ability to induce gene mutations in tester strains of Salmonella typhimurium and Escherichia coli, as measured by reversion of auxotrophic strains to prototrophy. The five tester strains TA1535, TA1537, TA98, TA100 and WP2 uvrA were used. Experiments were performed both in the absence and presence of metabolic activation, using liver S9 fraction from rats pre-treated with phenobarbitone and betanaphthoflavone. Test item solutions were prepared using sterile distilled water.
- 1.2 In the toxicity test, the test item was assayed at a maximum dose-level of 5000 μg/plate and four lower dose-levels spaced at approximately half-log intervals: 1580, 500, 158 and 50.0 μg/plate. No signs of toxicity were observed at any dose-level tested, in any tester strain, in the absence or presence of S9 metabolic activation.
- 1.3 Two main experiments were performed.

 In Main Assay I, using the plate incorporation method, the test item was assayed at a maximum dose-level of 5000 μg/plate and at four lower dose-levels, separated by two-fold dilutions: 2500, 1250, 625 and 313 μg/plate.

 As no increases in revertant numbers were observed, all treatments of Main Assay II included a pre-incubation step and used the same dose-range employed in Main Assay I.
- 1.4 The test item did not induce two fold increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism.
- 1.5 It is concluded that the test item does not induce reverse mutation in *Salmonella typhimurium* and *Escherichia coli* under the reported experimental conditions.

RTC Study No.: 8837-007

2. INTRODUCTION

2.1 Purpose

This report describes experiments performed to assess the mutagenic activity of the test item to *Salmonella typhimurium* strains TA1535, TA1537, TA98 and TA100, and to *Escherichia coli* strain WP2 *uvr*A using the procedures developed by Ames *et al.*, 1975 and revised by Maron and Ames, 1983.

The study was designed to comply with the experimental methods indicated in:

- EEC Council Directive 2000/32, Annex 4D.
- OECD Guideline for the testing of chemicals No. 471 (Adopted July 1997).

2.2 Principles of the method

Reverse mutation assays employ bacterial strains which are already mutant at a locus whose phenotypic effects are easily detected. The *Salmonella* tester strains have mutations causing dependence on a particular amino acid (histidine) for growth. The ability of test items to cause reverse mutations (reversions) to histidine-independence can easily be measured. The *E. coli* tester strains of the WP2 series are similarly mutant at the tryptophan locus.

Since many chemicals only demonstrate mutagenic activity after metabolism to reactive forms, in order to detect these "indirect mutagens" the test is performed in the presence and absence of a rat liver metabolising system.

2.3 Study organisation

Sponsor:

AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

Location of Study:

Research Toxicology Centre S.p.A. Genetic Toxicology Department Via Tito Speri, 12 00040 Pomezia (Roma) Italy

Principal dates:

Study protocol approved by Study Director: 20-Jul-2001 Study commenced: 22-Feb-2002 (Toxicity assay treatment)

Study completed: 08-Mar-2002 (Completion of scoring Main Assay II)

Study Director:

O. Scarcella, Biol.D.

Archiving:

The original data arising from this study and a copy of the final report consigned will be stored in the archives of Research Toxicology Centre S.p.A. for a period of five years from the date of consignment of the report. At the completion of this period the Sponsor will be contacted for despatch or disposal of the material, or further archiving. An aliquot of the test item will be retained within the archives of the testing facility for a period of ten years after which it will be destroyed.

3. MATERIALS AND METHODS

3.1 Test item

Details of the test item received at RTC were as follows:

Name : 90215/92 : 90215/92

Concentration of active ingredient : 20% w/w Expiry date : 28-02-2004

Received from : AUSIMONT S.p.A.

Date received : 11-02-2002 Amount received : 500 grams

Description : Colourless liquid
Container : Opaque plastic tank
Storage at RTC : Ambient conditions

RTC reference number : 6533

On 20-Feb-2002 the test item was transferred from the Formulation Unit to the Department of Genetic and Cellular Toxicology and stored under the same conditions. A certificate of analysis, supplied by the Sponsor, can be found in Appendix III of this report.

Solutions of the test item, as received, were prepared, immediately before use, on a weight/volume basis without correction for the displacement due to the volume of the test item. All test item solutions were used within 2 hours and 30 minutes of the initial formulation. Concentrations are expressed in terms of active ingredient. No assay of test item stability, nor its concentration and homogeneity in solvent were undertaken. All dose-levels in this report are expressed to three significant figures.

3.2 Control items

The solvents used in this study were: sterile distilled water (Bieffe Medital, batch 01C02-01). dimethylsulphoxide (DMSO) (Fluka AG, batch 421649/1 13001).

Positive control treatments used solutions prepared as follows:

Sodium azide (Fluka AG, batch 221999 1081) in distilled water.

9-Aminoacridine (ICN K&K Laboratories, batch 12058-A) in DMSO.

2-Nitrofluorene (EGA Chemie, batch 12532) in DMSO.

2-Aminoanthracene (Sigma, batch 58F-3462) in DMSO.

Methylmethanesulphonate (MMS) (Fluka AG, batch 359316/153696) in distilled water.

3.3 Media

The following growth media were used:

Nutrient Broth: Oxoid Nutrient Broth No 2 was prepared at a concentration of 2.5% in distilled water and autoclaved prior to use.

This was used for the preparation of liquid cultures of the tester strains.

Nutrient Agar: Oxoid Nutrient Broth No 2 (25g) and Difco Bacto-agar (15g) were added to distilled water (1 litre) and autoclaved.

The solutions were then poured into 9 cm plastic Petri dishes and allowed to solidify and dry before use. These plates were used for the non-selective growth of the tester strains.

Minimal Agar: Minimal medium agar was prepared as 1.5% Difco Bacto-agar in Vogel-Bonner Medium E, with 2% Glucose, and poured into 9 cm plastic Petri dishes.

Top Agar: "Top Agar" (overlay agar) was prepared as 0.6% Difco Bacto-agar + 0.5% NaCl in distilled water. Prior to use 10 ml of a sterile solution of 0.5 mM Biotin + 0.5 mM Histidine (or 0.5 mM tryptophan) was added to the top agar (100 ml).

3.4 S9 tissue homogenate

Two batches of S9 tissue homogenate (designated 2002/1 and 2002/2) were used in this study and had the following characteristics:

S9 Batch	Protein content (mg/ml)	Aminopyrine demethylase activity (µM/g liver/5 min, formaldehyde production)
2002/1	33.1 ± 1.69	4.14 ± 0.09
2002/2	35.8 ± 2.66	4.04 ± 0.07

Each S9 tissue fraction was prepared from the livers of five young male Sprague-Dawley rats which had received prior treatment with phenobarbital and betanaphthoflavone to induce high levels of xenobiotic metabolising enzymes. The efficacy of the S9 tissue fraction was previously checked in an Ames test and produced acceptable responses with the indirect mutagens 2-aminoanthracene and benzo(a)pyrene, using *S. typhimurium* tester strain TA100.

RTC Study No.: 8837-007

The mixture of S9 tissue fraction and cofactors (S9 mix) was prepared as follows (for each 10 ml):

S9 tissue fraction	1.0 ml
NADP (100 mM)	0.4 ml
G-6-P (100 mM)	0.5 ml
KCl (330 mM)	1.0 ml
MgCl2 (100 mM)	0.8 ml
Phosphate buffer	5.0 ml
(pH 7.4, 200 mM)	
Distilled Water	1.3 ml
	100 1
	10.0 ml

3.5 **Bacterial strains**

Four strains of Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) and a strain of Escherichia coli (WP2 uvrA) were used in this study. Permanent stocks of these strains are kept at -80°C in RTC. Overnight subcultures of these stocks were prepared for each day's work.

Bacteria were taken from vials of frozen cultures, which had been checked for the presence of the appropriate genetic markers, as follows:

No Growth on Minimal plates + Biotin. Histidine requirement

Growth on Minimal plates + Biotin + Histidine.

Tryptophan requirement: No Growth on Minimal agar plates

Growth on Minimal plates + Tryptophan.

Sensitivity to UV irradiation. uvrA, uvrB

Sensitivity to Crystal Violet. rfa

Resistance to Ampicillin.

pKM101

Bacterial cultures in liquid and on agar were clearly identified with their identity.

3.6 Methods

3.6.1 Preliminary toxicity test

A preliminary toxicity test was undertaken in order to select the concentrations of the test item to be used in the main assays. Due to an oversight, an additional toxicity test was performed. The results regarding this experiment were consistent with these presented and are retained in the study file and archived with all other data. In the toxicity test a wide range of dose-levels of the test item, set at half-log intervals, was used. Treatments were performed both in the absence and presence of S9 metabolism using the plate incorporation method; a single plate was used at each test point and positive controls were not included.

3.6.2 Main experiments

Two experiments were performed including negative and positive controls in the absence and presence of an S9 metabolising system. Three replicate plates were used at each test point.

In addition, plates were prepared to check the sterility of the test item solutions and the S9 mix, and dilutions of the bacterial cultures were plated on nutrient agar plates to establish the number of bacteria in the cultures.

The first experiment was performed using a plate-incorporation method. The components of the assay (the tester strain bacteria, the test item and S9 mix or phosphate buffer) were added to molten overlay agar and vortexed. The mixture was then poured onto the surface of a minimal medium agar plate, and allowed to solidify prior to incubation.

The overlay mixture was composed as follows:

(i)	Overlay agar (held at 45°C)	2	ml
(ii)	Test or control item solution	0.1	ml
(iii)	S9 mix or phosphate buffer (pH 7.4, 0.1 M)	0.5	ml
(iv)	Bacterial suspension	0.1	ml

The second experiment was performed using a pre-incubation method. The components were added in turn to an empty test-tube:

(i)	Bacterial suspension	0.1 ml	
(ii)	·Test item solution or solvent control	0.1 ml	
(iii)	DMSO or positive control solution	0.05 ml	
(iv)	S9 mix or phosphate buffer (pH 7.4, 0.1 M)	0.5 ml	

The incubate was vortexed and placed at 37°C for 30 minutes. Two ml of overlay agar was then added and the mixture vortexed again and poured onto the surface of a minimal medium agar plate and allowed to solidify.

3.6.3 Incubation and scoring

The prepared plates were inverted and incubated for approximately 72 hours at 37°C. After this period of incubation, the scoring was effected by counting the number of revertant colonies on each plate.

RTC Study No.: 8837-007

4. RESULTS

4.1 Solubility test

As indicated by the Sponsor, the test item is an aqueous solution at a concentration of 20% w/w. Since 100 μ l of the test item solution are used in the preparation of each plate, this permitted a maximum concentration of 5000 μ g/plate to be used in the toxicity test.

4.2 Toxicity test

The test item was assayed at a maximum dose-level of 5000 μ g/plate and at four lower dose-levels spaced at approximately half-log intervals: 1580, 500, 158 and 50.0 μ g/plate. Results are presented in Tables 1 and 2.

No signs of toxicity were observed at any dose-level tested, in any tester strain, in the absence or presence of S9 metabolic activation. On the basis of these results a maximum concentration of 5000 μ g/plate was selected for the Main Assay with all tester strains.

4.3 Assay for reverse mutation

Two experiments were performed; individual plate counts for these tests, and the mean and standard error of the mean for each test point, together with statistical analysis are presented in Tables 3 to 12.

In Main Assay I, using the plate incorporation method, the test item was assayed at a maximum dose-level of 5000 μ g/plate and at four lower dose-levels, separated by two-fold dilutions: 2500, 1250, 625 and 313 μ g/plate. No signs of toxicity were observed.

As no increases in revertant numbers were observed, all treatments of Main Assay II included a pre-incubation step and used the same dose-range employed in Main Assay I. Toxicity, as indicated by thinning of the background lawn and/or reduction in revertant numbers, was observed both in the absence and presence of S9 metabolic activation, at the two higher dose-levels with TA1537 and TA100 tester strains. In the absence of S9 metabolism, toxicity was also observed with TA1535 and TA98 at the highest dose-level.

The test item did not induce two-fold increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism.

The sterility of the S9 mix and the test item solutions was confirmed by the absence of colonies on additional agar plates spread separately with these solutions. Marked increases in revertant numbers were obtained in these tests following treatment with the positive control items, indicating that the assay system was functioning correctly.

RTC Study No.: 8837-007 Page 12

5. ANALYSIS OF RESULTS

5.1 Criteria for outcome of the assays

For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose-levels or at the highest practicable dose-level only. In addition, there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose-levels.

5.2 Evaluation

The test item does not induce increases in the number of revertant colonies, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism. On the basis of the stated criteria it must be concluded that the test item is not mutagenic to S. typhimurium and E. coli under the reported experimental conditions.

RTC Study No.: 8837-007

6. CONCLUSION

It is concluded that the test item does not induce reverse mutation in Salmonella typhimurium and Escherichia coli under the reported experimental conditions.

RTC Study No.: 8837-007 Page 14

7. KEY TO TABLES 1-12

7.1 Structure of Tables 3-12

These tables show, for each Salmonella typhimurium or Escherichia coli tester strain, the individual plate counts obtained for the negative and positive controls, and at each dose-level of the test item. The mean number of revertant colonies and standard error of the mean are also presented. The "untreated" plates receive no treatment. The titre of the bacterial cultures is given (million cells/plate).

7.2 Regression line

i) The regression analysis fits a regression line to the data by the least squares method, after square root transformation of the plate counts to satisfy normal distribution and homoscedasticity assumptions. The regression equation is expressed as:

y = a + bx
where y = transformed revertant numbers
a = intercept
b = slope value
x = dose-level (in the units given).

ii) Regression lines are calculated using a minimum of the three lowest dose-levels, and then including the further dose-levels in turn. The correlation co-efficient (r), the value of students "t" statistic, and the p-value for the regression lines are also given.

RTC Study No.: 8837-007

8. TABLES 1 TO 12

Page 16

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 1 - WITHOUT METABOLIC ACTIVATION

STUDY NO.: 8837-007

SOLVENT: Sterile distilled water

EXPERIMENT: Toxicity test

TA-1535 Rev/pl.	TA-1537 Rev/pl.	TA-98 Rev/pl.	TA-100 Rev/pl.	WP2 <i>uvrA</i> Rev/pl.
19	18	30	142	23
22	18	36	126	26
17	18	32	124	22
20	14	32	129	24
22	11	31	136	23
17	12	29	113	19
	19 22 17 20 22	Rev/pl. Rev/pl. 19 18 22 18 17 18 20 14 22 11	Rev/pl. Rev/pl. Rev/pl. 19 18 30 22 18 36 17 18 32 20 14 32 22 11 31	Rev/pl. Rev/pl. Rev/pl. 19 18 30 142 22 18 36 126 17 18 32 124 20 14 32 129 22 11 31 136

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 2 - WITH METABOLIC ACTIVATION

STUDY NO.: 8837-007

SOLVENT: Sterile distilled water

EXPERIMENT: Toxicity test

		TA-98 Rev/pl.		P2 uvrA Rev/pl.
17	20	42	139	37
21	19	42	142	30
20	24	45	133	32
16	21	36	1.38	30
<u>1</u> 4	20	35	142	32
11	21	41	137	21
	17 21 20 16	17 20 21 19 20 24 16 21 14 20	17 20 42 21 19 42 20 24 45 16 21 36 14 20 35	17 20 42 139 21 19 42 142 20 24 45 133 16 21 36 138 14 20 35 142

BACTERIAL MUTATION ASSAY (S. typhimurium and F. ccli)

TABLE 3 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-007

Strain: T	A1535						Tit	re: 2	225		
Dose-leve	l Wit	hout. m	etabo	lic ac	t.ivat:	lon	Wit	h meta	aboli	c activ	ation
[µg/pl]				Mean			Pla	te cou	ınts	Mean	S. E.
Untreated	22	27	20	23	2.1		14	18	16	16	1.2
313	1.8	20	21	20	0.9		17	19	1.4	17	1.5
625	17	21	22	20	1.5		20	17	13	17	2.0
1250	19	23	21	21	1.2		15	13	14	1.4	0.6
2500	21	19	22	21	0.9		16	17	15	16	0.6
5000	14	16	19	16	1.5		15	19	20	18	1.5
Regressio	n analys	is:									
Points S	9 Inter	cept	Sl	ope	Corr.	coef	Ef.	t	:	P-value	
1 - 3 -	4	.722	-0.0	005	-(.4550)6	1.352	21 (0.21840	
1 - 4 -		.622	-0.0			.1793		0.576	54 F	0.57706	
1 - 5 -	4	.591	0.0	000	-0	.1125	59	0.408	36	0.68952	
1 - 6 -	4	.648	-0.0	001	(.5881	. 4	2.908	39 (0.01025	
1 - 3 +	4	.009	0.0	001	C	.1048	36	0.279	30 (0.78834	
1 - 4 +	4	.092	-0.0	002	-(.3679	99	1.251	.5 (23923	
1 - 5 +	4	.010	0.0	000	(.1284	12	0.466	59 (0.64830	
1 - 6 +	3	.951	0.0	000	C	.2590)]	1.072	27 (29933	
Positive a	and nega	tive c	ontro.	ls S9	Pla	te co	ounts	Меа	in S	. E,	
Untreated				_	22	27	20	2	23 2	2.1	
Sodium Azi	de		1 µg/1	ol -	612	578	606	59	9 10	0.5	
DMSO		1 C	0 µĪ/j))]	12	16	15	1	4 1	. 2	
2-Aminoant	hracene		l μg/p	ol .+	1.20	132	114	12	2 5	5.3	

BACTERIAL MUTATION ASSAY (S. typhimurium and $E.\ coli)$

TABLE 4 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-007

				···											
Strain:	: TAl	537						Tit	re:	222					
Dose-le [µg/pl]			Without metabolic activation Plate counts Mean S. E.							With metabolic activation Plate counts Mean S. E					
Untreat 313 625 1250 2500 5000	ed	17 14 16 14 13	1.8 1.5 1.4 20 1.5 1.7	15 19 11 15 16	17 16 14 16 15	0.9 1.5 1.5 1.9 0.9		22 21 24 19 21 21		22 18 22 18 22 17	23 20 23 20 21 19	0.7 1.0 0.7 1.2 0.9 1.2			
Regress Points	ion S9	analysi Interd		Slo	ne	Corr.	coe	ff.	t	F	-value				
1 - 3 1 - 4 1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	+ + + +	4. 3. 3. 4. 4.	116 976 978 978	-0.00 -0.00 -0.00 -0.00 -0.00 -0.00	06 01 01 01 00 02	((((().546).081;).185().331;).000().4194).2928	75 25 08 21 69 40	1.727 0.253 0.679 1.404 0.001 1.461 J.104 2.168	77 0 78 0 91 0 11 0 .8 0	0.12769 0.80180 0.50901 0.17941 0.99860 0.17472 0.28948 0.04551				
Positiv Treatme DMSO 9-Amino DMSO 2-Amino	nt acrio	dine	10 5 10	ontrol 0 µl/p 0 µg/p 0 µl/p 1 µg/p	S9 1 - 1 -	Pla 20 149 19 107	te co 15 138 24 113	12 106 21 90	1	6 2 1 12 1 1	E. .3 .9 .5				

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 5 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-007

Strain	: WP:	2 uvrA						Tit	re:	276	- SALAP ASAPTANANA	
Dose-le [µg/pl]			out mout mout		olic ac Mean	tivat S. E			h met. ite co		ic activ Mean	ation S. E.
Untreat 313 625 1250 2500 5000	ted	24 20 28 29 20 20	25 29 24 24 24 19	33 24 27 23 26 22	27 24 26 25 23 20	2.8 2.6 1.2 1.9 1.8 0.9		31 33 30 30 32 28	30 30 34 37 28 29	38 29 36 38 30 34	33 31 33 35 30 30	2.5 1.2 1.8 2.5 1.2
Regress Points	sion S9	analysi Interc		sì	ope	Corr	. coe	ff.	t		P-value	
1 - 3 1 - 4 1 - 5 1 - 6 1 - 3 1 - 4 1 - 5 1 - 6	- - + + +	5. 5. 5. 5.	628	-0.0 -0.0 -0.0 -0.0 0.0 0.0 -0.0	001 001 001 001 002 001	-(-(((0.1018 0.1156 0.3149 0.5926 0.0522 0.3213 0.1902	49 92 50 27 39	0.270 0.367 1.196 2.942 0.138 1.073 0.698 1.219	77 53 8 8 15 5 6	0.79426 0.72078 0.25293 0.00955 0.89377 0.30837 0.49710 0.24018	
Positiv Treatme UNTREAT MMS DMSO 2-Amino	nt ED	d negat: cacene	500 100	ntro:	S9 - ol -	Pla 24 208 32 232	te cc 25 205 33 218	33 202 34 225		7 ; 5 ;	. E. 2.8 1.7 0.6 4.0	

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 6 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-007

Strain: TA9	8						Tit	re: 2	243		
Dose-level [µg/pl]	Witho Plate		taboli ts M	c ac ean	tivati S. E.			h meta te cou		activ Mean	
Untreated 313 625 1250 2500 5000	32 33 30 30	28 30 31 27	35 34 37 30 34 27	32 31 33 30 30 28	1.5 1.8 2.0 0.3 2.0		41 41 39 39 40 38	42 37	45 40 37 40 36 40	44 39 40 40 38 38	1.8 1.2 1.8 0.9 1.2 1.5
Regressi,on a	analysis	:									
Points S9	Interce	pt	Slop	е .	Corr.	coef	f.	t	F	-value	
1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 3 + 1 - 4 + 1 - 5 + 1 - 6 +	5.6 5.6 5.6 6.5 6.4 6.4	99 85 85 87 91	0.000 -0.000 -0.000 -0.000 -0.000 -0.000	1 1 1 6 2	-0 -0 -0 -0 -0	.1497 .2418 .3031 .5459 .5915 .3713 .5399	9 6 9 8 6 2	0.400 0.788 1.147 2.606 1.941 1.264 2.312 2.410	3 0 0 0 8 0 3 0 8 0 8 0	.70049 .44878 .27205 .01908 .09335 .23463 .03775 .02830	
Positive and	d negati	ve coi	ntrols	S9	Pla	te co	unts	Mea	n S.	Ε.	
DMSO 2-Nitrofluor DMSO 2-Aminoanthr		2 100	µl/pl µg/pl µl/pl µg/pl	- - + +	33 196 41 599	33 204 48 528	28 195 40 541	3: 198 4: 558	3 2 3 2	. 5	

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 7 - Experiment 1 - Plate incorporation method -

STUDY NO.: 8837-007

159 162 170 172	224 abolic activants Mean 169 164 158 163 162 163 161 166 156 163 164 168	
159 162 170 172	169 1.64 158 1.63 162 1.63 161 1.66 156 1.63	2.9 3.5 4.1 3.2 4.0
159 162 170 172	169 1.64 158 1.63 162 1.63 161 1.66 156 1.63	2.9 3.5 4.1 3.2 4.0
162 170 172 170	158 163 162 163 161 166 156 163	3.5 4.1 3.2 4.0
170 172 170	162 163 161 166 156 163	4.1 3.2 4.0
172 170	161 166 156 163	3.2 4.0
170	156 163	4.0
166	164 168	3.1
t	P-value	2
0 714	3 N / 9818	
s Mear	n S. E.	
5 150	0 2.6	
5 5	0.714 0.218 1.196 0.690 0.294 0.579 0.004 1.057	0.7143

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 8 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-007

Strain:	TA153	35						Tit	re: 2	225		
Dose-lev [µg/pl]	el			metabo unts		stivatí S. E.			h meta		c activ Mean	
Untreate 313 625 1250 2500 5000	d	21 17 13 17 14 15*	19 21 16 15 20 12*	15 16 19 14 16 17*	18 18 16 15 17	1.8 1.5 1.7 0.9 1.8 1.5		19 15 18 16 20 17	20 15 16 18 15	16 16 19 15 17	18 15 18 16 17	1.2 0.3 0.9 0.9 1.5 1.2
Regressi	on an	alysi	s:									
Points :	S9 I	nterc	ept	Sī	ope	Corr.	coet	ff.	t	J	P-value	
1 - 4 1 - 5 1 - 6 1 - 3 1 - 4 1 - 5	 + + +	4. 4. 4. 4. 4.	307 272 171 164 169 165 121	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0	003 001 001 001 001 000	-0 -0 -0 -0 -0	.3701 .4758 .2346 .3847 .1456 .2341 .0143	33 52 73 58 4 33	1.054 1.710 0.870 1.667 0.389 0.761 0.051	18 (2 12 (2 16 (6 7 (7	0.32686 0.11790 0.39997 0.11492 0.70842 0.46388 0.95957 0.98449	
Positive Treatment	t	negat	ive (contro	ls S9		te co				E.	
Untreated Sodium Az DMSO 2-Aminoar	zide	cene		1 μg/μ 50 μ1/μ 1 μg/μ	ol +	19 566 13 106	20 581 19 99	16 592 17 102	58 1 10	0 7 6 1	7.5 8	

^{* =} Thinning of the background lawn

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 9 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-007

Strain: TA1537					Tit	re: 2	223					
Dose-le					lic ac				With metabolic activation Plate counts Mean S. E			
[µg/pi]		Plate	e cour	nts —	Mean	S. E	•	РІа	te cou	ints	Mean	S. E.
Untreat	ed	16	15	19	17	1.2		20	22	16	19	1.8
313		16	13	17	15	1.2		21	20	16	19	1.5
625		12	19	16	16	2.0		19	23	25	22	1.8
1250			18	18	16	2.0		19		21	20	0.6
2500			17*	17*	16	1.0		12*		14*	15	2.1
5000		7*	11*	8*	9	1.2		14*		12*	14	1.2
Regress	ion	analysis	:									
Points	S9	Interce	pt	Slo	pe	Corr.	coef	f.	t	P-	-value	
1 - 3	_	4.0	44	-0.00	102	-(.1960	0	0.528	8 0.	61328	
1 - 4		4.0	02	0.00	00	-0	.0662	23	0.209	9 0.	83796	
1 - 5	_	3.9	84	0.00	00	- C	.0072	21	0.026	0 0.	97965	
1 - 6		4.1	32	-0.00	02	- C	.7148	6	4.089	20.	00086	
1 - 3	+	4.3	20	0.00	05	C	.4266	4	1.248	1 0.	25213	
1 - 4	+	4.4	23	0.00	01	C	.1812	2	0.582	7 0.	57299	
1 - 5	+	4.5	70	-0.00	02	-0	.5137	5	2.159	1 0.	05012	
1 - 6	+	4.5	27	-0.00	02	-0	.6686	8	3.597	2 0.	00241	
Positiv	e and	d negativ	ve co:	ntrol	s							
Treatmen		-			S 9	Pla	te co	unts	Mear	n S.	E.	
DMSO			50	μl/p.	1 -	20	18	19	1. 9	9 0.	6	
9-Aminoa	acrio	dine		μg/p.		168	175	129	15	7 14.	3	
DMSO			50	μĺ/p.	1 +	26	28	20	25	5 2.	4	
2-Aminoa	anthi	cacene	1	μg/p.	1 +	97	108	99	101	1. 3.	4	

^{* =} Thinning of the background lawn

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 10 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-007

Strain	: WP2	2 uvrA						Tit	re: 2	281		
Dose-le	evel	With	out me	etabo.	lic ac	tivat	ion	Wit	h meta	aboli	c activ	ation
[hā/b]]					Mean				te cou	unts	Mean	S. E.
Untreat	ed	23	24	31	26	2.5		35	30	35	33	1.7
313		23	29	29	27	2.0		29	34	31	31	1.5
625		29	26	32	29	1.7		30	33	27	30	1.7
1250		27	29	24	27	1.5		31	36	34	34	1.5
2500		31	30	29	30	0.6 2.8		30 32	33 27	35 28	33 29	1.5 1.5
5000		29	20	21	23	2.0		32	21	28	29	1.3
Regress	ion	analysis	S:									
Points	59	Interce	ept	Slo	pe	Corr.	coe	ff.	t	E	-value	
1 - 3	_	5.0	172	0.00	05	(384	17	1.100	9 (.30735	
1 - 4		5.1		0.00		(0.0940	8C	0.298	8 0	.77118	
1 - 5	-	5.1	44	0.00	01	(.3817	79	1.489	4 (1.16024	
1 - 6	-	5.2	79	-0.00	01	(.2876	60	1.201	1 0	.24718	
1 - 3	+	5.7	61	-0.00	105	-(.508]	1. 0	1.560	8 0	1.16254	
1 - 4	+	5.6	34	0.00	00		.0876		0.278	1 0	.78659	
1 - 5	+	5.6	40	0.00			.1204		0.437		.66894	
1 - 6	+	5.7	00	0.00	00	- C	.3329	31	1.412	2 0	.17705	
		d negati	ve co	ntrol								
Treatme	nt				S 9	Pla	te co	ounts	Mea	n S.	Ε.	
UNTREAT	ED				_	23	24	31	2	6 2	.5	
MMS			500	q/pu	1 -	348	363	321	34			
DMSO				μl/p		33	31	27	3		. 8	
2-Amino	anth:	racene	20			303	277	276	28.	5 8	.8	

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 11 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-007

Strain: TA	98					Tit	re: 2	243		
Dose-level	Without	metabo	lic ac	tivat.	ion	Wit	h meta	bolic	activ	ation
[pg/pl]		counts		S. E			te cou		Mean	S. E.
Untreated	35 29		33	1.9		42	39	44	42	1.5
313	31 34		31	1.7		38	44	41	41	1.7
625	33 31		30	1.8		40	39	43	41	1.2
1250	36 32		33	1.8		42	36	39	39	1.7
2500	27 33		30	1.8		43		. 38		1.5
5000	24* 27	* 25*	25	0.9		37	35	39	37	1.2
Regression Points S9		Slo	ope	Corr.	coef	ſf.	t	Р	-value	
1 - 3 -	5.696	-0.00	103		.3487	7 7	0.984	4 0	.35772	
1 - 4 -	5.610				.0416		0.132		.89763	
1 - 5 -	5.649				.2375		0.132		.39395	
1 - 6 -		-0.00			.6659		3.570		.00255	
1 - 3 +		-0.00			.1900		0.512		.62438	
1 - 4 +	6.459	-0.00	002		.4072		1.410		.18884	
1 - 5 +	6.401	0.00	000	-0	.1610)5	0.588	4 0	.56638	
1 - 6 +	6.422	-0.00	01	-0	.5200	8	2.435	7 0	.02693	
Positive ar	nd negative	control	.s S9	Pla	te co	ounts	Mea	n S.	Ε.	
DMSO 2-Nitrofluc	rene	50 µl/p	1 -	36 174		190	17:	4 1	. 9	
DMSO		50 μl/p		38		37		8 0		
2-Aminoanth	iracene	2 µg/p	1 +	556	586	552	56	5 10	. /	

^{* =} Thinning of the background lawn

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TABLE 12 - Experiment 2 - Preincubation method -

STUDY NO.: 8837-007

Strain: TA100		Titre:	225			
p	Without metabo Plate counts				abolic a bunts M	ctivation ean S.E.
313 1 625 1 1250 1 2500 1	39 140 132 32 123 138 25 121 127 36 130 132 26* 136* 120* 92* 81* 93*	137 131 124 133 127 89	2.5 4.4 1.8 1.8 4.7 3.8	150 146 142 138 134 137 144 135 130* 136* 101* 89*	1.55 140 141 123*	151 2.9 145 5.1 137 1.7 140 2.6 130 3.8 93 3.8
Regression ana	lysis:					
Points S9 In	tercept Sl	ope	Corr. coet	ff. t	P-v	alue
1 - 3 1 - 4 1 - 5 1 - 6 1 - 3 + . 1 - 4 + . 1 - 5 + . 1 - 6 +	11.709 -0.00 11.526 -0.00 11.511 -0.00 11.741 -0.00 12.290 -0.00 12.154 -0.00 12.135 -0.00 12.269 -0.00	001 001 004 009 004 003	-0.7641 -0.2309 -0.3110 -0.8727 -0.7445 -0.5571 -0.7479 -0.9421	0.75 02 1.17 72 7.15 59 2.95 15 2.12 07 4.06	06 0.47 99 0.25 02 0.00 12 0.02 17 0.05 31 0.00	5917 0000 2137 5985 0134
Positive and ne Treatment	egative control	ls S9	Plate co	ounts Me	an S.E.	
Untreated Sodium Azide DMSO 2-Aminoanthrace	1 µg/r 50 µl/r ene 2 µg/r)l +	139 140 954 970 136 135 944 1012	901 9 148 1	37 2.5 42 20.9 40 4.2 85 20.7	

^{* =} Thinning of the background lawn

9. APPENDIX I - Historical Control Data

RTC Study No.: 8837-007

WITHOUT METABOLIC ACTIVATION

	Untreated	Untreated	Positive control	Positive control
	Plate incorporation	Pre-incubation ·	Plate incorporation	Pre-incubation
TA1535	*			
Mean value	19	19	520	516
SD	2.8	2.7	74.5	83.8
n	222	105	222	105
TA1537				
Mean value	17	18	148	123
SD	2.3	1.8	50.3	37.8
n	227	105	227	105
TA98				
Mean value	31	30	224	211
SD	3.1	2.3	31.2	27.0
n	227	102	227	102
TA100				
Mean value	152	135	720	739
SD	18.8	13.7	112.2	128.6
n	228	104	228	104
WP2 uvrA				
Mean value	29	30	159	191
SD	5.2	7.0	49.6	111.5
n	6 .	8	6	8

SD: standard deviation number of experiments

RTC Study No.: 8837-007 Page 30

WITH METABOLIC ACTIVATION

	Untreated	Untreated	Positive control	Positive control
	Plate incorporation	Pre-incubation	Plate incorporation	Pre-incubation
TA1535		·		
Mean value	17	16	154	96
SD	2.4	2.0	32.0	15.5
n	220	105	220	105
TA1537				
Mean value	22	23	120	87
SD	2.8	2.0	25.1	13.6
n	224	103	224	103
TA98				
Mean value	44	42	1079	1008
SD	5.4	4.7	226.2	194.3
n	232	98	232	98
TA100				
Mean value	166	150	1276	1144
SD	18.7	14.9	265.0	181.6
n	235	99	235	99
WP2 uvrA				
Mean value	36	37	295	284
SD	8.9	9.4	75.4	91.9
n	6	8	6	8

SD: standard deviation n: number of experiments

RTC Study No.: 8837-007

10. APPENDIX II - Study Protocol

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

Final protocol prepared for

AUSIMONT S.p.A. Via Lombardia, 20 20021 Bollate (MI) Italy

by

RESEARCH TOXICOLOGY CENTRE S.p.A.

Via Tito Speri, 12 00040 Pomezia (Roma) Italy

RTC Study No.: 8837-007

Page 33

RTC Enquiry Number: 8837

July2001

- 1 of 15 -

Commercial Office

RTC S.p.A. Via Tito Speri, 12 00040 Pomezia (Roma) - ITALY Tet: + 39.06.91055.737 5.234 byt/Gdtc ii Paris Office

RTC France Tel./Fax: +33.1.47637138 Mobile: +33.6.14033223 e-mail: mkt@rtc.if Head Office and Administration

RTC S.p.A Via Tilo Speri, 12 00040 Pomezia (Roma) - ITALY Tei:: +39.06.91095.1 Fax - 439.06.912.2233 P.O. Box 15301-00142 - Roma Eur Laurentino RTC S.p.A. Capitale sociale 10.000,000 000 C.C.I.A.A. n° 375376 Reg. Soc. Trib. d. Roma n° 2828/72 Coo. Fisc.: 00653120584 Partita (VA: 00920611001

Version 01/1UMB.

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

MANAGEMENT OF STUDY

Scientific Director : J. Brightwell, Ph.D.

Head of Genetic and Cellular Toxicology : S. Cinelli, Biol.D.

Study Director : O. Scarcella, Biol. D.

Sponsor : AUSIMONT S.p.A. Via Lombardia, 20

20021 Bollate (MI) Italy

Monitor : To be appointed by the Sponsor

QUALITY ASSURANCE

Quality Assurance Manager : M. M. Brunetti, Biol.D.

LOCATION OF STUDY

The study will be performed at : Research Toxicology Centre S.p.A.

Via Tito Speri, 12 00040 Pomezia (Roma)

Italy

The laboratory facilities, archives and administration are located at this site.

TIME SCHEDULE OF STUDY

The Study will be conducted with a time schedule agreed between the Sponsor and RTC.

RTC Enquiry Number: 8837 July2001

- 2 of 15 -

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

1. INTRODUCTION

1.1 Objective

To assay a number of test items for the ability to induce gene mutations in Salmonella typhimurium and Escherichia coli, as measured by reversion of auxotrophic strains to prototrophy.

1.2 Regulatory requirements

The study will be conducted in compliance with the GLP regulations of the US FDA [21 CRF part 58, 22 December 1978] and subsequent revisions; with Commission Directive 1999/11/EC of 8 March 1999 (adoption of the "OECD principles on Good Laboratory Practice – as revised in 1997") and subsequent revisions and with Decreto Legislativo 27 Gennaio 1992, no. 120 and subsequent revisions. In addition, the study is designed to comply with the experimental methods indicated in the guidelines of:

- EEC Council Directive 2000/32, Annex 4D.
- OECD Guidelines for the testing of chemicals No. 471 (Adopted July 1997)

1.3 Principles of the method

Reverse mutation assays employ bacterial strains which are already mutant at a locus whose phenotypic effects are easily detected. The *Salmonella* tester strains have mutations causing dependence on a particular amino acid (histidine) for growth. The ability of test items to cause reverse mutations (reversions) to histidine-independence can easily be measured. The *E. coli* tester strains of the WP2 series are similarly mutant at the tryptophan locus.

Since many chemicals only demonstrate mutagenic activity after metabolism to reactive forms, in order to detect these "indirect mutagens" the test is performed in the presence and absence of a rat liver metabolising system.

RTC Enquiry Number: 8837

2. TEST ITEM

- 2.1 A number of test items will be supplied for routine testing, each identified by name and relevant univocal identity feature. Documentation of the identity and derivation of each test item will be the responsibility of the Sponsor.
- A study number will be assigned to each test item supplied for investigation. This will consist of a fixed part, identifying the protocol, followed by a sequential number differing for each test item.
- 2.3 After completion of the study and submission of the final report, all unused samples of each test item will be returned to the Sponsor. An aliquot of each test item will be retained within the archives of the testing facility for a period of ten years after which they will be destroyed.
- Unless otherwise indicated by the Sponsor the storage conditions for the test items will be room temperature.
- 2.5 The test items will be treated with precautions appropriate for potential carcinogens.
- 2.6 The amount of each test item received and used will be recorded according to standard procedures.
- Fresh solutions of the test item will be prepared for each day's work; solutions will be prepared on a weight/volume basis without correction for the displacement due to the volume occupied by the test item. Concentrations of solutions will be expressed in terms of active constituents. Preferred solvents will be sterile distilled water, culture medium, DMSO, ethanol, acetone. Other solvents may be used as necessary.
- 2.8 No assay of test item stability, nor its concentration and homogeneity in vehicle will be undertaken, nor samples of formulated test item consigned to the Sponsor, without express instructions from the Sponsor. No determination of the absorption of the test item in the test system will be made without express instructions from the Sponsor.

RTC Enquiry Number: 8837

3. MATERIALS

3.1 <u>Bacterial strains</u>

Stocks of Salmonella tester strains (TA 1535, TA 1537, TA 1538, TA 98, TA 100, TA 97 and TA 102 and some other related strains) were obtained from Dr. B.N.Ames, University of California. Stocks of E. coli tester strains (WP2, WP2 uvrA and WP2 uvrA pKM101) were obtained from Life Science Research, Occold, Suffolk, UK. Permanent stocks are kept at -80°C, and overnight subcultures of these stocks are prepared for each day's work.

The presence of the appropriate genetic markers in these strains is checked on a monthly basis for those in regular use, and as necessary for other strains, as follows:

Histidine requirement : No Growth on Minimal plates + Biotin.

Growth on Minimal plates + Biotin + Histidine.

Tryptophan requirement : No Growth on Minimal agar plates

Growth on Minimal plates + Tryptophan.

uvrA, uvrB: Sensitivity to UV irradiation.rfa: Sensitivity to Crystal Violet.pKM101: Resistance to Ampicillin.

Strain identity is also confirmed by reference to the spontaneous reversion levels and responses to mutagens during use. Bacterial cultures in liquid and on agar are clearly identified with their identity.

Detailed information about the genetic constitution of the tester strains may be found in the cited publications of Dr. B.N.Ames and Drs. M.H.L. Green and W.J. Muriel.

3.2 Media

The following growth media will be used:

Nutrient Broth: Oxoid Nutrient Broth No 2 will be prepared at a concentration of 2.5% in distilled water and autoclaved prior to use.

This will be used for the preparation of liquid cultures of the tester strains.

RTC Enquiry Number: 8837

Nutrient Agar: Oxoid Nutrient Broth No 2 (25g) and Difco Bacto-agar (15g) will be added to one litre of distilled water and autoclaved.

The solution will then be poured into 9 cm plastic Petri dishes and allowed to solidify and dry before use. These plates will be used for the non-selective growth of the tester strains. Incubations on Nutrient Agar will be for approximately 48 or 72 hours.

Minimal Agar: Minimal medium agar will be prepared as 1.5% Difco Bacto-agar in Vogel-Bonner Medium E, with 2% Glucose, and poured into 9 cm plastic Petri dishes.

Top Agar: "Top Agar" (overlay agar) will be prepared as 0.6% Difco Bacto-agar + 0.5% NaCl in distilled water. This solution will be autoclaved, and stored. Prior to use 10 ml of a sterile solution of 0.5 mM Biotin + 0.5 mM Histidine (or 0.5 mM tryptophan) will be added to 100 ml of the top agar.

All incubations will be at 37°C.

3.3 S9 mix

The S9 liver tissue fraction will be prepared according to RTC standard procedures. Induction of drug metabolising enzyme-levels is routinely performed using phenobarbitone and betanaphthoflavone (Mixed Induction); induction with Aroclor 1254 will be performed if specifically requested by the Sponsor. Records pertaining to the preparation of the S9 fraction are kept in file at RTC. The mixture of S9 tissue fraction and cofactors (S9 mix) will be prepared as follows (for each 10 ml):

S9 tissue fraction	1.0 ml
NADP (100 mM)	0.4 ml
G-6-P (100 mM)	0.5 ml
KCl (330 mM)	1.0 ml
MgCl2 (100 mM)	0.8 ml
Phosphate buffer	5.0 ml
(pH 7.4, 200 mM)	
Distilled Water	1.3 ml
***	10.0 ml

RTC Enquiry Number: 8837

3:4 <u>Control substances</u>

Positive control treatments will be used in each experiment. The positive control agents are obtained commercially and characterised by their labelling, and their stability determined from the scientific literature. Sodium azide and methylmethanesulphonate will usually be dissolved in distilled water; 9-aminoacridine, 2-nitrofluorene and 2-aminoanthracene will usually be dissolved in DMSO. The frequency of preparation of stock solutions will be determined by their stability.

4. PRELIMINARY TOXICITY TEST

4.1 Experimental design

In order to establish the concentrations of test item to be used in the main assay, a preliminary toxicity test will be performed.

This test follows the method described in section 6.1, using only one plate per dose level, a single S9 mix concentration (10%) and covering a wide range of concentrations of the test item.

The highest dose-level for this preliminary test, unless limited by the solubility of the test item, will be 5 mg/plate, and the lower dose-levels will be spaced at approximately half-log intervals.

4.2 <u>Selection of dose-levels</u>

The toxicity will be assessed on the basis of a decline in the number of spontaneous revertants or a thinning of the background lawn. The highest doselevel for the mutation assays will be selected as a concentration which elicits moderate toxicity. If there is no evidence of toxicity following treatment with the test item, then the highest dose-level will be 5 mg/plate.

5. EXPERIMENTAL DESIGN

Each experiment will include negative and positive controls, and at least five doses of the test item, tested in the absence and presence of an S9 metabolising system. Three replicate plates will be used at each test point, and two independent experiments will be performed. If a positive result is obtained in any tester strain, a confirmatory experiment will be performed under the same experimental conditions. If, however, negative results are obtained in the first experiment, the confirmatory experiment will be performed using the pre-incubation method. A further experiment may be undertaken if inconsistent results are obtained.

RTC Enquiry Number: 8837 July2001

The five bacterial strains S. typhimurium TA1535, TA1537, TA98, TA100 and E. coli WP2 uvrA will be used in this study.

Negative controls: untreated and solvent vehicle controls will be prepared for each experiment; when the solvent is distilled water, these will be considered to be equivalent and only one set of controls is performed.

Positive controls: treatments are indicated in the following table:

Absence of S9	Presence of S9
sodium azide	2-aminoanthracene
1 μg/plate	I μg/plate
sodium azide	2-aminoanthracene
l μg/plate	1 μg/plate (2 μg/plate)
9-amino-acridine	2-aminoanthracene
50 μg/plate	1 μg/plate
2-nitrofluorene	2- aminoanthracene
2 μg/plate	1 μg/plate (2 μg/plate)
methylmethanesulphonate	2-aminoanthracene
500 μg/plate	10 μg/plate (20 μg/plate)
	sodium azide 1 µg/plate sodium azide 1 µg/plate 9-amino-acridine 50 µg/plate 2-nitrofluorene 2 µg/plate methylmethanesulphonate

Concentrations refer to both treatment methods. When two values are given, the figures in brackets refer to the pre-incubation method assay.

Test item: the highest dose-level of the test item to be used will be selected as described above. Further dose levels will be selected at intervals of a factor of two.

Where it seems advisable, further test points or controls may be included in experiments.

In addition, plates will be prepared to check the sterility of the test item solutions and the S9 mix, and dilutions of the bacterial cultures will be plated on nutrient agar plates to establish the number of bacteria in the cultures.

RTC Enquiry Number: 8837

6. ASSAY PROCEDURE

6.1 <u>Plate-incorporation</u>

The components of the assay (the tester strain bacteria, the test item and S9 mix or phosphate buffer) will be added to molten overlay agar and vortexed. The mixture will then be poured on the surface of a minimal medium agar plate, and allowed to solidify prior to incubation.

The overlay mixture will be composed as follows:

(i)	Overlay agar (held at 45°C)	2	ml
(ii)	Test or control substance solution	0.1	ml
(iii)	S9 mix or phosphate buffer	0.5	ml
(iv)	Bacterial suspension	0.1	ml

The volume of test item solution, as indicated, will usually be 0.1 ml; in the event that it is necessary to alter this volume, the quantities used will be carefully recorded.

6.2 <u>Pre-incubation</u>

The components will be added in turn to an empty test-tube:

(i) Bacterial suspension	$0.1 \mathrm{ml}$
(ii) Test or control substance solution	0.05 ml
(iii) S9 mix or phosphate buffer (pH 7.4, 0.1 M)	$0.5 \mathrm{ml}$

The volume of test item solution, as indicated, will usually be 0.05 ml. Where control or test items are dissolved in aqueous solvents, the volume used may be 0.1 ml. In the event that it is necessary to alter this volume, the quantities used will be carefully recorded.

The incubate will be vortexed and placed at 37°C for 30 minutes. Two ml of overlay agar will then be added and the mixture vortexed again and poured onto the surface of a minimal medium agar plate and allowed to solidify.

RTC Enquiry Number: 8837

6.3 Incubation and scoring

The prepared plates will be inverted and incubated for approximately 72 hours at 37°C. When the test item is a liquid at ambient temperature, the plates will be incubated in separate closed containers for each dose-level. After this period of incubation, the plates may be held at 4°C prior to scoring. Scoring is effected by counting the number of revertant colonies on each plate, either manually, or using a Cardinal - Automatic colony counting system (Perceptive Instruments). Contaminated plates will be considered on a case-by-case basis.

7. REPORTING

7.1 Presentation of data

The data will be presented in tabular form. The individual plate counts for each experiment will be given, together with the means and standard errors of the means, and regression analyses.

7.2 Evaluation of data

For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose-levels or at the highest practicable dose-level only. In addition there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose-levels.

Evaluation of Ames test data based on a 'doubling rate' has been shown to be as effective as statistical techniques in allowing the correct interpretation of test results (Chu et al. 1981).

7.3 Historical Data

In any case of unexpected results or analytical findings in treated or untreated plates historical data shall be included for comparison and interpretation.

RTC Enquiry Number: 8837

7.4 Reporting procedure

A draft report will be despatched for comment before finalisation.

7.5 Final report

The following information and data will be included in the final report:

- name and address of the facility performing the study and the dates on which the study was initiated and completed;
- objective, and procedures stated in the approved protocol, including approved changes to the original protocol;
- data generated while conducting the study;
- statistical methods employed for analysing the data;
- the test item identified by name;
- method used;
- any unforeseen circumstances that may have affected the quality or integrity of the study;
- the name and signature of the Study Director;
- a summary of the data, an analysis of the data and a statement of the conclusions drawn from the analysis;
- the location where all raw data, specimens and final report are to be stored;
- Quality Assurance statement.

Three copies of the final report (2 bound, 1 unbound) will be supplied.

7.6 Records kept

Full records will be maintained of all aspects of study conduct, along with the results of all measurements and observations. Prior to final archiving of the study data a full list will be prepared of all records associated with the study.

RTC Enquiry Number: 8837

7.7 Archiving

All raw data, records and documentation arising from this study and a copy of the final report consigned will be stored in the archives of Research Toxicology Centre S.p.A. for a period of five years from the date of consignment of the Final Report. At the end of this period, the Sponsor will be contacted for despatch or disposal of the material.

8. STUDY CONDUCT

8.1 Language

English language and Italian language versions of the study protocol, Standard Operating Procedures and other study documents may be used interchangeably. Similarly, English and Italian renderings of chemical names, including that of the test material will be considered to be equivalent.

8.2 Scientific decisions

The procedures described in this protocol may not comprehensively cover all the circumstances that can arise in the assay of test items. When the study director considers it advisable to modify the procedures described for the selection of a solvent, selection of dose-levels, interpretation of the outcome of the study or other aspects of the study conduct, he will record carefully the decision he has reached and the reasoning which led to it.

Each scientific decision has to be discussed with the Sponsor before application.

RTC Enquiry Number: 8837

Version 01/1UMB.

8.3 Quality assurance

The study is subjected to the procedure for quality assurance as defined by the relevant GLP regulations. Specifically:

- the protocol is inspected for compliance;
- procedures of the laboratories concerned will be inspected at intervals adequate to assure the integrity of the study;
- the final report is reviewed to ensure that it accurately describes the methods and relevant Standard Operating Procedures and that the results are in agreement with the raw data;
- periodic reports on these activities are made to management and the Study Director.

All raw data pertaining to the study will be available for inspection by the study monitor (for scientific monitoring) or the Quality Assurance Unit of the Sponsor (compliance monitoring).

RTC Enquiry Number: 8837

9. REFERENCES

Ames, BN, J. McCann and E. Yamasaki (1975)

Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test.

Mutation Research 31, 347-364.

Chu K.C. et al. (1981)

Evaluating statistical analyses and reproducibility of microbial mutagenicity assays.

Mutation Research 85, 119-132.

Claxton L.D. et al. (1987)

Guide for the Salmonella typhimurium/mammalian microsome tests for bacterial mutagenicity.

Mutation Research 189, 83-91.

Gatehouse D. et al. (1994)

Recommendations for the performance of bacterial mutation assays.

Mutation Research 312, 217-233

Green M.H.L. and W.J. Muriel (1976)

Mutagen testing using TRP+ reversion in Escherichia coli.

Mutation Research 38, 3-32.

Maron D.M. and B.N. Ames (1983).

Revised methods for the Salmonella mutagenicity test.

Mutation Research 113, 173-215.

Venitt S., R. Forster and E. Longstaff (1983).

Bacterial Mutation Assays

in: Report of the UKEMS Subcommittee on Guidelines for Mutagenicity testing.

U.K.E.M.S., Swansea, 1983.

Venitt S., C. Croften-Sleigh and R. Forster (1984)

Bacterial mutation assays using reverse mutation

in: Mutagenicity Testing - a practical approach

S. Venitt and J.M. Parry (eds.)

IRL Press, Oxford, 1984.

RTC Enquiry Number: 8837

STD
OS
SC
Version 01/1UMB.

PROTOCOL APPROVAL PAGE

STUDY TITLE

BACTERIAL MUTATION ASSAY (S. typhimurium and E. coli)

TEST FACILITY

RESEARCH TOXICOLOGY CENTRE S.p.A.

Via Tito Speri, 12 00040 Pomezia (Rome)

Italy

RTC ENQUIRY NO

8837

APPROVED BY

O. Scarcella, Biol. D. Dat

20 July 200

Study Director

γ

RELEASED BY

S. Cinelli, Biol. D.

Head of Genetic and Cellular Toxicology

20 Jul 2001

Date

SPONSOR

AUSIMONT S.p.A. Via Lombardia, 20

20021 Bollate (MI)

Italy

AUTHORISED BY

SPONSOR*

garaelle Chochen

1 Aug 2001

Date

Name and Title

blead of Regulatory Office

red tude 57 no

Ton Colugy

RTC Enquiry Number: 8837

July2001

- 15 of 15 -

Page 47

11. APPENDIX III - Certificate of analysis

RTC Study No.: 8837-007 Page 48

Bollate, 30 gennaio 2002

Certificato di analisi

Prodotto.

Batch:

Concentrazione della soluzione:

20 % peso

90215/92

PH della soluzione:

6.6

Caratteristiche del precursore acido:

Peso equivalente:

Parisolin

534

Metodo:

titolazione acidimetrica

RTC Study No.: 8837-007

Tel: 0125 222111 Fax: 0125 222599

Study on the ability of the test article

to induce gene mutations in strains of Salmonella typhimurium and Escherichia coli

RBM EXP. No. 970591

Issued on April 6, 1998

SPONSOR

AUSIMONT S.p.A. Via S. Pietro, 50/A 20021 Bollate (Milano) Italy PERFORMING LABORATORY

Istituto di Ricerche Biomediche
"Antoine Marxer" RBM S.p.A.
Via Ribes, 1
10010 - Colleretto Giacosa (Torino)
Italy

INDEX

FOREWORD,	3
QUALITY ASSURANCE STATEMENT	4
RBM MANAGEMENT DECLARATION OF GLP COMPLIANCE	5
SCIENTISTS INVOLVED IN THE STUDY	6
PURPOSE OF THE STUDY	6
TEST METHOD	6
TEST PRINCIPLE	6
SUMMARY	8
MATERIALS AND METHODS	10
RECORD FILING	19
PROCEDURAL DETAILS	19
RESULTS	20
TABLES	21
TABLE 1 Test without metabolic activation (Exp. No. 970591/1)	22
TABLE 2 Test with metabolic activation (Exp. No. 970591/1)	25
TABLE 3 Test without metabolic activation (Exp. No. 970591/2)	28
TABLE 4 Test with metabolic activation (Exp. No. 970591/2)	31
CONCLUSIONS	34
REFERENCES	35

This report consists of 35 pages.

Dr. Franca Fass o/

RBM Study Director

Ivrea, April 6, 1998

FOREWORD

On behalf AUSIMONT S.p.A., Via S. Pietro, 50/A - 20021 Bollate (Milano) Italy, of Istituto di Ricerche Biomediche "Antoine Marxer" RBM S.p.A., authorized by the Italian Health Authorities (1-2) to conduct toxicological studies, has performed a study of the possible mutagenic activity of the test article

with Salmonella typhimurium and Escherichia coli strains.

A sample of the substance used, along with pertinent documentation is held in sufficient quantity in the RBM archives at the disposal of the Ministero della Sanità.

The undersigned declare that the experiment was conducted using the same batch of substance as that of the sample held on file.

For verification by the Ministero della Sanità, the undersigned moreover guarantee the identification and classification of all those materials, documents and recordings used in conducting the experiment held on file for a period of at least 10 years from the date of this report. Following this time, they will be placed at the disposal of the Sponsor.

Dr. Domenico Barone

Scientific Director Recognized by the Italian Health Authorities as Responsible for Experimentation of Mutagenesis Dr. Angelo Conz

General Manager of the Istituto di Ricerche Biomediche "Antoine Marxer", RBM S.p.A.

Ivrea, April 6, 1998

(1): Pharmaceuticals:

Authorization dated March 12, 1976 in accordance with "Circolare 73", May 16, 1974.

(2): Chemicals:

Authorization in accordance with DPR 927/81 (D.M. dated January 7, 1988 published in G.U. no. 12, dated January 16, 1988).

QUALITY ASSURANCE STATEMENT

RBM Experiment number: 970591		
Study title:		
"Study on the ability of the test ar strains of <u>Salmonella</u> typhimurium a	to induce gene mutand Escherichia coli".	ations in
In compliance with the Princip procedure-based inspections were relevant to this type of study. For the	in this report are conducted in a manner which nilar procedures. bles of Good Laboratory Practice, at the time of the made by the Q.A.U. of critical phases and pre inspection of any given procedure, studies were reported promptly to the Study Director and to	nis study, ocedures selected
This study was inspected on:		
Dates of inspections/Audit	Dates of report to Study Director and Management	
January 26, 1998	January 26, 1998	
March 5, 6 and 9, 1998	March 9, 1998 March 31, 1998	
March 31, 1998	March 31, 1976	

This report has been audited by the Q.A.U. and was found to be an accurate description of such methods and procedures as were used during the conduct of the study and an accurate reflection of the raw data.

Date Offinal report audit: Abrix 16, 1998

Head of Quality Assurance Unit

Date:

RBM MANAGEMENT DECLARATION OF GLP COMPLIANCE

Study title:

"Study on the ability of the test article to induce gene mutations in strains of Salmonella typhimurium and Escherichia coli"

was performed in compliance with the OECD-GLP in the testing of chemicals, [C(81) 30 (final)], regulations enforced by the Italian Health Authority (D.M. dated June 26, 1986 as published in G.U. No. 198, August 27, 1986 and D.L. January 27, 1992, No. 120 as published in G.U. (Supplement) No. 40, February 18, 1992).

Dr. Angelo Conz

Marxer" S.p.A.

General Manager of the Istituto di Ricerche Biomediche "Antoine

Ivrea, April 16, 1998

Dr. Franca Fassio

RBM Study Director

Biotechnology Unit

SCIENTISTS INVOLVED IN THE STUDY

RBM Study Director

Dr. Franca Fassio

Head of Biotechnology Unit

Dr. Domenico Barone

PURPOSE OF THE STUDY

Appraisal of the possible genotoxic activity exerted by the test article

TEST METHOD

The test method is in accordance with the "Organization for Economic Cooperation and Development Guidelines", Section 4, Subparts 471-472, Paris 1981, subsequent revisions, with "Annex to Commission Directive 92/69/EEC of July 31, 1992 adapting to technical progress for the seventeenth time Council Directive 67/548/EEC on approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances (Test methods B.13 - B.14)" and with the Japanese Guidelines - Testing Methods for New Chemical Susbtances enacted July 13, 1974, amended April 6, 1987.

TEST PRINCIPLE

Bacterial tests are widely used in mutagenicity studies for their simplicity, speed and sensitivity.

The Ames test is used to identify point mutations (reversions) in mutant strains of <u>Salmonella</u> typhimurium (1-2) and <u>Escherichia coli</u> (3).

In the present experiment four different strains of histidine-requiring Salmonella typhimurium and a strain of tryptophan-requiring Escherichia coli, are used to identify histidine (His⁺) or tryptophan-independent (Trp⁺) mutants, respectively.

The bacterial cells, in early stationary growth phase, are exposed to different concentrations of the test agent, both in the presence and in the absence of a liver microsomal enzyme preparation (in order to reveal possible indirect activity of the compound). Mutagenic activity is determined by the capacity of the test substance to induce a significant increase in the number of reverted colonies in comparison to the spontaneous reversions occurring in the control cultures.

Concerning Salmonella bacterial cells, reversions can be induced by chemical agents causing base substitutions or frameshift mutations. Strains TA 1535 and TA 100 are specific testers for mutagens causing base substitutions; the sensitivity of TA 100 is greatly enhanced by the introduction of an R factor, pkM101 plasmid, which confers ampicillin resistance. The frameshift tester strains used are TA 1537 and TA 98; TA 98, like TA 100, is ampicillin resistant.

All S. typhimurium strains carry, along with the defect in the gene of histidine (His⁻), a deep rough (rfa) character and an uvrB deletion (uvrB⁻). This latter, extending to bio gene is responsible also for biotin requirement.

The Escherichia coli strain used carries a defect in one of the genes for tryptophan biosynthesis and the reversions (prototrophy colonies) can arise by a base change. An additional genetic feature of the bacteria used as test system is a defect in the repair system (uvrA).

SUMMARY

The mutagenic potential of was investigated using Salmonella typhimurium TA 1535, TA 1537, TA 98 and TA 100 and Escherichia coli WP2 uvrA- as tester strains.

The study was performed with and without metabolic activation (S9 Mix).

S9 fraction (9000 g supernatant) was prepared from adult male Sprague Dawley rats pretreated by intraperitoneal route at 80 mg/kg (5 ml/kg) of a mixture of Phenobarbital Na and β-Naphthoflavone.

S9 Mix consisted of S9 plus cofactors.

Two independent experiments were performed, setting up triplicate plates for each experimental point.

The preliminary toxicity test was performed as part of the first study, using the plate incorporation assay (Exp. No. 970591/1). In this trial seven test article concentrations, spaced approximately at half-log intervals, ranging from 5 to 5000 μ g/plate, were tested, both with and without metabolic activation.

Hydrazine sulfate, 9-Aminoacridine HCl monohydrate, Doxorubicine HCl, Methylmethanesulfonate, 2-Aminofluorene and 2-Aminoanthracene served as positive controls to test the mutagenicity of the <u>S. typhimurium</u> and <u>E. coli</u> bacterial strains as well as the activity of the metabolizing system.

The negative control was the test article solvent, i.e. ethanol.

In the first experiment at the highest dose tested, $5000 \mu g/plate$, the test article proved to be cytotoxic on the test system, either with and without metabolic activation. This was demonstrated by zero to low colony growth with severe thinning of the background lawn.

There was also less marked toxicity in all strains tested at 1500 µg/plate, causing a decrease in the number of revertant colonies and of the background lawn.

At the other test article dosage levels tested no significant cytotoxic effects were observed, either with or without metabolic activation.

On the basis of the results obtained in the first experiment, 1500 μ g/plate was chosen as the highest dosage level to be tested in the second run.

Moreover four additional doses were tested. (see Tables 3 and 4).

The second trial (Exp. No. 970591/2) was performed using the plate incorporation assay without metabolic activation and the pre-incubation method with metabolic activation.

In the second trial the results obtained at 1500 μ g/plate confirmed the slight toxicity observed in the first experiment, either in the test with or without metabolic activation. Moreover, at the other test article doses tested, no significant cytotoxic effects were observed, either with or without S9 Mix.

In both trials, in the concentration ranges investigated, the test article did not show any mutagenic activity with or without the addition of S9 liver homogenate fractions.

The known reversion properties were determined for the tester strains with the control substances; the positive responses confirmed the good metabolic activity of the liver homogenate fractions.

MATERIALS AND METHODS

Two independent experiments were performed.

Experiment No. 970591/1

Started on March 5, 1998 (experimental part) Ended on March 9, 1998 (experimental part)

Experiment No. 970591/2

Started on March 23, 1998 (experimental part) Ended on March 27, 1998 (experimental part)

Materials and methods were the same in both experiments, unless otherwise specified.

Test system

Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100, directly supplied by B. Ames (University of California, Berkeley).

Escherichia coli strain WP2 uvrA⁻, supplied by the National Collection of Industrial Bacteria (NCIMB), Scotland (UK).

Test and control article characterizations

Test article

Identification:

Batch No.: 19387/17-8

Appearance: colourless liquid

Manufacturing date: November 1997

Expiry date: December 2000
Storage conditions: room temperature

The Sponsor reserves the right to divulge relevant data on test article characterization directly to Regulatory Agency(ies), when appropriate.

Control articles

Negative control (vehicle):

Ethanol

(Merck, batch No. K24324483739, espiry date

August 31, 2002)

Positive controls in the test without metabolic activation (direct test):

S. typhimurium TA 1535:

Hydrazine sulfate (Hyd) (Merck, batch No. A522503)

S. typhimurium TA 1537:

9-Aminoacridine HCl monohydrate (9-AA) (Merck, batch

No. 33988926)

S. typhimurium TA 98 and

TA 100:

Doxorubicine HCl (Doxo) (Sigma, batch No.150H0093)

E. coli WP2 uvrA~:

Methylmethanesulfonate (MMS) (Merck, batch No. 2185941)

Positive controls in the test with metabolic activation (indirect test):

S. typhimurium TA 1535

and TA 1537:

2-Aminoanthracene (2-AA) (Sigma, batch No. 13H3454)

S. typhimurium TA 98

and TA 100:

2-Aminofluorene (2-AF) (Merck, batch No. 41815087)

E. coli WP2 uvrA-:

2-Aminoanthracene (2-AA) (Sigma, batch No. 13H3454)

Rationale of control article choice

For the negative control article, it corresponds to the suitable solvent for the test article.

The rationale of the choice of mutagens is:

- to check each strain for sensitivity to an appropriate mutagen (direct test);
- to check metabolic activation system (S9 Mix) for its capability to activate an indirect mutagen.

Test article dosage levels

The dosage levels, expressed as quantities of the test article per plate, were the following:

Exp. No. 970591/1: 5, 15, 50, 150, 500, 1500 and 5000 μg/plate.

Exp. No. 970591/2: 15, 50, 150, 500 and 1500 μg/plate.

Preparation of the test article solutions

In each experiment, a weighed amount of the test article was dissolved and serially diluted in ethanol to obtain the following concentrations:

Exp. No. 970591/1: 50, 15, 5, 1.5, 0.5, 0.15 and 0.05 mg/ml

Exp. No. 970591/2: 15, 5, 1.5, 0.5 and 0.15 mg/ml

All test article solutions were prepared just before use.

Negative and positive control dosage levels

Negative control (vehicle): Ethanol, 100 µl/plate

Positive controls in the test without metabolic activation (direct test):

S. typhimurium TA 1535: S. typhimurium TA 1537: S. typhimurium TA 98 and	Hydrazine sulphate (Hyd) 9-Aminoacridine HCl (9-AA)	500 40	μg/plate μg/plate
TA 100:	Doxorubicine HCl (Doxo) Methylmethanesulphonate(MMS)	4	μg/plate
E. coli WP2 uvrA ⁻ :		325	μg/plate

Positive controls in the test with metabolic activation (indirect test):

S. typhimurium and TA 1535			
and TA 1537:	2-Aminoanthracene (2-AA)	6.25	μg/plate
S. typhimurium TA 98 and			
TA 100:	2-Aminofluorene (2-AF)	5	μg/plate
E. coli WP2 uvrA*:	2-Aminoanthracene (2-AA)	1	μg/plate

Preparation of the positive control solutions

The following solutions will be used:

Test without metabolic activation:

S. typhimurium TA 1535:	Hydrazine sulphate (Hyd)	5	mg/ml in water
S. typhimurium TA 1537:	9-Aminoacridine HCl monohydrate (9-AA)	0.4	mg/ml in DMSO
S. typhimurium TA 98 and TA 100: E. coli WP2 uvrA:	Doxorubicine HCl (Doxo) Methylmethanesulphonate MMS)		mg/ml in DMSO mg/ml in DMSO

Test with metabolic activation

S. thyphimurium TA 1535 and TA 1537:	2-Aminoanthracene (2-AA)	0.0625	mg/ml in DMSO
S. typhimuriumTA 98 and TA100: E. coli WP2 uvrA:	2-Aminofluorene (2-AF)	0.05	mg/ml in DMSO
	2-Aminoanthracene (2-AA)	0.01	mg/ml in DMSO

Experimental design

Tester strain storage and control

The <u>S. typhimurium</u> and <u>E. coli</u> strains are stored in growth medium plus 25 μ g/ml ampicillin (if ampicillin resistance bacteria) and 8% dimethyl sulphoxide, at -80°C (permanent cultures).

Fresh bacterial cultures are subcultivated on complete medium (Master plate), and stored in a refrigerator for up to 1 month.

Both permanent cultures and Master plates are checked to confirm the tester strain genotype.

The liquid culture used to prepare Master plate or the first overnight culture from fresh Master plate is submitted to the following controls:

a) Check for histidine-requirement (Salmonella typhimurium strains)

Culture (0.1 ml) is added to 2 ml of soft agar or soft agar +His and plated on Minimal Medium plates (MM). After 48 h incubation at 37°C, bacterial growth has to be observed on MM+His plate, but not on MM-His plate.

b) Check for tryptophan-requirement (Escherichia coli strain)

Culture (0.1 ml) is added to 2 ml of soft agar or soft agar +Trp and plated on Minimal Medium plates (MM). After 48 h incubation at 37°C, bacterial growth has to be observed on MM+Trp plate, but not on MM-Trp plate.

c) Check for the rfa mutation (Salmonella typhimurium strains) (Crystal violet sensitivity)

Culture (0.1 ml) is added to 2 ml of soft agar and plated on Complete Medium plates. When the medium is solidified, $10 \mu l$ of crystal violet solution (1 mg/ml) are deposited in the centre of agar surface. After 24 h incubation at 37° C, a neat inhibition zone has to be observed for all strains.

d) Check for the UV sensitivity (Salmonella typhimurium and Escherichia coli strains)

Culture (0.1 ml) is added to 2 ml of soft agar and plated on Complete Medium plates. Half plate is exposed to UV rays (15W germicidal lamp, at 33 cm distance) for 6 seconds (TA 1535, TA 1537 S. typhimurium strains and WP2 uvrA E. coli strain) or 8 seconds (TA 98 and TA 100).

After 24 h incubation at 37°C all strains have to be grown on the un-irradiated side of the plate only.

e) Check for the R factor (Salmonella typhimurium strains)

Culture (0.1 ml) is added to 2 ml of soft agar and plated on Complete Medium plates. When the medium is solidified, $10~\mu l$ of ampicillin solution (8 mg in NaOH 0.02N) are deposited in the centre of agar surface. After 24 h incubation at 37°C, no inhibition zone has to be observed for ampicillin resistant strains TA 98 and TA 100 S. typhimurium strains. Inhibition zone must be recorded for strains TA 1535 and TA 1537 S. typhimurium strains.

Culture media

a) Liquid growth medium

Eight g of nutrient broth and 5 g of NaCl were dissolved in one liter of deionized water and sterilized at 1.0 atm., 121 °C, for 15 min.

b) Complete medium

Nutrient medium was prepared by dissolving 8 g of nutrient broth, 5 g of NaCl and 15 g of agar in one liter of deionized water.

The medium was sterilized at 1.0 atm. (121°C) for 15 min and when it had cooled to about 45°C was poured into sterile plastic Petri plates (9-10 cm dia.).

About 25 ml of the medium were poured into each sterile plastic Petri plate.

c) Minimum medium (MM)

The selective medium consisted of 2.5 g (E. coli strain) or 20 g (S. typhimurium strains) of glucose and 15 g of agar, in one litre of deionized water. It was sterilized at 1.0 atm. (121°C) for 15 min.

Thereafter, the medium was allowed to cool to about 45° C and to every liter of medium, 20 ml of the following sterile solution (Vogel-Bonner 50x) pre-warmed at 60-70°C were added:

- 10 g/l MgSO₄ .7H₂O
- 100 g/l citric acid.H₂O
- 500 g/l K2HPO₄ anhydrous
- 175 g/l NaNH₄HPO4.4H₂O

About 25 ml of the medium were poured into each sterile plastic Petri plate (9-10 cm dia.)

d) Soft agar

Six g of agar and 5 g of NaCl were dissolved in 1 litre of deionized water and sterilized at 1.0 atm. (121°C) for 15 min.

e) Soft agar + His (Salmonella typhimurium strains)

In the preparation of the soft agar 7.7 mg/l of histidine and 12.2 mg/l biotin were added to the agar and NaCl.

f) Soft agar + Trp (Escherichia coli strain)

When the temperature of the soft agar is about 65° C, to every 100 ml of soft agar, 0.5 ml of a filter-sterilized tryptophan solution (2 mg/ml, freshly prepared in water) were added (final tryptophan concentration: 10 µg/ml).

Preparation of the bacterial culture

For the experiment, bacterial cell suspensions were prepared by inoculating two colonies of the Master culture in 5 ml liquid growth medium. The liquid culture was developed for 16.5 hours at 37°C in a horizontally shaking thermostatic bath (overnight culture).

Preparation of S9 Mix

Each day, for 3 consecutive days, adult male Sprague Dawley rats (Charles River CD) supplied by Charles River of Calco weighing 200-250 g received a single intraperitonal dose of 80 mg/kg (5 ml/kg) of a mixture of Phenobarbital Na and β -Naphthoflavone (16 mg/ml solution in commercial corn oil). The day after the last administration the rats were sacrificed and the liver of each removed.

The livers were homogenized for 30 seconds at 4°C with a 0.15M KCl solution (solution to tissue ratio 3:1).

The homogenate was centrifuged for 20 min at 9,000xg in a refrigerated supercentrifuge.

The supernatant was divided into aliquots, deep frozen and stored at -80 deg. C.

The supernatant was assayed for protein concentration by the Biuret (4) method, then it was assayed for its activation capacity versus an indirect mutagen (2- aminofluorene) with Salmonella typhimurium strains TA 98 and TA 100.

The S9 Mix with the following composition/plate was prepared immediately before use in an ice cold bath:

0.05 ml liver microsomal suspension (S9)
0.25 ml 0.2M phosphate buffer pH 7.4
0.01 ml 0.4M MgCl₂ and 1.65M KCl
0.85 mg G6P
1.53 mg NADP
0.19 ml water for injection

Plate test without and with metabolic activation

- 0.1 ml of the positive and negative control solutions or of the different test article solutions, according to the dosage levels, were introduced into sterile test tubes containing 2 ml of soft agar +His or +Trp, kept liquid in a thermostatic bath at 45°C.
- 0.1 ml of an overnight culture of <u>Salmonella typhimurium</u> strains TA 1535, TA 1537, TA 98 and TA 100 or of <u>Escherichia coli</u> were rapidly added. 0.5 ml of the S9 Mix (test with metabolic activation) or 0.5 ml of phosphate buffer (test without metabolic activation) were also added. The test tubes were rapidly shaken and the contents poured onto plates containing solid minimum (selective) growth medium.

Three plates per dose were prepared for each bacterial strain, both in the test without and with metabolic activation.

All the plates were incubated at 37°C for 72 hours.

Plates, adequately identified, were examined following incubation for background lawn and revertant colonies visually counted.

Repetition of the assay

The experiment was repeated in an independent assay. Since negative results were obtained in the first trial, the repeat test followed the pre-incubation method with metabolic activation and the plate test method without metabolic activation.

For the test without metabolic activation the same experimental conditions of the first experiment were used, whereas for the test with metabolic activation the method is specified below.

Pre-incubation test with metabolic activation

0.5 ml of S9 Mix were dispensed in sterile test tubes placed in an ice bath.

0.1 ml of bacterial suspension and 0.1 ml of the test or control article solutions according to the dosage levels, were introduced.

The test tubes were gently vortexed and incubated at 37°C for 20 min, in a horizontally shaking thermostatic bath.

At the end of the incubation 2 ml of soft agar (kept liquid in a thermostatic bath at about 45°C) were added to each tube.

The test tubes were rapidly shaken and the contents poured onto plates containing solid selective growth medium.

Three plates per dose were prepared.

The plates were incubated at 37°C for 72 hours, after which the reverted colonies were counted.

Evaluation of the study

For the test to be considered valid, the following criteria must be met:

- a) The E. coli strain used in the test must prove to be tryptophan-requiring.
- b) The S. typhimurium strains used in the test must prove to be histidine-requiring.
- c) The sterility check S9 Mix must prove negative for bacterial growth.

- d) The growth of all <u>S. typhimurium</u> strains must be inhibited by crystal violet; the growth of TA 1535 and TA 1537 must be inhibited by ampicillin, while the growth of strains TA 98 and TA 100 must not.

 The growth of all strains of <u>S. typhimurium</u> and of WP2 uvrA <u>E. coli</u> strain must be inhibited by exposure to UV rays.
- e) The frequency of spontaneous reversions for each strain must fall within the range reported in the literature and the historical range of our laboratory.
- f) The activity of the microsomal preparation must be confirmed by its capability to activate the positive control which requires a metabolic transformation in order to explicate its mutagenic effect.
- g) The number of reverted colonies owing to the mutagenic activity of the positive controls must be statistically greater than, and at least double the number of spontaneously reverted colonies (Student's "t" test).

The test article is considered to have elicited a positive response when:

- the number of reverted colonies is significantly higher when compared with the number of revertants in the solvent controls (as determined by Student's t);

and

- either: a dose-response can be verified, that is, a positive correlation between the number of revertants and the dose in an interval of at least 3 doses (linear regression test);
- -or: a statistically significant increase is recorded at one dose only, when confirmed in independent assays.

Data evaluation (5)

The mean and standard deviation were calculated for reversions read in each dosage group.

Comparison of the spontaneous reversions (in the negative control-vehicle) with the ones in the test article plates and in the positive control plates were done by Student's "t" test. Significances were expressed as follows:

- * p < 0.05
- ** p < 0.01
- *** p < 0.001

RECORD FILING

The protocol, a reserve sample of the batch of the test article used, the certificates of analysis, the raw data bound in registers numbered 970591/1 and 970591/2, the final report, including records and report of maintenance, cleaning, calibration and inspection of equipment are filed at RBM premises.

They will be stored in the RBM archives for ten years from the study report date and then sent to the Sponsor.

At the end of the ten year archiving period, the Sponsor can request the extension of the storage of all materials or part of them for a further period. An appropriate agreement will be drawn up accordingly.

PROCEDURAL DETAILS

The study was conducted in accordance with the procedures described in the RBM Standard Operating Procedures (SOPs) collection.

Protection of animals used in the experiment is in accordance with Directive 86/609/EEC, enforced by the Italian D.L. No. 116 of January 27, 1992.

Physical facilities and equipment for accommodation and care of animals are in accordance with the provisions of EEC Council Directive 86/609.

The Institute is fully authorized by Competent Veterinary Health Authorities.

RESULTS

Both the tests carried out on <u>Salmonella typhimurium</u> (TA 1535, TA 1537, TA 98 and TA 100 strains) and on <u>Escherichia coli WP2 uvrA</u> strains to investigate any possible mutagenic activity of the test article were experimentally valid, as all the conditions to be complied with (bacteria checks, S9 Mix activity, responsiveness to the positive controls) were met.

Table 1 presents the results of the first plate test (Exp. 970591/1) without metabolic activation of the compound on Salmonella typhimurium and Escherichia coli strains.

Table 2 presents the results of the first plate test (Exp. 970591/1) with metabolic activation of the compound on Salmonella typhimurium and Escherichia coli strains.

Mean and standard deviations are reported.

The results of the negative and positive controls are also given.

In the first experiment at the highest dose tested, 5000 µg/plate, the test article proved to be cytotoxic on the test system, either with and without metabolic activation. This was demonstrated by zero to low colony growth with severe thinning of the background lawn.

There were also less marked citoxicity at 1500 µg/plate, causing a decrease in the number of revertant colonies and of the background lawn.

At the other test article dosage levels tested no significant cytotoxic effects were observed, either with or without metabolic activation.

On the basis of the results obtained in the first experiment, 1500 μ g/plate was chosen as the highest dosage level to be tested in the second run.

Moreover four additional doses were tested (see Tables 3 and 4).

In the second trial the results obtained at 1500 μ g/plate confirmed the slight toxicity observed in the first experiment, either in the test with or without metabolic activation. Moreover, at the other test article doses tested, no significant cytotoxic effects were observed, either with or without S9 Mix.

As regards mutagenicity, no appreciable increase in the number of revertants in comparison with the negative control was evident in either experiment at any of the doses of on S.typhimurium and E. coli strains, either in the presence or in the absence of metabolic activation.

As expected, the reference mutagens induced a number of mutant clones statistically greater than and at least double the mean number of spontaneous (Student's "t" test).

TABLES

Test article: Title : Ames test RBM exp.

: 970591/1

TABLE 1. - Test without metabolic activation (p. 1)

Salmonella typhimurium: TA 1535

Compound	Concentr. pg/plate	Revers	ions/p	late	Mean	s. D.	(P)
date have some that have made their some about high from more have been date disp date about		*** *** *** *** ***			100 May 201 ECT 100 Mg 500		
Vehicle control (Ethanol)		18	26	21	21.67	4.041	
Test Article	5	20	17	22	19.67	2.517	.507
Test Article	15	21	22	22	21.67	. 577	1.000
Test Article	50	26	18	24	22.67	4.163	.780
Test Article	150	22	18	24	21.33	3.055	.915
Test Article	500	17	20	16	17.67	2.082	.202
Test Article	1500	11	11	15	12.33	2.309	.026 *
Test Article	5000	tox	tox	tox			7 0 111 0
Positive control (Hydrazine sulpha	te (Hyd))	74	88	83	81.67	7.095	<0.001 ***

Salmonella typhimurium: TA 1537

μg/plate		ions/p	ıace	Mean	s. D.	(P)	
				AND \$100 MIN THA CON SHIP			
	7	8	9	8.00	1.000		
5	6	8	1.1	ครร	2 517	.842	
15	7	9				. 482	
50	8	6	-			.768	
150	8	10	8			.492	
500	7	7	7			.158	
1500	6	3	2			,031 *	
5000	кож	tox	tox	2.0.	21002	.002	
101 mm-l1	54	60	47	53.67	6.506	<0.001 ***	
	15 50 150 500 1500 5000	7 5 6 15 7 50 8 150 8 500 7 1500 6 5000 tox	7 8 5 6 8 15 7 9 50 8 6 150 8 10 500 7 7 1500 6 3 5000 tox tox	7 8 9 5 6 8 11 15 7 9 5 50 8 6 9 150 8 10 8 500 7 7 7 1500 6 3 2 5000 tox tox tox 54 60 47	7 8 9 8.00 5 6 8 11 8.33 15 7 9 5 7.00 50 8 6 9 7.67 150 8 10 8 8.67 500 7 7 7 7 7.00 1500 6 3 2 3.67 5000 tox tox tox 54 60 47 53.67	7 8 9 8.00 1.000 5 6 8 11 8.33 2.517 15 7 9 5 7.00 2.000 50 8 6 9 7.67 1.528 150 8 10 8 8.67 1.155 500 7 7 7 7 7.00 .000 1500 6 3 2 3.67 2.082 5000 tox tox tox	

tox - Toxic

Test article:
Title : Ames test
RBM exp. : 970591/1

TABLE 1. - Test without metabolic activation (p. 2)

Salmonella	typhimurium:	TΆ	98
------------	--------------	----	----

Compound	Concentr. µg/plate	Revers:	ions/p	Late	Mean	s. D.	(P)	
Vehicle control (Ethanol)		44	38	33	38.33	5,508		
Test Article	5	40	39	41	40.00	1.000	. 633	
Test Article	15	35	36	42	37.67	3.786	. 871	
Test Article	50	44	46	42	44.00	2.000	.169	
Test Article	150	42	46	36	41.33	5.033	. 525	
Test Article	500	38	43	39	40.00	2.646	. 661	
Test Article	1500	19	21	31	23.67	6.429	.040 *	
Test Article	5000	tox	tox	tox				
Positive control (Doxorubicine HCl	((oxod)	926	840	918	894.67	47.511	<0.001 **	**

Salmonella typhimurium: TA 100

Compound	Concentr. µg/plate	Revers:	ions/p	late	Mean	s. D.	(P)	
paid been ploy had also take to the easy paid only been also take the total take to the total take to the total		No. 400 Ed Inc. 700 500 a					year man were dryll that you man job. Sold the	
Vehicle control (Ethanol)		184	179	190	184.33	5.508		
Test Article	5	180	182	193	185.00	7.000	.903	
Test Article	15	184	178	166	176.00	9.165	.248	
Test Article	50	170	197	177	181.33	14.012	.747	
Test Article	150	190	204	186	193.33	9.452	. 227	
Test Article	500	178	186	188	184.00	5,292	.943	
Test Article	1500	136	147	150	144.33	7.371	.002 **	
Test Article	5000	tox	kox	tox				
Positive control (Doxorubicine HCl	. (Doxo))	544	470	452	488.67	48.758	<0.001 ***	

tox - Toxic

Test article:

: Ames test

Title

: 970591/1

RBM ежр.

TABLE

1. - Test without metabolic activation

3) (p.

Escherichia Coli: WP2 uvrA-

Compound	Concentr. µg/plate	Revers	ions/p	late	Mean	S. D.	(P)
over the thin this pair has also care that had been pay just for our row and and also	*** *** *** *** *** *** ***	*** *** *** *** *** *** ***		~~~~			
Vehicle control (Ethanol)		36	46	42	41.33	5.033	
Test Article	5	45	36	35	38.67	5.508	. 569
Test Article	15	38	42	31	37.00	5.568	.374
Test Article	50	40	34	41	38.33	3.786	. 456
Test Article	150	36	36	42	38.00	3.464	. 398
Test Article	500	37	39	37	37.67	1.155	.286
Test Article	1500	26	20	13	19.67	6.506	.010 *
Test Article	5000	tox	tox	tox			
Positive control (Methylmethanesul	phonate (MM	186 (S))	203	193	194.00	8.544	<0.001 ***

tox - Toxic

Test article:

Title RBM exp.

: 970591/1

TABLE 2. - Test with metabolic activation (p.

1)

Salmonella typhimurium: TA 1535

Compound	Concentr. µg/plate	Revers	ions/p	late	Mean	S, D.	(P)
and seem and man have been seen seen some date their time man give seen have seen		*** *** *** *** ***		···			
Vehicle control (Ethanol)		26	20	26	24.00	3.464	
Test Article	5	23	25	21	23.00	2.000	. 687
Test Article	15	28	20	22	23.33	4.163	.842
Test Article	50	22	20	25	22.33	2.517	.537
Test Article	150	28	26	22	25.33	3.055	. 643
Test Article	500	23	24	18	21,67	3.215	.441
Test Article	1500	20	19	17	18.67	1.528	.071
Test Article	5000	10	9	11	10.00	1.000	.003 **
Positive control (2-Aminoanthracen	e (2-AA))	188	170	162	173.33	13.317	<0.001 ***

Salmonella typhimurium: TA 1537

Compound	Concentr. µg/plate	Revers	ions/p	late	Mean	s. D.	(P)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	person trans and desire that was pain and						
Vehicle control (Ethanol)		9	10	13	10.67	2.082	
Test Article	5	11	10	9	10.00	1.000	. 643
Test Article	15	8	10	8	8.67	1.155	.219
Test Article	50	13	6	11	10.00	3.606	.795
Test Article	150	11	8	1.0	9.67	1.528	.539
Test Article	500	11	13	7	10.33	3.055	.883
Test Article	1500	10	7	6	7.67	2.082	.152
Test Article	5000	9	11	5	8.33	3.055	.336
Positive control	ne (2-AA))	135	118	140	131.00	11.533	<0.001 ***

Page 25

Test article: Ames test

Title : Ames test RBM exp. : 970591/1

TABLE 2. - Test with metabolic activation (p. 2)

Salmonella typhimurium: TA 98

Compound	Concentr. µg/plate	Reversions/plate			Mean	S. D.	(P)
one ded and her had said fine hid \$00 and also was the had yet the per-	em alla dili dili son son vico ton ton				con and him may been took care		ALTO MADE AND MADE MADE AND APPL STATE SAME MADE
Vehicle control (Ethanol)		45	41	48	44.67	3.512	
Test Article	5	38	44	38	40.00	3.464	.177
Test Article	15	42	45	47	44.67	2.517	1.000
Test Article	50	50	38	43	43.67	6.028	. 816
Test Article	150	44	36	32	37.33	6.110	.146
Tøst Article	500	32	31	36	33.00	2.646	.010 *
Test Article	1500	31	42	36	36.33	5.508	.092
Test Article	5000	18	9	11	12.67	4.726	<0.001 ***
Positive control (2-Aminofluorene	(2-AF))	760	828	864	817.33	52.814	<0.001 ***

Salmonella typhimurium: TA 100

Compound	Concentr. µg/plate	Revers	ions/p	Late	S. D.	(P)	
Mile and the fire here been said and have been high then also have been been some		per per per un aut put s			6	** ** ** ** ** **	
Vehicle control (Ethanol)		170	190	186	182.00	10.583	
Test Article	5	182	177	182	180.33	2.887	. 805
Test Article	15	198	176	160	178.00	19.079	. 767
Test Article	50	185	190	168	181.00	11.533	.917
Test Article	150	190	184	170	181.33	10.263	.941
Test Article	500	187	173	168	176.00	9.849	.512
Test Article	1500	144	180	176	166.67	19,732	. 301
Test Article	5000	118	109	106	111.00	6.245	<0.001 ***
Positive control (2-Aminofluorene	(2-AF'))	780	740	686	735.33	47.173	<0.001 ***

Test article:

: Ames test

Title RBM exp.

: 970591/1

TABLE

2. - Test with metabolic activation

(p. 3)

Escherichia Coli: WP2 uvrA-

Compound	Concentr.	Revers	ions/p	late	Mean	s. D.	(P)
one unp the test may been place face that they don't have been dead and fine dots deal	20 mm ton ton 100 mm ton 100 mm			ne ince win too 2/27 eVd			Mary Rad Com 400 ACC 502 503 403 403 773
Vehicle control (Ethanol)		42	34	39	38.33	4.041	
Test Article	5	44	40	46	43.33	3.055	.163
Test Article	15	50	44	35	43.00	7.550	. 399
Test Article	50	30	45	37	37,33	7.506	.849
Test Article	150	44	44	45	44.33	. 577	.064
Test Article	500	39	48	37	41.33	5.859	.506
Test Article	1500	38	42	48	42.67	5.033	.310
Test Article	5000	18	30	19	22.33	6.658	.024 *
Positive control (2-Aminoanthracen	e (2-AA))	274	302	324	300.00	25.060	<0.001 ***

Test article: Ames test

RBM exp. : 970591/2

TABLE 3. - Test without metabolic activation (p. 1)

Salmonella typhimurium: TA 1535

Compound	Concentr. µg/plate	Reversi	.ons/pl	ate	Mean	s. D.	(P)
were done done area area area area area area area over two area area pain pain pain gage date.					and any sens but here area well		***************************************
Vehicle control (Ethanol)		26	21	22	23.00	2.646	
Test Article	15	24	26	29	26.33	2.517	.189
Test Article	50	21	27	18	22.00	4.583	.760
Test Article	150	26	21	28	25.00	3.606	. 482
Test Article	500	18	28	24	23.33	5.033	. 924
Test Article	1500	22	16	21	19.67	3.215	.238
Positive control (Hydrazine sulpha	te (Hyd))	90	92	96	92.67	3.055	<0.001 ***

Salmonella typhimurium: TA 1537

Compound	Concentr. µg/plate	Reversions/plate			Mean	S. D.	(P)
over the note made they speck shell have speck made (majo speck data) allow speck speck	THE REAL PROP SAME AND SHOW MANY STORE AND						
Vehicle control (Ethanol)		11	7	9	9.00	2.000	
Test Article	15	14	9	11	11.33	2.517	.277
Test Article	50	8	10	6	8.00	2.000	.573
Test Article	150	7	9	7	7.67	1.155	.374
Test Article	500	10	10	6	8,67	2.309	.859
Test Article	1500	6	5	9	6.67	2.082	.234
Positive control	1101 manakan	42	61	48	50.33	9.713	.002 **
(9-Aminoacridine	HCT MODOUAG	rate (9-	AAI)				

Biotechnology Unit

Test article:
Title : Ames test
RBM exp. : 970591/2

TABLE 3. - Test without metabolic activation (p. 2)

Salmonella	typhimurium:	TA	98
------------	--------------	----	----

Compound	Concentr.	Reversi	Reversions/plate			S. D.	(P)
AND NOW WERE THAN THE	ha/brace	VII. 404 SAN THE SET SET SET			AND AND THE COT BUT THE THE		
Vehicle control (Ethanol)		42	45	37	41.33	4.041	
Test Article Test Article Test Article Test Article Test Article	15 50 150 500 1500	46 38 39 32 25	36 40 33 45 36	36 48 34 32 29	39.33 42.00 35.33 36.33 30.00	5.774 5.292 3.215 7.506 5.568	.649 .871 .114 .367 .046 *
Positive control (Doxorubicine HCl	. (Дохо))	1008	940	998	982.00	36.715	<0.001 ***

Salmonella typhimurium: TA 100

Compound	Concentr.	Reversions/plate			Mean	s. D.	(P)
مدة على المام ملية جمل المام ا	μg/plate				NOTE WITH WITH WITH MAN AND AND	\$620 \$023 \$500 Sord back most great	year plan plan doly lead have more one many dark
Vehicle control (Ethanol)		169	199	183	183.67	15.011	
Test Article Test Article Test Article Test Article Test Article	15 50 150 500 1500	192 177 173 168 148	183 207 165 186 157	170 168 173 163 152	181.67 184.00 170.33 172.33 152.33	11.060 20.421 4.619 12.097 4.509	.862 .983 .215 .366 .026 *
Positive control	(Doxo))	590	520	542	550.67	35.796	<0.001 ***

Test article:
Title : Ames test
RBM exp. : 970591/2

TABLE 3. - Test without metabolic activation (p. 3)

Escherichia Coli: WP2 uvrA-

Compound	Concentr. µg/plate	Revers:	ions/p	Late	Mean	S. D.	(P)
NOT AND THE TITLE THE TAX SEE AND AND AND AND THE THE SHE HAVE NOW	Pris 444 Per 500 Std 512 612 612 612	Non-solm norm know your soup at	******			MAN WARE BOX WAS BOAR MAN 4340	*** *** *** *** *** *** *** ***
Vehicle control (Ethanol)		34	41	51	42.00	8.544	
Test Article	15	37	55	45	45.67	9.018	. 636
Test Article	50	53	49	45	49.00	4.000	. 268
Test Article	150	37	41	36	38.00	2.646	. 482
Test Article	500	42	47	40	43.00	3.606	.861
Test Article	1500	38	31	37	35.33	3.786	. 284
Positive control (Methylmethanesul	phonate (MM	212 S))	198	236	215.33	19.218	<0.001 ***

Test article:
Title : Ames test
RBM exp. : 970591/2

TABLE 4. - Test with metabolic activation (p. 1)

Salmonella typhimurium: TA 1535

Compound	Concentr.	Revers:	Reversions/plate			s. D.	(P)
see you you man not take done you good and make book done that make more	ha/brace					UN 440 LUI OR MX 227 ***	
Vehicle control (Ethanol)		25	20	19	21.33	3.215	
Test Article Test Article Test Article	15 50 150	21 21 21	24 17 22	26 20 20	23.67 19.33 21.00	2.517 2.082 1.000	.378 .417 .872
Test Article Test Article	500 1500	18 14	21 18	25 16	21.33 16.00	3.512 2.000	1.000 .071
Positive control (2-Aminoanthracen	e (2-AA))	192	178	190	186.67	7.572	<0.001 ***

Salmonella typhimurium: TA 1537

Compound	Concentr.	Revers	ions/pi	Late	S. D.	(P)	
man were now you you have seen data have also keen noon need have topy only seen	, , , , , , , , , , , , , , , , , , ,	M 10 M 10 M 10 M	10 Nov 1000 Gree Map also 1	- 401 km km mz mz			
Vehicle control (Ethanol)		10	12	10	10.67	1.155	
Test Article Test Article Test Article Test Article Test Article	15 50 150 500 1500	9 7 9 7	11 11 10 5 4	7 10 9 7 6	9.00 10.00 8.67 7.00 5.67	2.000 1.000 1.528 2.000 1.528	.279 .492 .145 .051
Positive control (2-Aminoanthracen	e (2-AA))	139	146	114	133.00	16.823	<0.001 ***

Test article:
Title : Ames test
RBM exp. : 970591/2

TABLE 4. - Test with metabolic activation (p. 2)

Salmonella typhimurium: TA 98

Compound	Concentr. µg/plate	Revers	i.ons/p	late	Mean	S. D.	(P)
NOTE ANY SOTE SITE AND ASSESSMENT WAS THEN STREET, STREET, THE AND AND AND AND	304 548 MW 808 694 898 808 698 698						**** **** *** *** *** *** *** *** **** ****
Vehicle control (Ethanol)		42	39	45	42.00	3.000	
Test Article	15	34	40	45	39.67	5.508	. 554
Test Article	50	48	41	44	44.33	3.512	. 431
Test Article	150	47	40	42	43.00	3.606	.731
Test Article	500	38	45	42	41.67	3.512	. 907
Test Article	1500	36	32	39	35.67	3.512	.076
Positive control (2-Aminofluorene	(2~AF))	880	962	834	892.00	64.838	<0.001 ***

Salmonella typhimurium: TA 100

Compound	Concentr. pg/plate	Revers:	ions/pi	late	Mean	s. D.	(P)
	Ved hom sace were more wice may need play	وشدة فالله البدن هذاة الدائم فالما أجامة أوامة أوامة أوامة المائة الذائع الدائم الدائم الدائم الدائم والدائم			*** *** *** *** *** ***		993 000 962 006 206 426 £16 kith alle han
Vehicle control (Ethanol)		194	178	183	185.00	8.185	
Test Article	15	168	181	191	180.00	11.533	. 573
Test Article	50	177	179	156	170.67	12.741	.176
Test Article	150	165	186	189	180.00	13.077	. 605
Test Article	500	170	183	193	182.00	11.533	.732
Test Article	1500	153	161	157	157.00	4.000	.006 **
Positive control (2-Aminofluorene	(2-AF))	694	688	714	698.67	13.614	<0.001 ***

Test article:

Title : Ames test RBM exp. : 970591/2

TABLE 4. - Test with metabolic activation

3)

Escherichia Coli: WP2 uvrA-

Compound	Concentr.	Reversions/plate			Mean	S. D.	(P)
NAME PARK NOTE COME ALON ARROY MADE WATER MADE THE SALE FROM THE SALE FROM AND							
Vehicle control (Ethanol)		47	45	39	43.67	4.163	
Test Article	15	42	52	38	44.00	7.211	. 948
Test Article	50	41.	48	41	43,33	4.041	. 926
Test Article	150	42	44	49	45.00	3.606	. 697
Test Article	500	38	41	46	41.67	4.041	. 583
Test Article	1500	36	40	35	37.00	2.646	.079
Positive control (2-Aminoanthraceno	e (2-AA))	286	314	302	300.67	14.048	<0.001 ***

CONCLUSIONS

The test article did not induce any significant increase in the number of mutant clones, either in the absence or in the presence of metabolic activation, up to the concentration of 1500 μ g/plate in Salmonella typhimurium TA 1535, TA 1537, TA 98 and TA 100 strains or on Escherichia coli WP2 uvrA⁻, in two independent experiments.

Dr. Franca Fassio

RBM Study Director

April 6, 1998

Dr. Domenico Barone

Scientific Director Recognized by the Italian Health Authorities as Responsible for Experimentation of Mutagenesis

REFERENCES

- Ames B.N., McCann J., Yamasaki E. (1975)
 Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian
 Microsome mutagenicity Test
 Mut. Res. 31 (1975) pages 347-364
- 2. Maron D.M. and Ames B.N. (1983)
 Revised methods for the Salmonella mutagenicity test
 Mut. Res. 113, pages 173-215
- 3. Bridges B.A.(1972) Lab. Practice 21, pages 413-419
- Weichselbaum TE (1946).
 Accurate and rapid method for determination of protein in small amounts of blood, serum and plasma.
 Am. J. Clin. Pathol., pages 16-40.
- 5. Snedecor G.W. (1959) Statistical Methods, Iowa State College Press, Ames, Iowa (5th Ed.)