# Toward Decarbonization of Power as Well as Fuels via Co-Production with CCS & Coal/Biomass Coprocessing



Robert Williams Princeton Environmental Institute Princeton University

> For presentation at World CTL 2009 Washington, DC 25-27 March 2009



World CTL 2009 1

## **Systems Analysis for Synthetic Fuels Production**

• Alternative FTL system configurations were investigated in detail in the following PCC report (*available on request*):

T. Kreutz, E. Larson, G. Liu, and R. Williams, "Fischer-Tropsch Fuels from Coal and Biomass," *Proc.* 25<sup>th</sup> Annual Pittsburgh Coal Conference, 2008.

- Research Support:
  - Princeton University's Carbon Mitigation Initiative (BP/Fordsupported)
  - NetJets
  - Hewlett Foundation
  - NRC contract

## **Feedstock Assumptions**

| Feedstock | Туре                    | Delivered price, \$/GJ <sub>HHV</sub> |
|-----------|-------------------------|---------------------------------------|
| Coal      | Bituminous, Illinois #6 | 1.7                                   |
| Biomass   | Switchgrass             | 5.0                                   |

#### Acronyms

| CTL  | Coal to finished FTL fuels (diesel/jet, gasoline) and electricity                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BTL  | Biomass to finished FTL fuels (diesel/jet, gasoline) and electricity                                                                                               |
| CBTL | Coal + biomass to finished FTL fuels (diesel/jet, gasoline) and electricity                                                                                        |
| RC   | FTL synthesis with recycle (RC) of unconverted syngas for maximum FTL output                                                                                       |
| ОТ   | FTL synthesis with once through (OT) synthesis; unconverted syngas used to make coproduct power in a combined cycle                                                |
| V    | Coproduct CO <sub>2</sub> is vented                                                                                                                                |
| CCS  | Coproduct CO <sub>2</sub> is captured and piped to underground storage site                                                                                        |
| GHGI | <i>GHG emissions index</i> = FTL emissions relative to emissions for crude oil products displaced when electricity is assigned rate for coal IGCC with 90% capture |
| CI   | <i>capture index</i> = $CO_2$ captured as fraction of feedstock C not in products                                                                                  |

## **Once-Through FT Synthesis + CCS via Coal/Biomass Co-Processing**



Focused attention has been given to these systems

## **FTL Analytical Framework**

- Consistent and detailed analytical framework applied to compare 16 FTL process designs using coal and/or biomass as feedstocks.
- Aspen Plus for estimating mass/energy/carbon balances and then using these to estimate CAPEX, component by component as of mid-2007.
- "N<sup>th</sup>" plant ( $N \approx 5$ ) performance/cost estimates
- Key technology components:
  - -GE quench gasifier for coal
  - $-GTI (O_2 + steam)$ -blown fluid-bed gasifier + tar cracking for biomass
  - -Rectisol for acid gas removal
  - -low-temperature slurry-phase FT reactor (*Fe catalyst*)
  - Onsite FT refining to finished diesel/jet fuel and high-octane gasoline blendstocks
  - power island with:
    - steam turbine power for FT recycle cases that maximize FTL production
    - combined cycle power with "F" class gas turbines for FTL once-through cases
- GREET model in estimating fuel-cycle-wide GHG emissions outside plant boundaries

## **Some Major Findings of PCC Study**

- Co-production [*once-through (OT)*] plants can provide FTL at lower cost than recycle (RC) plants designed to maximize FTL output.
- Coprocessing biomass with coal in co-production plants with CCS enables a major role for coal in providing synfuels in a carbon-constrained world
- Co-production plants can provide decarbonized electricity at far lower costs of GHG emissions avoided than can stand-alone fossil fuel power plants
- These widely held tenets of conventional wisdom are probably wrong:
  - RC systems offer the most profitable route to synfuels production
  - It is easier to decarbonize electric power than liquid fuels for transportation
  - Electric power will be decarbonized mainly in stand-alone power plants

## When Evaluating FTL Systems as Fuel Producers,

## **How Should Co-Product Electricity Be Valued?**



- Assumed value of electricity coproduct of FTL plants ( = average US grid price in 2007 + value of 2007 US average grid GHG emission rate ( $636 \ kgCO_{2ed}/MWh$ ).
- For reference, generation costs are shown for:
  - PC-V (pulverized coal supercritical steam-electric plant with CO<sub>2</sub> vented)
  - IGCC-CCS (coal integrated gasifier combined cycle plant with CCS).

#### **OT Options Outperform RC Options Economically**



Production costs are 10-24% less for CTL-OT systems compared to CTL-RC systems at zero GHG emissions price. Economic advantage of CTL-OT-CCS grows with GHG emissions price.

| FTL System                      | Outputs                          | GHGI | CI   | CAPEX                     |                   |
|---------------------------------|----------------------------------|------|------|---------------------------|-------------------|
| (same coal input rates for all) |                                  |      |      | \$10 <sup>3</sup> per B/D | \$10 <sup>9</sup> |
| CTL-RC-V                        | 50,000 B/D, 427 MW <sub>e</sub>  | 2.2  | 0    | 97.6                      | 4.88              |
| CTL-RC-CCS                      | 50,000 B/D, 317 MW <sub>e</sub>  | 1.0  | 0.78 | 98.9                      | 4.95              |
| CTL-OT-V                        | 36,700 B/D, 1279 MW <sub>e</sub> | 2.8  | 0    | 120.2                     | 4.41              |
| CTL-OT-CCS                      | 36,700 B/D, 1075 MW <sub>e</sub> | 1.3  | 0.68 | 125.4                     | <b>4</b> ,60      |

## Why Do OT Options Outperform RC Options?

- Consider OT & RC plants with same FTL outputs
- 1 OT advantage: high marginal efficiency (ME) of power generation:  $ME = (\Delta \text{ net electric output})/(\Delta \text{ coal input, LHV})$
- For CTL-OT systems: MEs for power are ~ 10 percentage points higher than for stand-alone power via coal IGCC.
- High MEs arise because gas turbine exhaust in downstream combined cycle power plant offers enough high-quality "waste heat" to both:
  - Superheat for power saturated steam from synthesis, other upstream exotherms,
  - Generate additional steam for power generation.
- High MEs manifest by ST/GT output ratios for OT FTL ~ 1.1 1.2 (vs ~ 0.6 for typical stand-alone coal IGCC plant).
- In RC systems, not enough high-quality "waste heat" is available.
- Also, incremental specific capital for extra power  $(kW_e) < \frac{1}{2}$  of capital for stand-alone power

#### **OT Systems: Favorable Economics at Smaller Scales**



CAPEX ~ 40% less for Small CTL-OT-CCS systems offering FTL at same cost as for CTL-RC-CCS systems @\$0/t CO<sub>2eq</sub>

| FTL System       | Outputs                          | GHGI | CI   | CAPEX                     |                   |
|------------------|----------------------------------|------|------|---------------------------|-------------------|
|                  |                                  |      |      | \$10 <sup>3</sup> per B/D | \$10 <sup>9</sup> |
| CTL-RC-V         | 50,000 B/D, 427 MW <sub>e</sub>  | 2.2  | 0    | 97.6                      | 4.88              |
| CTL-RC-CCS       | 50,000 B/D, 317 MW <sub>e</sub>  | 1.0  | 0.78 | 98.9                      | 4.95              |
| CTL-OT-V         | 36,700 B/D, 1279 MW <sub>e</sub> | 2.8  | 0    | 120.2                     | 4.41              |
| CTL-OT-CCS       | 36,700 B/D, 1075 MW <sub>e</sub> | 1.3  | 0.68 | 125.4                     | 4.60              |
| Small CTL-OT-V   | 19,300 B/D, 674 MW <sub>e</sub>  | 2.8  | 0    | 132.5                     | 2.56              |
| Small CTL-OT-CCS | 19,300 B/D, 566 MW <sub>e</sub>  | 1.3  | 0.68 | 137.0                     | 12.65             |

#### **Benefits of Coprocessing Modest Amount of Biomasss**



Coprocessing ~ 9% biomass reduces GHGI by 23%

Resulting CBTL2-OT-CCS system provides less costly FTL than CTL-OT-V for GHG emission prices > \$22/t CO<sub>2eq</sub>

| FTL System       | % Bio, | Outputs                         | GHGI | CI   | CAPEX                     |                   |
|------------------|--------|---------------------------------|------|------|---------------------------|-------------------|
|                  | HHV    |                                 |      |      | \$10 <sup>3</sup> per B/D | \$10 <sup>9</sup> |
| CTL-RC-V         | 0      | 50,000 B/D, 427 MW <sub>e</sub> | 2.2  | 0    | 97.6                      | 4.88              |
| CTL-RC-CCS       | 0      | 50,000 B/D, 317 MW <sub>e</sub> | 1.0  | 0.78 | 98.9                      | 4.95              |
| Small CTL-OT-V   | 0      | 19,300 B/D, 674 MW <sub>e</sub> | 2.8  | 0    | 132.5                     | 2.56              |
| Small CTL-OT-CCS | 0      | 19,300 B/D, 566 MW <sub>e</sub> | 1.3  | 0.68 | 137.0                     | 2.65              |
| CBTL2-OT-CCS     | 8.6    | 19,300 B/D, 583 MW <sub>e</sub> | 1.0  | 0.68 | 132.3                     | 2.56              |

#### **C** Mitigation + Investment Security via Coprocessing



If biomass share  $\rightarrow \sim 38\%$ , FTL GHG emission rate  $\rightarrow 0$ 

Resulting CBTL-OT-CCS system provides high degree of protection against risk of oil price collapse under serious C-mitigation policy

| FTL System       | % Bio, | Outputs                         | GHGI | CI   | CAPEX                     |                   |
|------------------|--------|---------------------------------|------|------|---------------------------|-------------------|
|                  | HHV    |                                 |      |      | \$10 <sup>3</sup> per B/D | \$10 <sup>9</sup> |
| CTL-RC-V         | 0      | 50,000 B/D, 427 MW <sub>e</sub> | 2.2  | 0    | 97.6                      | 4.88              |
| CTL-RC-CCS       | 0      | 50,000 B/D, 317 MW <sub>e</sub> | 1.0  | 0.78 | 98.9                      | 4.95              |
| Small CTL-OT-V   | 0      | 19,300 B/D, 674 MW <sub>e</sub> | 2.8  | 0    | 132.5                     | 2.56              |
| Small CTL-OT-CCS | 0      | 19,300 B/D, 566 MW <sub>e</sub> | 1.3  | 0.68 | 137.0                     | 2.65              |
| CBTL2-OT-CCS     | 8.6    | 19,300 B/D, 583 MW <sub>e</sub> | 1.0  | 0.68 | 132.3                     | 2.56              |
| CBTL-OT-CCS      | 38.1   | 8,100 B/D, 276 MW <sub>e</sub>  | 0.0  | 0.67 | 170.1                     | 1.38              |

## How Can Even Modest Biomass Inputs Have Such Significant Impacts in Reducing Costs Under C Policy? (assumed \$5.0/GJ biomass price = 3X coal price)

- For FTL systems ~ ½ of C in feedstock is available as CO<sub>2</sub> at high partial pressure—can be captured for geological storage at low incremental cost.
- Biomass derived  $CO_2$  stored underground represents negative emissions that can be used to offset positive  $CO_2$  emissions from coal.
- Decarbonized electricity coproduct credit for OT increases with GHG emissions price → FTL cost falls rapidly with GHG emissions price.
- For perspective, IEA's *World Energy Outlook 2008* projection of GHG emissions price in 2030 (*in OECD countries*):
  - \$90/t for 550 ppmv Stabilization Scenario
  - \$180/t for 450 ppmv Stabilization Scenario

## When Evaluating CTL-OT Systems As Power Generators Instead of Fuel Producers:

- Assign to FTL products:
  - System-wide GHG emission rates for crude oil products displaced
  - Economic worth = refinery-gate prices of crude oil-derived products displaced
- Thus, levelized generation cost (\$ per MWh of electricity) =
- = [Levelized system cost (\$/year) levelized economic worth of synfuel products (\$/year)]/[levelized generation rate (MWh/year)]

#### **Cost of GHG Emissions Avoided**

• Cost of GHG emissions avoided

= [(production cost, CCS) – (production cost, CO<sub>2</sub> vented)] /[(GHG emissions, CO<sub>2</sub> vented) – (GHG emissions, CCS)]

• Cost of GHG emissions avoided = GHG emissions price at which generation costs are the same for V and CCS options

# Cost of GHG Emissions Avoided for FTL OT Plants << Than for Stand-Alone Power Plants



## Why do OT Systems Out-Perform Stand-Alone Power Systems in Reducing GHG Emissions for Power?



FTL systems produce concentrated  $CO_2$  streams as core element of synthesis process  $\rightarrow$  inherently low cost of  $CO_2$  capture:

- CTL-RC-CCS: capture cost is for CO<sub>2</sub> drying/compression
- Small CTL-OT-CCS: most additional cost for N<sub>2</sub> compression for NO<sub>x</sub> emissions control
- In making FTL via Co catalyst OT capture cost likely to be not much more than for RC (*Fe catalyst assumed for displayed FTL system*)

## **GHG Emission Rates for Alternative Power Options**



- GHG emission rate (*electricity*) relative to IGCC-CCS (90% capture):
  - 2.5 for Small CTL-OT-CCS
  - 1.0 for CBTL2-OT-CCS
- What are the COEs for these alternative power options?

#### **Generation Cost: Co-Production vs Stand-Alone Power**



## **Reflections on Co-Production Systems**

- OT-CCS systems offer opportunity to decarbonize electricity at much lower costs than for stand-alone coal power plants
- OT-CCS systems that coprocess biomass:
  - Enable simultaneous decarbonization of both synfuels and electricity at attractive costs and GHG emissions prices < those envisioned for 2030 in WEO 2008 Stabilization Scenarios of the International Energy Agency and thereby
  - Enable a major role for coal in mitigating climate change
- Technical hurdles
  - CCS must be viable as a carbon mitigation strategy at "gigascale"...need ASAP many "megascale" integrated CCS projects with storage in deep saline formations
  - Large biomass gasification systems must be commercialized
- Institutional hurdles: formidable...facilitating public policy needed

## **Proposed DoD/DoE CCS Early Action Initiative (CEAI)**

- Urgency to carry out "megascale" integrated CCS projects
- G8 Summit (*Japan 2008*)
  - G8 agreement to sponsor 20 projects globally (up & running ~ 2016)
  - US commitment to sponsor 10
- Do economic crisis/budget deficit concerns jeopardize G8 goal?
- CEAI (enabling goal realization at low cost to government) would:
  - Allow co-production systems to compete with power only systems for subsidies
  - Require produced synfuels to comply with Section 526 of EISA of 2007
  - Specify that winning projects are those with least CEAs (e.g., reverse auction)
- For winning projects:
  - Government would pay incremental cost for CCS for 5 years
  - Air Force would offer 20-year procurement contracts for jet fuel

#### **Assumed GHG Emissions Price Trajectory for CEAI**



- Consistent with WEO 2008 550 Stabilization Scenario (\$90/t in 2030)
- CBTL2-OT-CCS would be profitable w/o CCS subsidy after 5 years

#### **Cost of CEAI Incentives to Government If All 10 Winning Projects Were CBTL2-OT-CCS Systems**

(cost valuation for co-production systems from "fuels perspective")

| Levelized crude oil price, \$/barrel                      | 35   | 45   | 55     | 65     |  |
|-----------------------------------------------------------|------|------|--------|--------|--|
| PW of subsidy for incremental CCS Cost, \$10 <sup>9</sup> | 0.39 |      |        |        |  |
| PW of synthetic jet fuel procurement, \$10 <sup>9</sup>   |      | 2.60 | - 1.27 | - 5.13 |  |
| Present worth (PW) of total obligation, \$10 <sup>9</sup> |      | 2.98 | - 0.88 | - 4.74 |  |

- By 2016:
  - $-5.8 \text{ GW}_{e}$  of decarbonized power capacity on line
  - 1700 million gallons/year of synthetic diesel would be produced/procured
- By 2021:
  - $\sim 0.25$  Gt CO<sub>2</sub> stored in deep saline formations
  - Biomass supply logistics technologies would be established in the market.
- Negative net cost to government if oil price > \$55/barrel.

