Integrated Planning for Combined Sewer Overflows

Presented to

New Jersey Clean Water Council

December 12, 2014

Raymond A. Ferrara, Ph.D.

Vice President / Principal

Director, Water and Wastewater

The CSO Conundrum

- CSOs are a remnant of our early urban infrastructure
 - a belief that the environment had a nearly 'limitless' capacity to assimilate human waste
- So, we built efficient systems to convey unwanted water (wastewater and stormwater) away from the land => Combined Sewer Systems (CSSs)
 - Many built before there was any wastewater treatment
 - With advent of universal wastewater treatment, capacity issues become important
 - Combined Sewer Overflows (CSOs) alleviate the capacity issue
 - A benefit small stormwater flows actually get treated

The CSO Conundrum

- Our predicament CSSs are in locations where remedies are difficult and expensive
 - Costs in the range of hundreds of millions of dollars are not uncommon
 - Median Household Income (MHI) statistics in such areas are among the lowest in the country
 - Benefits of CSO elimination not always clear
- Federal mandate to eliminate CSOs
- Classic dilemma lack of funding with high cost and uncertain benefit

Status of CSO Program in NJ

- CSO program in NJ is evolving
- Draft Individual NJPDES Permits have now been issued for all communities with CSOs
 - Some entities have never had an individual NJPDES permit e.g., Camden and Gloucester cities' sewers drain to regional WWTP at Camden County MUA
 - Previously operated under Master General NJPDES Permit for CSOs
- NJDEP will respond to comments and issue final permits soon => clock will start ticking

Nine Minimum Controls (NMCs)

- Prior program required implementation of NMCs
 - I. O&M Program
 - 2. Max storage in collection system
 - 3. Pretreatment to minimize CSO impacts
 - Max flow to POTW
 - 5. No CSOs during dry weather
 - 6. Solids and Floatables control
 - 7. Pollution prevention
 - 8. Public notification
 - 9. Monitoring
- "the low hanging fruit"

Long Term Control Plans (LTCPs)

- Permits provide 3 years for development of LTCPs
 - I. Characterization, monitoring and modeling of CSS
 - 2. Public participation process
 - 3. Consideration of sensitive areas
 - 4. Evaluation of alternatives
 - 5. Cost/performance considerations
 - 6. Operational plan
 - 7. Max treatment at POTW
 - 8. Implementation schedule
 - 9. Compliance monitoring

Long Term Control Plans (LTCPs)

- LTCPs require substantial effort including:
 - I. Mapping of CSS
 - 2. Baseline monitoring
 - 3. Simulation models for CSS and receiving water
 - 4. Evaluation of WWTP capabilities and upgrades
 - 5. Public participation process
 - 6. Coordination between hydraulically connected entities
 - Some have CSOs and some do not
 - 7. Alternatives evaluation and decision making process
 - 8. Financial planning

Long Term Control Plans (LTCPs)

- Presumption Approach
 - < 4 overflow events per year, or</p>
 - 85% removal of volume/mass of CSS flows, and
 - remaining CSO gets solids and floatables removal and disinfection
- Demonstration Approach
 - Demonstrate meeting WQ based requirements of CWA
 - Meet WQS and protect designated uses
 - Max pollution reduction reasonably attainable
 - Allow cost effective upgrades if necessary to meet WQS
- Alternative approach Integrated Planning!

Integrated Planning

- Traditional Approach: focus on each CWA requirement individually
 - C unintended consequence of constraining a municipality from addressing its most serious water quality issues first.
- C Integrated Planning: identify a prioritized critical path to achieving the water quality objectives of the CWA
 - C Protect public health and water quality; satisfy CWA
 - Address most pressing issues first
 - Municipality develops plan
 - C Use of innovative solutions / green infrastructure

Traditional vs. Integrated Planning Model

- **Traditional:**
 - C "Adversarial"
 - Regulatory Enforcement silo through AO's
 - Definitive, retrospective
 - Affordability basis: CSOImplementation Plan Only
 - Grey Infrastructure BMPs
 - CSO Impacts on WQ metrics
 - Lack of coordinated infrastructure management

- **○** Integrated Planning:
 - Collaborative
 - Permitting/Enforcement coordination
 - Adaptive/Iterative
 - Affordability basis: considers all CWA requirements
 - Green/Hybrid Solutions
 - Plan for optimal WQ improvement
 - Holistic Asset Management Approach

IP Approach to Compliance

- Satisfy enforcement / permit requirements
- Identify CSO, wastewater collection and treatment system needs
- Develop optimal CSO Abatement Plan and Wastewater / Stormwater Capital Plan
- Integrated Long Term Plan for affordable CSO and Wastewater / Stormwater Program

Approach to Compliance: Steps and Timeframes

Collect Data to Support Analysis

- Existing System
- Environmental
- Social
- Economic
- Regulatory (Compliance)

Started: Month 1 – extends minimum 2 metering seasons
Duration: 9 Months

Input to Analysis Framework

- Update Models
- Develop weights and scoring
- Develop alternatives scenarios

Started: Month 9
Duration: 6 Months

Evaluate the Scenarios

- Include "Green" elements
- Water Quality Impacts
- Human Health Impacts
- Financial Requirements
- Timeline to Implement

Started: Month 15 Duration: 9 Months

Select the Best Scenario

- OUTCOME: Recommended CSO Control Plan
- Maximum environmental and system benefits with limited resources

Started: Month 21 Duration: 9 Months

Steps and Timeframes – Cont.'d

Stakeholder Outreach

- Community
 Driven
- Involves key community groups
- Environmental justice/equity

Throughout project (or as preferred by client) with public meetings and hearings included Finalize the Recommended CSO LTCP

- Environmental
- Economic
- Water Quality
- Social
- OUTCOME: accepted plan, path for implementation

Submit CSO
Draft/Final LTCP:
Month 32/36
Public Comment:
Month 30
Duration: 3 Months

Implement Projects

 Phase implementation over 20 to 40 year time frame (or as appropriate)

Negotiated and memorialized in permits or AOs

Monitor & Communicate Success

- Monitor and measure results
- Share lessons learned with the community, EPA, and other municipalities
- Adapt controls as indicated

Start: as projects completed

Case Study - Springfield, MA System

Key Facts

- Population Served: 250,000
- 500 miles of sewer and combined sewer
- 220 miles of storm drains
- 23 CSO regulator structures
- 7 Flood Control pump stations
- 27 Sanitary pump stations
- Bondi Island
 SRWTF: Serving
 Springfield and 7
 Satellite
 Communities

Comparison to Some CSO Communities in NJ

City	Population	No. of Combined Sewer Outfalls	Median HH Income ¹	% Families below Poverty Level ²
Springfield, MA	152,082	25	\$30,417	19.3%
Jersey City, NJ	240,055	21	\$37,862	16.4%
Bayonne, NJ	61,842	28	\$41,566	8.4%
Paterson, NJ	149,222	24	\$32,778	19.2%
Camden, NJ	79,904	31	\$23,421	32.8%
Newark, NJ	273,546	17	\$26,913	25.5%
Elizabeth, NJ	120,568	34	\$35,174	15.6%

¹US Median HH Income is \$41,994 based on Census 2010 figures.

²Percentage of families in America living below the poverty line is 9.2% based on Census 2010 figures.

Why Do Communities Procrastinate?

- Prior to Development of Final Long Term Control Plan, SWSC Spent \$88M on CSO Reduction in 12 Years
 - © Eliminated 3 CSO Outfalls and 84 MG +/- of CSO in the Typical Year
 - Spent \$1,050,000 +/- Per MG Removed
- Results were not cost effective and the program was not sustainable

Springfield's Integrated LTCP for CSO

- C Developed Alternative Solutions:
 - CSO elimination with 4 Activations per year
 - Cost = \$312M
 - CSO elimination with 8 Activations per year
 - Cost = \$196M

Non-CSO Capital Improvement Plan

Recommended Improvement	Estimated Cost (July 2011 \$)
Non-CSO Capital Pipe Cost (Assessed Pipe)	\$8,200,000
Non-CSO Capital Pipe Cost (Projected)	\$76,600,000
Continued Diagnostics and Pipeline Cleaning	\$22,800,000
Immediate Non-CSO Improvements at SRWTF	\$200,000
Short Term Conditional Improvements at SRWTF	\$1,300,000
Long Term Conditional Improvements at SRWTF	\$132,100,000
Short Term Pump Station Improvements	\$1,700,000
Intermediate Term Pump Station Improvements	\$500,000
Long Term Pump Station Improvements	\$70,100,000
Totals	\$313,500,000

Develop Integrated LTCP

- Combine CSO and Other Non-CSO Costs:
 - CSO Costs Ranged from \$196M to \$312M
 - C Non-CSO Capital Costs Were Approximately \$315M

Total Program Costs Ranged from \$511M to \$627M

Affordability Analysis – a Key Component

- C Process Focused on Balancing <u>Total</u> Future Costs to Provide Wastewater Collection and Treatment With Rate Payers Ability to "Afford" Improvements
 - Impact on Typical Households Residential Indicator = Typical Household Bill as Percent of Median Household Income
 - Also Consider Broader Financial Capabilities of Community such as Ability to Raise Capital, Unemployment, MHI Trends and Strength of Tax Base

Affordability Analysis

- Set acceptable cost = 2% MHI
 - Resulted in \$225M \$266M Available Over 20 40 Year
 Planning Horizon
 - Total Identified Costs \$627M Exceeded Affordability by \$361M
 - Total Identified Non-CSO Costs \$315M Exceeded Affordability by \$49M
 - Needed Approach to Prioritize Non-CSO and CSO Related Improvements → an Integrated Plan!

What Does "Affordable" Mean?

- Affordability Considerations Indicated that 0 to 4
 Overflow Scenarios Were Not Affordable
- Water Quality Modeling to Further Justify that there was No Benefit in Going from 8 to 4 Overflows

Final Plan Achievements

- Integrated CSO and Non-CSO Elements into a Prioritized Plan:
 - C 20 Year CSO and 40 Year Non-CSO Capital Improvement Plan
 - CSO Plan Included:
 - Greater Than 89% Volume Reduction (EPA Goal = 85%)
 - **95%** Water Quality Attainment
 - \$136M Planned + \$88M Spent = \$224M for CSO Reduction
 - **\$496,000 / MG Removed**
 - CSO and Non-CSO Components Provide Renewal to Critical Infrastructure and CSO Control While Reducing Risk

Benefits of the Approach

- Opening
 - What is affordable to the community
 - What is achievable within context of CWA thresholds
 - C How projects are prioritized on the basis of community infrastructure needs, capacity, operations and socioeconomic benefit

Creates:

- C Accountability both for regulator (plan "approval") and community (plan commitments)
- Incentive to act based on environmental and economic rehabilitation, not just regulatory compliance

A Perspective on New Jersey Program Status

- Challenges:
 - © Economic conditions analagous to Springfield case
 - Must overcome inertia based on perception of unaffordable spending for modest water quality outcomes
- C Advantages:
 - CWillingness to apply flexible, cooperative approach
 - The Integrated Planning Approach is evolving quickly both regulators and regulated have greater confidence in applying the model in enforcement or permit mechanisms

Questions?