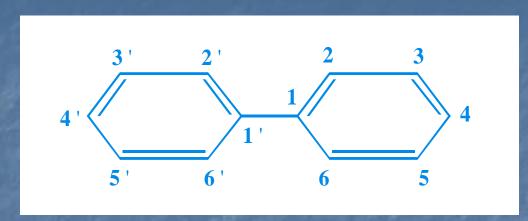
Evaluation of PCB TMDL Efforts in the Delaware Estuary

New Jersey Clean Water Council
June 10, 2014
Gregory J. Cavallo, PG
Modeling, Monitoring and Assessment Branch

Outline

- Background
- Analytical Methods
- Detection limits and trends in blanks
- PMP key elements and activities
- Point source initiatives
- Trends in point source loadings since 2005
- Non-point source initiatives
- Achieving individual WLA

Background


- Delaware Estuary portion of the Basin is 133 miles long and is bordered by DE, NJ and PA.
- It consists of 5 water quality management units called Zones.
- EPA Regions II & III establish Stage 1 TMDLs for Zones 2 5 in December 2003.
- EPA Regions II & III
 establish Stage 1 TMDL for
 Zone 6 in December 2006.

PCB Chemistry

- Man-made organic chemicals with a biphenyl base structure and 209 possible chlorine substitution patterns.
- Terminology: Aroclors, congeners, homologs.
- Properties: Hydrophobic, tend to accumulate in sediments and tissues

PCB Structure and Terminology

Terminology:

- Aroclors- Commercial mixtures
- Congeners- Individual compounds (209)
- Homolog- Group of compounds based on level of chlorination (10)

Homolog	# of congeners	
Mono	3	
Di	12	
Tri	24	
Tetra	42	
Penta	46	
Hexa	42	
Hepta	24	
Octa	12	
Nona	3	
Deca	1	

PCB Toxicity

- Probable Human Carcinogen
- Disrupt hormone function
- Immunosuppressant
 - Like dioxin, PCBs bind to receptors that control immune system function, disturbing the amounts of some immune system elements like lymphocytes and T cells
- Developmental/Neurobehavioral Effects

Analytical and Monitoring Approaches

- DRBC's convened a Data Quality subcommittee to address issues regarding analytical and monitoring approaches.
- Participants included:
 - Industry, Municipal, Academic, Environmental and Laboratory representatives.
- DQ Subcommittee Recommended:
 - Sample identification protocols
 - Sample size and collection methods
 - Analytical methodology
 - Electronic data formatting and reporting

Measuring PCBs

- To develop a more accurate Stage 2 TMDL by requiring better quantification of the concentrations from the various PCB source categories.
- A HRGC/HRMS analytical methodology capable of providing detection limits in pg/L (ppq)
 - EPA Method 1668 Rev. A

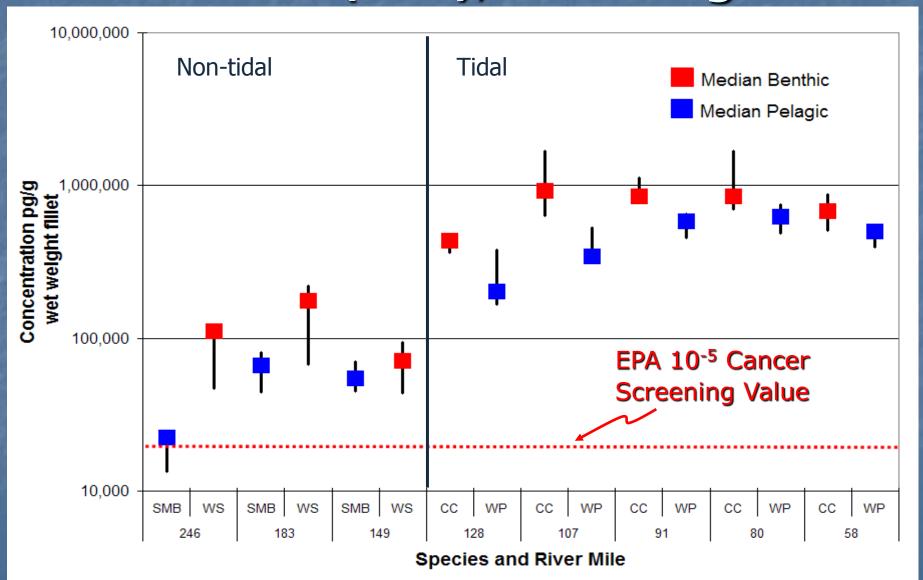
Results:

- Comparability of analytical results
- Reduced analytical uncertainty
- Greater accuracy in estimated loadings
- More accurate long-term trends analysis
- Better temporal and spatial evaluation of data

Supporting Documentation

- Adopted Recommendations available at:
 - http://www.state.nj.us/drbc/quality/toxics/pcbs/monitoring.html
- Additionally, the Commission in cooperation with select point source dischargers developed an Access database to organize the information.
- Commission maintains the database for all discharge data
- Benefits:
 - Provide a basis for determining effectiveness of pollutant reduction measures.
 - An open and transparent database will provide for direct and candid communication between the regulated community and the regulatory agencies.

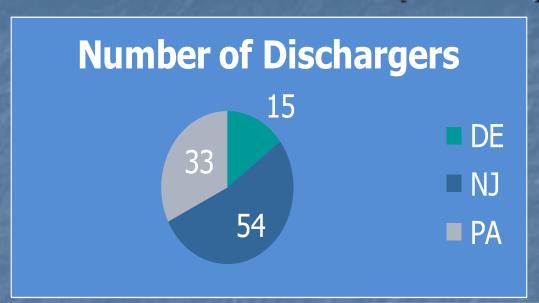
Sampling Locations 2004 - 2006

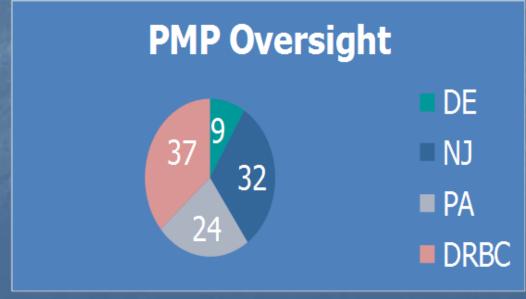

<u>Species</u>

Channel Catfish CC Benthic White Perch WP Pelagic

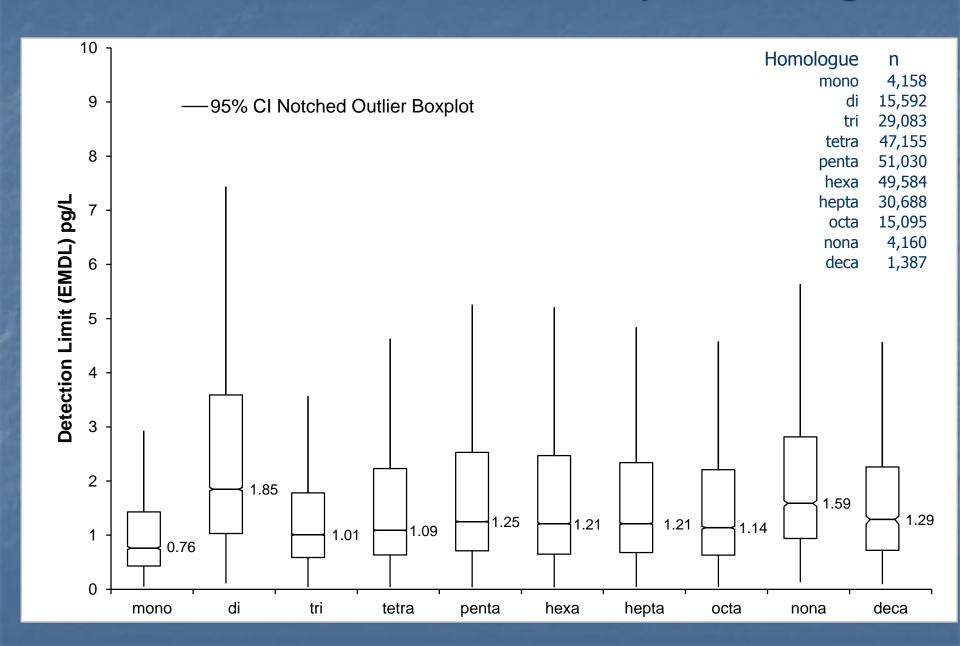
Tidal Locations

Crosswicks Creek RM 128
Tacony-Palymra Br. RM 107
Woodbury Creek RM 91
Raccoon Creek RM 80
Salem River RM 58

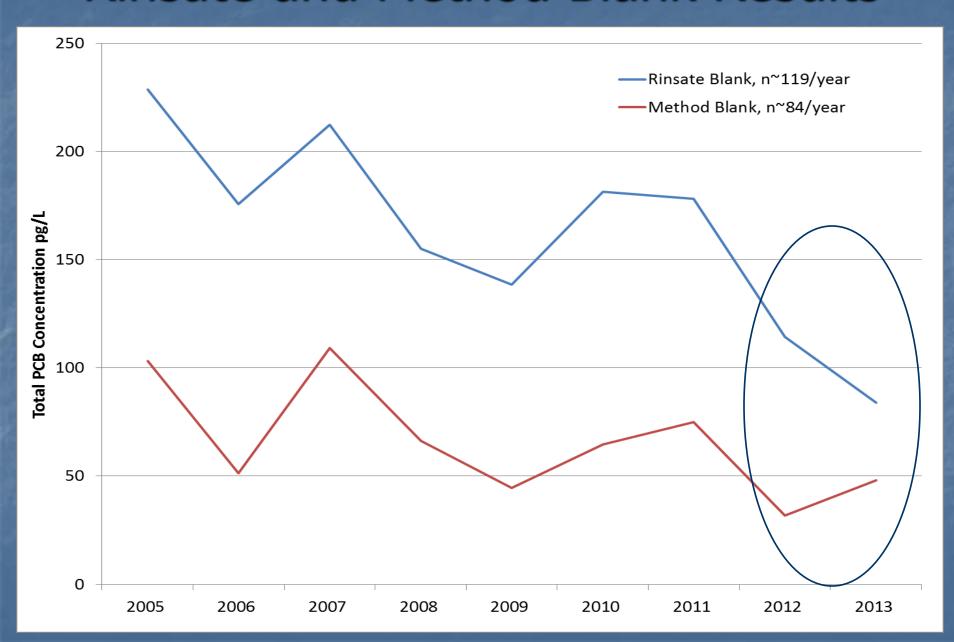

Total PCBs 2004-2006 (n=3), 209 congeners



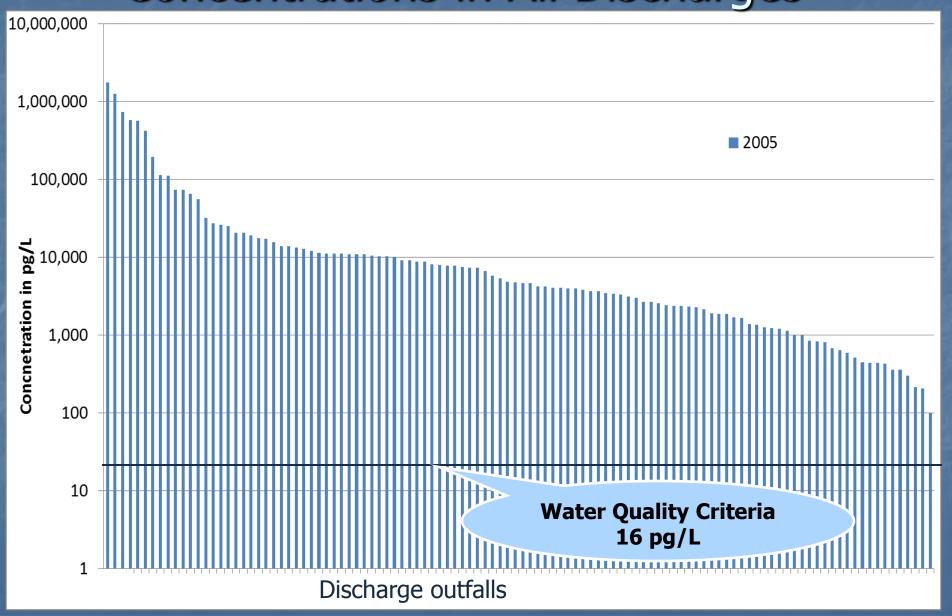
Reducing PCB Loadings to the Estuary Pollutant Minimization Plans (PMPs)

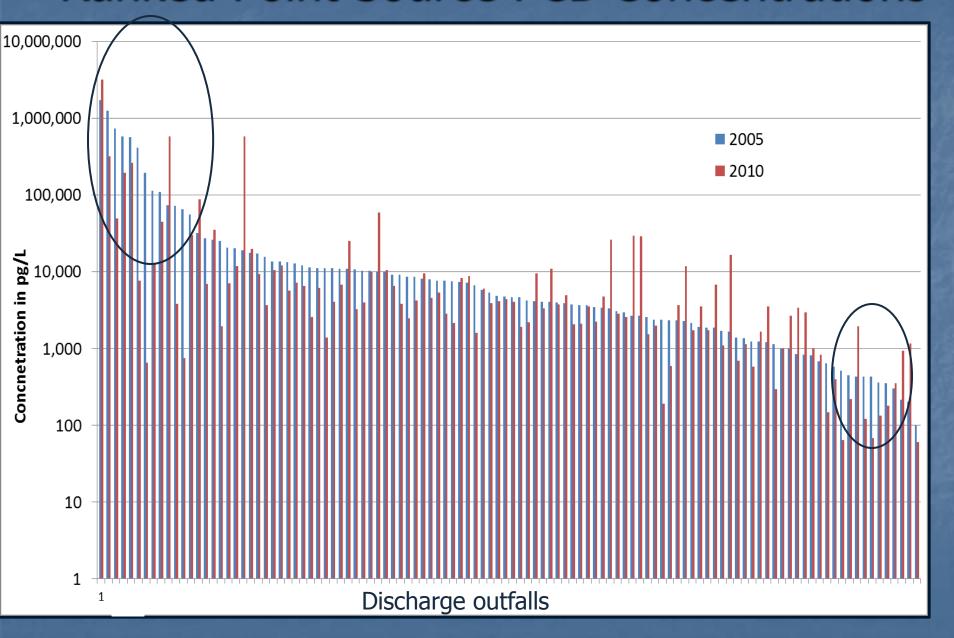

- Key PMP Elements
 - Source identification and reduction
 - Monitoring and progress report
 - Remediation activities
- PMP Approaches:
 - Remove PCB transformers and capacitors
 - Trackdown studies to identify and remove sources
 - Contaminated sediment control or removal

Dischargers in PCB TMDL (n=102)



1668A Detection Limits by Homolog


Rinsate and Method Blank Results


Commission PMP Activities

- Workshops were provided for dischargers in 2005, 2007 and 2012 to assist in:
 - Preparation and approval of PMPs
 - Preparation and submittal of Annual Reports
 - Illustrate effectiveness of remedial measures
- Training sessions were provided by DRBC for PADEP and NJDEP staff to foster a consistent approach for PMP evaluation.
- Commission staff have provided technical assistance to dischargers and their consultants.
- PMP resources available at:
 - http://www.state.nj.us/drbc/programs/quality/pmp.html

2005 Ranked Point Source PCB Concentrations in All Discharges

Ranked Point Source PCB Concentrations

Municipal Initiatives

- Tinicum Township
 - Increased solids removal efficiency at WWTP
 - Annual sediment removal at pump stations
 - Trackdown studies have identified a major source of PCBs Airport Business Complex (ABC)
 - Sewer line relining to eliminate infiltration
- Camden County Municipal Authority (CCMUA)

Trackdown studies identified:

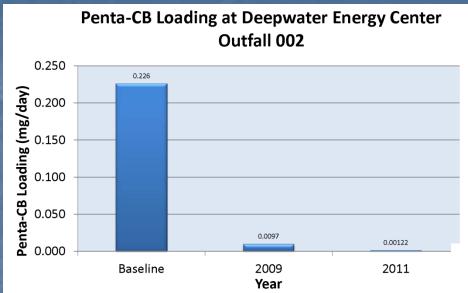
- Sewer interceptors with elevated PCB sediment concentrations
- Existing and abandoned industries contributing PCBs.

Coordinating efforts with NJDEP, EPA and City of Camden

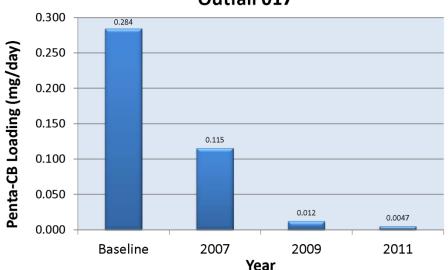
Industrial Initiatives

- USX Steel Fairless Hills, PA
 - Removed 700,000 lbs. of PCB transformer oil
 - Removed 440,000 lbs. of PCB debris and capacitors
 - Removed contaminated sediment initiated stormwater control
- Amtrak Wilmington, DE
 - Sediment removal from sewer lines (60 tons)
 - Redesigned stormwater system to reduce direct discharge
 - Considering additional sediment removal

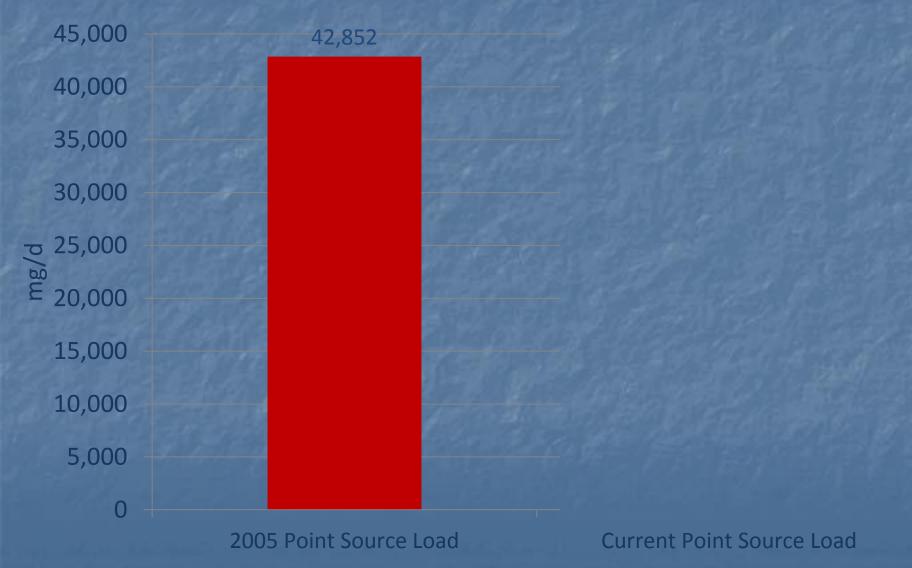
Specific Example


- Calpine Deepwater Energy Facility
 - Legacy contamination (built 1929)
- Two stormwater outfalls monitored
 - PCB transformers removed
 - Catchments and stormwater lines cleaned
 - Geotextile filter baskets and filter guards deployed at drains

Slides courtesy Calpine Energy and Cardno ENTRIX


Deepwater Results

Cumulative Reduction of Penta-CBs: 99.5%


Slides courtesy of Calpine Energy and Cardno ENTRIX

Penta-CB Loading at Deepwater Energy Center
Outfall 017

Cumulative Reduction of Penta-CBs: 98.3%

10 Dischargers Representing 90% of Point Source PCB Loadings in the Estuary

10 Dischargers Representing 90% of Point Source PCB Loadings in the Estuary

Non-Point Sources Success

- Exxon Mobil, Paulsboro NJ
 - 16 acre tidal wetland containing contaminated PCB aluminosilicate pellets
 - Excavated 120,000 tons of material
 - Estimated 30-40,000 lbs. of PCBs removed
- Metal Bank, Philadelphia PA
 - 10 acre industrial site (NPL listed)
 - Excavated 1,500 tons of material
 - Approximately 800 lbs. of PCBs removed

Remedial Efforts 2008-09

Slides Courtesy of Alan Motter NJDEP

O&M Requirements

- Why is O&M necessary?
 - Prevention of backsliding i.e. increasing loading after an initial reduction
- Example: US Pipe and Foundry
 - Manufactured iron pipe from recycled and new material
 - Stored scrap metal on-site
 - Legacy site >100 years old
 - Storm water effluent contaminated with PCBs

U.S. Pipe and Foundry (Outfall 004)

Year	PMP Initiatives	Analytical Results
2007	Existing sedimentation basin no treatment	118,923 pg/L
2008	Sediment removed from basin and filtration system added	847 pg/L
2009	Filtration system failed and demolition of facility began	47,651 pg/L
2010	Demolition continues increasing sediment load	94,821 pg/L
2011	Demolition completed and rerouting of additional stormwater to sedimentation basin. Increased sediment trapping in stormwater drains	35,086 pg/L
2012	Filtration system under repair (during sample collection). Identification of remaining potential sources	33,434 pg/L
2013	Filtration system repairs completed. Continued system Maintence. Begin re-grading and seeding to reduce runoff	1,519 pg/L

Dischargers Approaching Individual WLA

- Degussa Corporation (NPDES #PA0051713)
 - Manufactures inorganic industrial products
 - Discharge is treated by Industrial Waste Water
 Treatment Plant
 - Neutralized
 - Solids removed
- BP Paulsboro (NJPDES #NJ0005584)
 - Former refinery, since demolished undergoing ground water remediation
 - Discharge is treated by Groundwater Treatment Plant
 - Air stripping
 - Carbon filtration

Summary

- The majority of facilities that are implementing a PMP are reporting lower concentrations/loadings of total PCBs in their discharges.
- The top ten dischargers that contribute 90% of the point source PCB loading have reduced their loadings by 46% since 2005.
- The PMP approach is demonstrating progress in reducing PCB loadings from point source discharges.
- Selected dischargers are close to achieving their WLA
- Continuation of this cooperative approach is an essential component of a long-term strategy to achieve the PCB TMDLs.

Questions?

Gregory J. Cavallo
Modeling, Monitoring and Assessment Branch

gregory.cavallo@drbc.state.nj.us

(609) 477-7270

