Approaches to Quantifying Community Exposures to Air Toxics

Zhihua (Tina) Fan, Ph.D. Associate Professor

Division of Exposure Science Environmental and Occupational Health Sciences Institute University of Medicine and Dentistry of New Jersey-RWJMS and Rutgers University

> NJ Clean Air Council Public Hearing NJDEP, Trenton, NJ April 13, 2011

Why Do We Want to Study Community Exposure to Air Toxics?

 There are large gaps in understanding community exposure to air toxics and cumulative health risks

- There are a variety of sources of air toxics, including small point sources in local community.
- Spatial variation of air toxics can be large in communities with dense sources of air toxics.

 Communities located in close proximity to sources of air toxics, many are socio-economically disadvantaged groups, may be at a greater health risk but the <u>communitybased</u> spatial variation and <u>personal exposure data of air</u> toxics are limited Why Do We Want to Study Community Exposure to Air Toxics? – cont'

Exposure to air toxics and health risks for people living in an area with dense sources of air pollution may be <u>under-estimated</u> based on <u>routine</u> ambient air monitoring data.

Current database may under-represents the timelocation pattern for socioeconomically disadvantaged population, who often live in close proximity to air pollution

National Human Activity Pattern Survey (NHAPS) (Klepeis et al. 2001) between 1992 and 1994

 > 24-h time-location-activity data by telephone interview from 9,386 respondents all through the U.S. (except Alaska and Hawaii)

The Village of Waterfront South (WFS) in Camden, NJ

Mixed sources of air toxics

- Industrial sources (26 industrial and manufacturing facilities)
- Mobile sources (>100,000 diesel trucks/yr, HYW 676 and other major roads)
- Urban Sources
 (Philadelphia ~ 8 miles west of WFS)

Industrial facilities Subject homes

Industrial Facilities in WFS

Industrial facilities in WFS (NJ DEP, 2005)

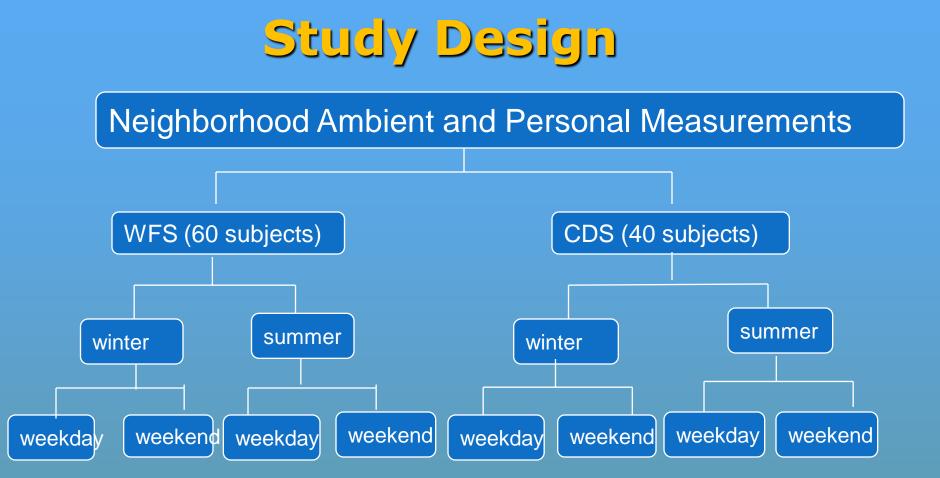
ID	Facility Name	Type of Operation	Main Pollutants Emitted		
PS1	Camden County Municipal Utilities Authority	Sewage Treatment Facility	PM, MTBE, BTEX, chloroform, carbon tetrachloride, Formaldehyde, PAH		
PS2	Mafco	Spice and Extract manufacturing	PM, propylene glycol, ammonium		
PS3	Art Metalcraft	Electroplating	Hydrogen cyanide, metals		
PS4	PSE&G Camden Coal Gas	Other Electric Power Generation	benzene, toluene, formaldehyde		
PS5	Georgia Pacific (Domtar Gypsum inc.)	Gypsum Product Manufacturing	hexane, benzene, toluene, formaldehyde, metals		
PS6	Container Recyclers of Camden Inc.	Other Metal Container Manufacturing	Xylene, titanium dioxide		
PS8	American Minerals, inc.	All other Metal Ore Mining	РМ		
PS9	Hospital Central Services Inc. Laundry	Laundry Service	PM, metals		
PS10	Camden County Resource Recovery Association	Refuse System (Materials Recovery)	PM, formaldehyde, PAH		
PS11	St. Lawrence Cement	Cement Plant	PM, metals		
PS12	Colonial Processing	Welding & Soldering Equipment manufacturing (Paint appl.)	PM, Xylene, Hexane		
PS13	Comarco	Process Pork	PM, lead		
PS14	Broadway Finishing	Industrial Paint Shop	Toluene, Xylene, MEK		
PS15	SL Surface Technologies	Electroplating	PM, metals		

Industrial facilities in WFS (NJ DEP, 2005)-cont'

ID	Facility Name	Type of Operation	Main Pollutants Emitted
PS16	Camdett	Industrial Inorganic Chemicals, NEC (alumina)	Ammonia
PS17	Camden Cogeneration	Fossil Fuel Electric Power Generation	PM, ammonia
PS18	F.W. Winter	Secondary Smelting, Refining & Alloying of Nonferrous metal	PM, metals
PS19	State Metal Industries inc.	Secondary Smelting, Non Ferrous Metals	PM, hexane, toluene, dioxins, metals
PS20	CWS Industries	Electroplating, Plating, Polishing	PM, cadmium
PS21	Duro Plating Co.	Electroplating	Cadmium, hydrogen cyanide
PS22	Camden Iron & Metal (The Pier)	Recyclable Material Wholesaler	toluene, hexane, metals
PS23*	Steve's Auto Parts Inc.	Car scraping facility, automotive body repair, paint	PM, gasoline emissions
PS24	Plastic Consulting & MFG Co.	Coating, Engraving, allied services, NEC (Cos. Jewelry)	PM, metals, and VOCs
PS25	Teideken Bros Auto Body inc.	Automotive body, paint, & interior repair & maintenance	МІВК
PS26	Cam Core	Secondary Aluminum Smelter	PM, toluene, hexane, metals
PS27	Peerless Castings	Aluminum Foundries	PM, toluene, hexane, ethylene

Demographic Information

		Ethnicity		Income				
Geographic Level	Black	Hispan ic	Non- White	Median Household Income	Individuals Below Poverty			
New Jersey State	13.6%	12.5%	27.4%	\$55,136	8.5%			
Camden County	18.1%	9.7%	29.1%	\$48,097	10.4%			
Camden City	53.3%	38.8%	82.5%	\$23,421	35.5%			
Waterfront South	57.8%	27.2%	85.4%	\$22,417 ²	33.8% ²			
Copewood/Davis	69.3%	3% 25.6% 88.2%		NA ³ NA ³				
¹ US Census 2000. ² NJDEP, 2005. ³ not available.								


Personal Exposure to Air Toxics in Camden, New Jersey

Objectives

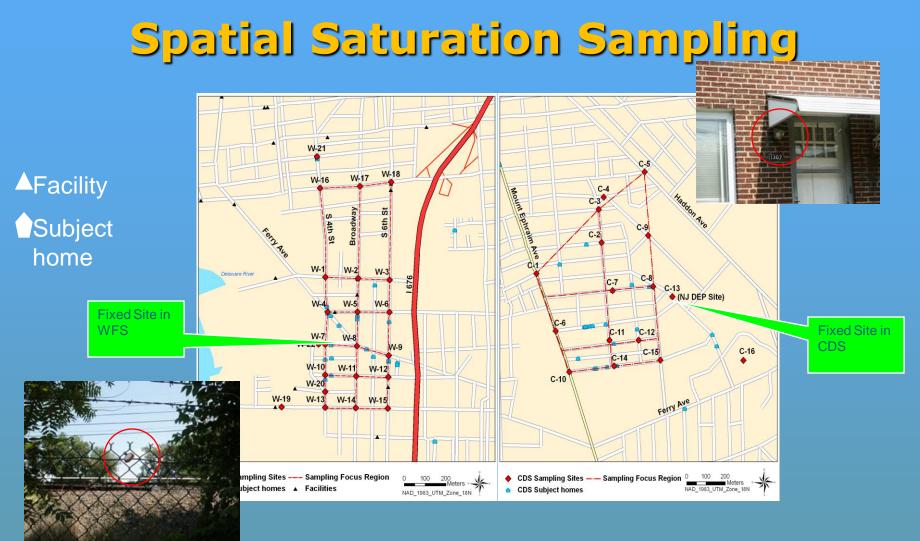
- To characterize local ambient and personal concentrations of air toxics using measurements and simulations in Waterfront South (WFS) Camden, NJ.
- To assess the impact of local industrial and mobile sources on measured neighborhood ambient concentrations and personal exposures in WFS and Copewood/Davis (CDS) area, a reference site.
- To identify the sources of concern.

Objectives-cont'

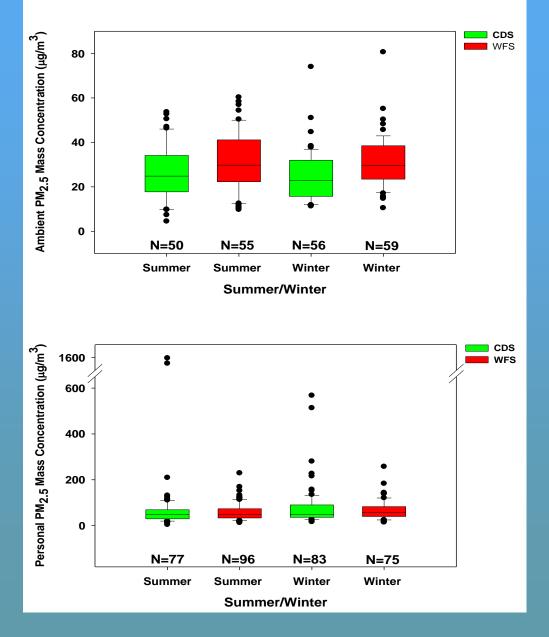
- To characterize the time-location patterns of the population living in areas with elevated air pollution levels.
- To evaluate the factors that may influence the time-location patterns of the people living in those areas.

A. 24-h outdoor and personal samples of Fine particles, Volatile
Organic Compounds, carbonyls, & Polycyclic Aromatic Hydrocarbons
B. Baseline and Activity questionnaires and Time/Activity Diaries
C. Modeling Exposure

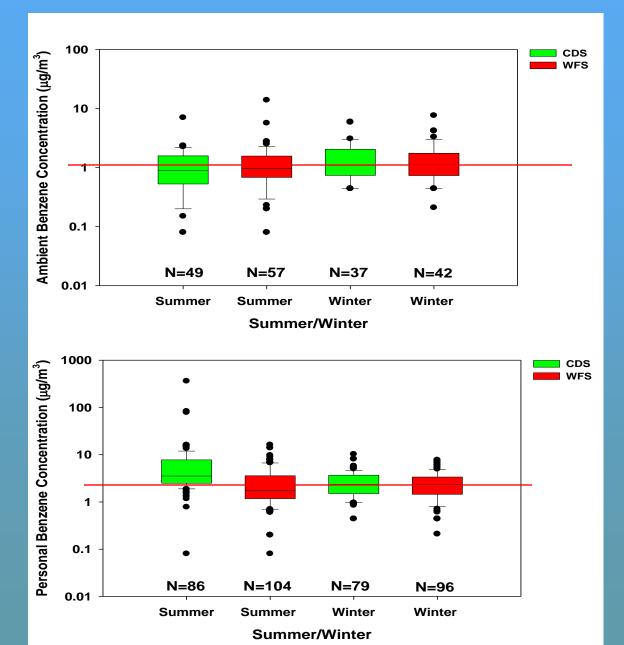
Activity Log								
Indoors Outdoors In Vehicle								
Time (hours)			Other	In	Out of	With open	With clos	
-		Or work		Neighborhood	Neighborhood	windows	window	
8 am								
9 am								
10 am								
11 am								
12 pm								
1 pm								
2 pm								
3 pm								
4 pm								
5 pm								
6 pm								
7 pm								
8 pm								
9 pm								
10 pm								
11 pm 12 am								
12 am 1 am								
2 am								
2 am 3 am								
4 am								
5 am								
6 am								
7 am								
8 am								
9 am-next day								
10 am-next day								
11 am next day								
12 pm next day								
1 pm next day								
If less than half a	n hour n	lease recor	d the time	below, eg. Schoo	ol/work: 10:00 an	nto 10:30am	1	
	_			- V-D				
Home								
School/work								
Other								
Out of neighborhood								
In neighborhood								
With open window	ws							
With closed windo	ows							


Time-Activity Log

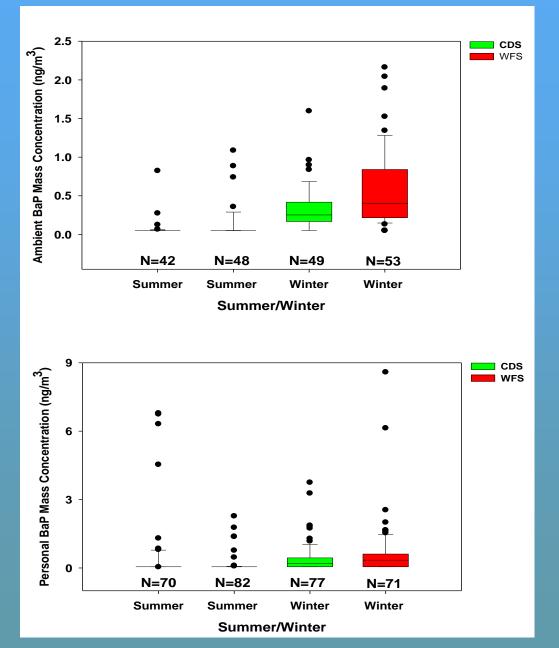
Sampling Approaches-Simultaneously Personal and Outdoor Sampling



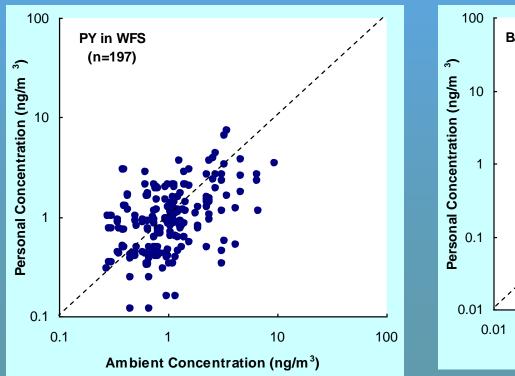
★ : the fixed sampling sites

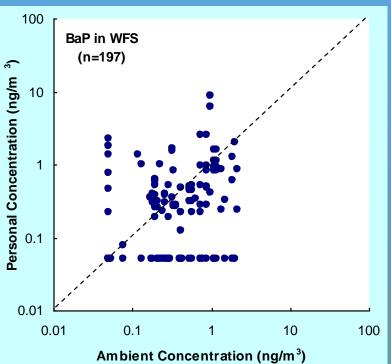


Two summer and one winter sampling campaigns in 2005 (VOCs and aldehydes)


PM_{2.5}: Ambient (top) and Personal Levels (bottom)

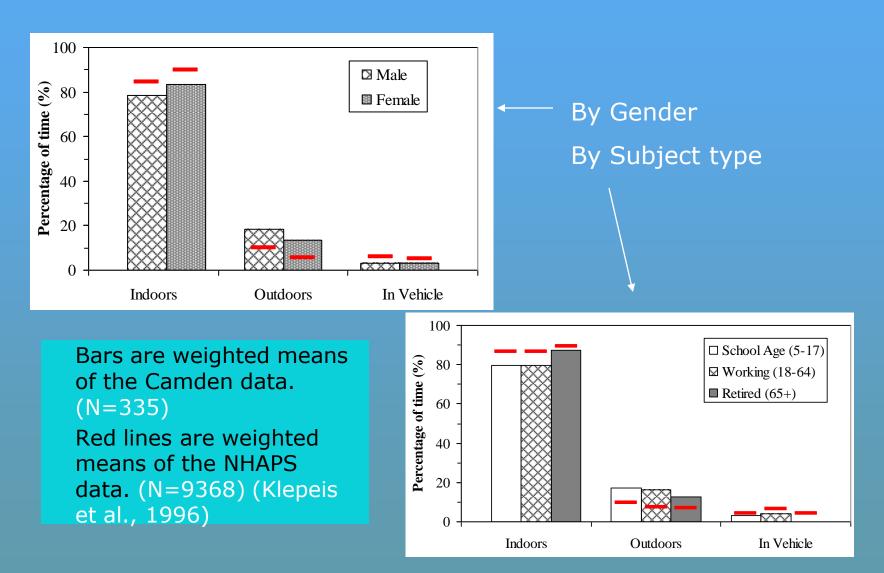
Benzene: Ambient (top) and Personal Levels (bottom)

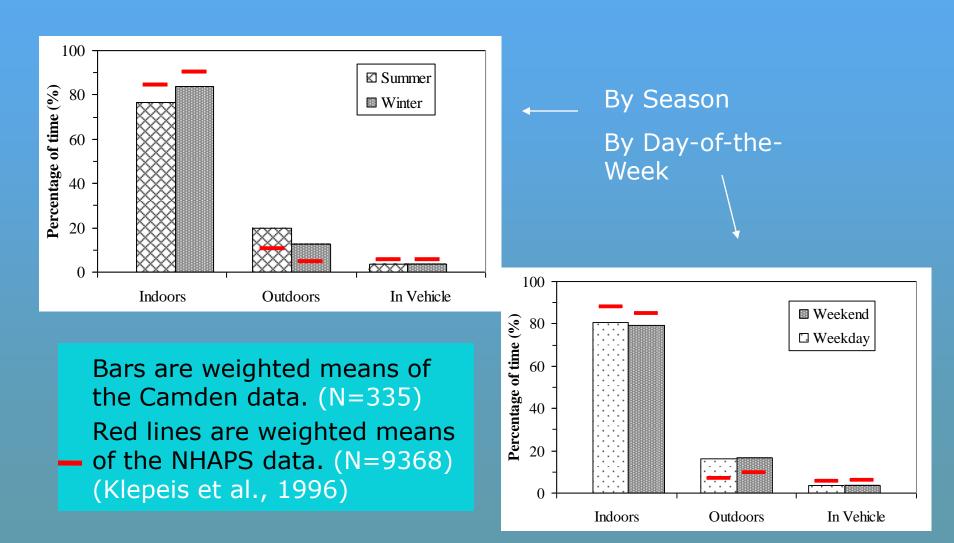



Benzo(a)pyrene: Ambient (top) and Personal levels (bottom)

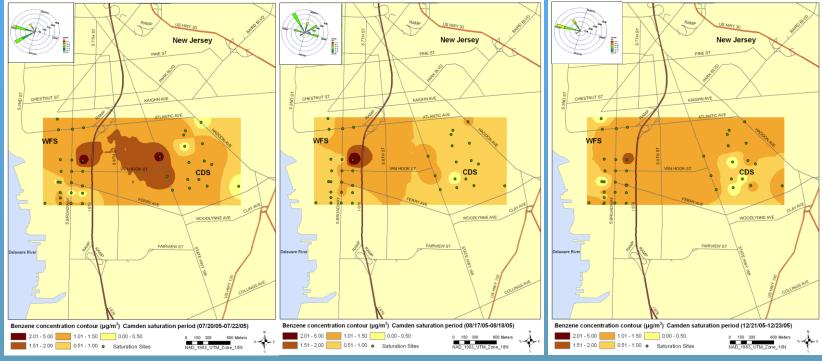
Prediction of personal exposure based on ambient concentration using a mixed model

		WFS				CDS			
	Slope	Intercept	p	R ²	Slope	Intercept	p	R ²	
NAP	0.28	2.53	0.037	0.96	0.38	2.86	0.056	0.87	
PHE	0.51	1.61	0.0002	0.81	0.47	1.78	0.003	0.73	
РҮ	0.46	-0.06	0.001	0.71	0.58	0.37	0.004	0.98	
BaP	0.47	-1.25	0.002	0.67	0.73	-0.43	0.002	0.94	
Σ16-PAH	0.58	2.37	0.003	0.91	0.61	2.74	0.026	0.95	



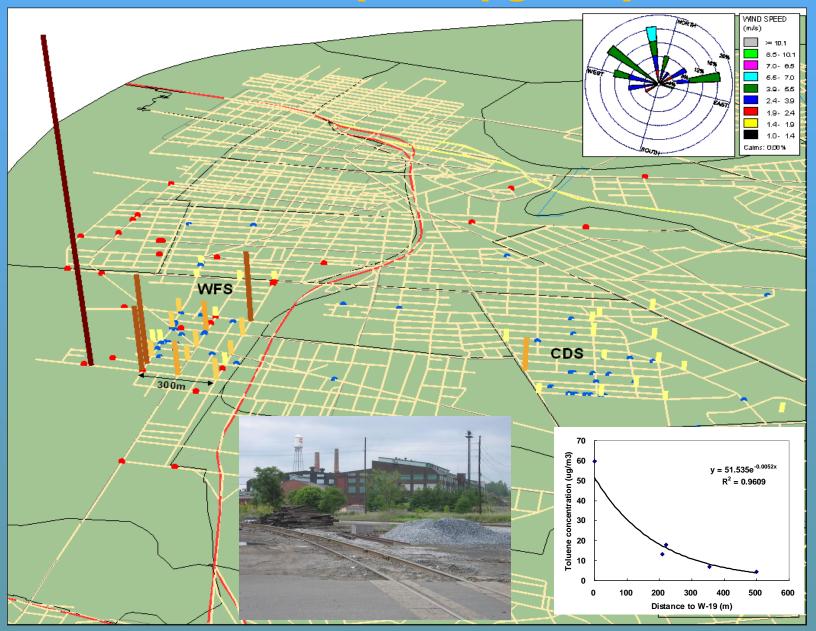

Time-location Pattern Camden vs. US General Population

Overall Weighted mean percentage (%)	U.S. general population	Camden study cohort
Total Indoors	86.9	81.0
Total Outdoors	7.58	15.82
Total in Vehicle	5.52	3.18


%Time Spent in Different Microenvironment

%Time Spent in Different Microenvironment

Spatial Distribution of Benzene (WFS: 0.5-3.1 μg/m³ CDS: 0.67-3.5 μg/m³)



July

December, 2005

Toluene (2-60 µg/m³)

Ratio = $C_{fix site}/C_{mean of each area}$

		WFS		CDS			
Compound	7/20-22	8/17-18	12/20-22	7/20-22	8/17-18	12/20-22	
МТВЕ	0.9	0.8	0.7	0.9	0.9	0.7	
Chloroform	0.9	0.9	1.0	1.0	0.9	1.0	
Carbon Tetrachloride	1.0	1.0	1.0	1.0	1.0	1.0	
Benzene	1.2	1.1	1.0	0.8	0.8	0.8	
Toluene	0.7	0.5	0.6	0.8	0.8	0.7	
Ethylbenzene	0.8	0.5	0.6	0.7	0.8	0.7	
<i>m/p</i> -Xylene	0.8	0.5	0.6	0.7	0.8	0.7	
o-Xylene	0.8	0.7	0.7	0.7	0.8	0.7	
Formaldehyde	1.3	1.0	1.1	1.0	1.3	1.0	

Proximity to Sources of Air Toxics and Spatial Variation (WFS, n=61)

Parameter Estimate

Compound	R²(sour ces only)	PS1 ⁻¹	PS6 ⁻¹	PS12 ⁻¹	PS14 ⁻¹	PS23 ⁻¹	U	т
MTBE	(0.2)					0.192	-0.126	0.605
CHCI3	(0.013)						-0.789	0.047
CCI4	(NA)						-0.051	0.299
Benzene	(0.394)	0.098			0.037	0.259	-0.164	0.038
Toluene	(0.162)		0.092			0.070	-0.058	
Ethylben	(0.418)			0.152	0.052	0.214	-0.152	
m,p-Xyl	(0.435)			0.222	0.048	0.165	-0.159	
o-Xyl	(0.461)	0.042		0.173		0.246	-0.180	

Proximity to Sources of Air Toxics and Spatial Variation (CDS, n = 40)

Parameter Estimate

Compound	R ²	Haddon Ave⁻¹	NJ-168 ⁻¹	PS23 ⁻¹	U	т
МТВЕ	(0.007)	0.003	0.004		-0.110	0.823
CHCI3	(NA)				-0.941	0.010
CCI4	(0.031)		0.031		-0.069	0.716
Benzene	(0.239)		0.239			
Toluene	(0.138)		0.138		-0.265	0.191
Ethylbenzene	(0.368)	0.029	0.014	0.285	-0.126	0.302
m,p-Xyl	(0.358)	0.034		0.294	-0.133	0.285
o-Xyl	(0.405)	0.048		0.317	-0.181	0.168

Summary and Implication

- The community air monitoring approach can
 - > Better define the population at high exposure risks.
 - Provide accurate data for the estimate of health risks associated exposure to air toxics.
 - Identify the major air toxics sources of concern and aid in developing effective controlling strategies to reduce community exposure to air toxics.
- Personal activity has significant impact on personal exposure to air toxics and associated health risks.

Acknowledgments

- Community members from WFS and CDS in Camden
- Investigators at EOHSI: P. Lioy (PI), S.W. Wang, P. Georgopoulos, P. Ohman-Strickland, and J. Zhang (USC).
- Collaborator at the NJ DEP: L. Bonanno, J. Held (retired), and other scientists
- Staff and students at EOHSI: X. Zhu (China), X. Wu (UC-Irvine), X. Tang, Q. Meng, M. Hernandez, and J. Herrington (US EPA).
- Funding Agency: Health Effects Institute (HEI Agreement Number: 4703-RFA03-1/03-15)