New Jersey Department of Environmental Protection Reason for Application

Permit Being Modified

Permit Class: PCP Number: 80001

Description of Modifications:

a) Remove the ABCO Boiler (PCP080001 - Equipment E2);

b) Replace ABCO Boiler with a Victory Boiler (E4) equipped with Selective Catalytic Reduction (CD3) air pollution control;

c) Limit fuel oil use to emergency use.

New Jersey Department of Environmental Protection Facility Profile (General)

Facility Name (AIMS): DARLING INGREDIENTS INC

Street 825 WILSON AVE Address: NEWARK, NJ 07105

Mailing 825 WILSON AVE Address: NEWARK, NJ 07105 Facility ID (AIMS): 05574

State Plane Coo	ordinates:
X-Coordinate:	596,002
Y-Coordinate:	685,230
Units:	New Jersey State Plane {
Datum:	NAD83
Source Org.:	DEP-GIS
Source Type:	GPS

County: Essex Location Description: Industry: -

Primary SIC: Secondary SIC: NAICS: 311613

New Jersey Department of Environmental Protection Facility Profile (General)

Contact Type: Air Permit Information Contact

Organization: Darling Ingredients Inc Name: Jon Elrod Title: Director Environmental Affairs Phone: (859) 344-2201 x Fax: () - x Other: () - x Type: Email: JELROD@DARLINGII.COM

Org. Type: Corporation **NJ EIN:** 36249534600

Mailing4221 Alexandria PikeAddress:Cold Spring, KY41076

Contact Type: Fees/Billing Contact

Organization: Darling Ingredients Inc Name: Matthew Appleby Title: General Manager Phone: (973) 465-1900 x Fax: () - x Other: () - x Type: Email: MAPPLEBY@DARLINGII.COM Org. Type:CorporationNJ EIN:36249534600

Mailing825 Wilson AveAddress:Newark, NJ07105

Contact Type: General Contact

Organization: Darling Ingredients Inc Name: Matthew Appleby Title: General Manager Phone: (973) 465-1900 x Fax: () - x Other: () - x Type:

Email: MAPPLEBY@DARLINGII.COM

 Org. Type:
 Corporation

 NJ EIN:
 36249534600

Mailing825 Wilson AveAddress:Newark, NJ07105

New Jersey Department of Environmental Protection Facility Profile (General)

Contact Type: Responsible Official

Organization: Darling Ingredients Inc		Org. Type:	Corporation
Name: Jason Woosley		NJ EIN:	36249534600
Title: Regional Vice President			
Phone: (859) 740-1707 x	Mailing	4221 Alexan	
Fax: () - x	Address:	Cold Spring	, KY 41076
Other: () - x			
Туре:			
Email: JWOOSLEY@DARLINGII.COM			

New Jersey Department of Environmental Protection Facility Profile (Permitting)

1. Is this facility classified as a small business by the USEPA?	No
2. Is this facility subject to N.J.A.C. 7:27-22?	No
3. Are you voluntarily subjecting this facility to the requirements of Subchapter 22?	No
4. Has a copy of this application been sent to the USEPA?	No
5. If not, has the EPA waived the requirement?	No
6. Are you claiming any portion of this application to be confidential?	No
7. Is the facility an existing major facility?	No
8. Have you submitted a netting analysis?	No
9. Are emissions of any pollutant above the SOTA threshold?	No
10. Have you submitted a SOTA analysis?	No
11. If you answered "Yes" to Question 9 and "No" to Question 10, explain why a SOTA analysis was not required	

12. Have you provided, or are you planning to provide air contaminant modeling? No

New Jersey Department of Environmental Protection Equipment Inventory

Equip.	Facility's	Equipment	Equipment Type	Certificate	Install	Grand-	Last Mod.	Equip.
NJID	Designation	Description		Number	Date	Fathered	(Since 1968)	Set ID
E4	Victory	Victory Boiler	Boiler		5/15/2022	No		

New Jersey Department of Environmental Protection Control Device Inventory

CD NJID	Facility's Designation	Description	СD Туре	Install Date	Grand- Fathered	Last Mod. (Since 1968)	CD Set ID
CD3	SCR Victory	SCR Victory	Selective Catalytic Reduction	5/15/2022	No		

New Jersey Department of Environmental Protection Emission Points Inventory

	PT NJID	Facility's	Description	Config.	Equiv. Diam.	Height	0		Dist. to Prop. Exhaust Temp. (deg.		(deg. F)	eg. F) Exhaust Vol. (acfm)			Discharge Direction	PT Set ID
	NJID	Designation			(in.)	(11.)	Line (ft)	Avg.	Min.	Max.	Avg.	Min.	Max.	Direction	Set ID	
ł	T 4	Victory	Victory Stack	Round	75	65	150	302.0	250.0	350.0	29,921.0	25,000.0	35,000.0	Up		

Date: 6/23/2022

New Jersey Department of Environmental Protection Emission Unit/Batch Process Inventory

U 2 Boilers Boilers

UOS	Facility's	UOS	Operation	Signif.	Control	Emission	SCC(s)	Annual Oper. Hours VOC		Flow (acfm)	Temp. (deg F)	
NJID	Designation	Description	Туре	Equip.	Device(s)	evice(s) Point(s)	500(3)	Min. Max.	Range M	in. Max.	Min.	Max.
OS7	VIC Nat Gas	Victory Natural Gas	Normal - Steady State	E4	CD3 (P)	PT4	1-02-006-02	0.0 8,760.0	25,0	000.0 35,000.0	250.0	350.0
OS8	VIC #2 fuel	Victory #2 Fuel Oil	Normal - Steady State	E4		PT4	1-02-005-02	0.0 48.0	25,0	000.0 35,000.0	250.0	350.0

Date: 6/23/2022

Date: 6/23/2022

New Jersey Department of Environmental Protection Potential to Emit

Subject Item: U2 Boilers

Operating Scenario: OS0 Summary

Step:

Air Contaminant Category (HAPS)	Fugitive Emissions	Emissions Before Controls	Emissions After Controls	Total Emissions	Units	Alt. Em. Limit
Ammonia	0.00000000	0.00000000	1.14100000	1.14100000	tons/yr	No
Arsenic Emissions	0.00000000	0.00000850	0.00000850	0.00000850	tons/yr	No
Cadmium Emissions	0.00000000	0.00000626	0.00000626	0.00000626	tons/yr	No
Cobalt Emissions	0.00000000	0.00002100	0.00002100	0.00002100	tons/yr	No
СО	0.00000000	14.53200000	14.53200000	14.53200000	tons/yr	No
Dimethylbenz(a)anthracene (7,12-)	0.00000000	0.00000400	0.00000400	0.00000400	tons/yr	No
HAPs (Total)	0.00000000	0.00003970	0.00003970	0.00003970	tons/yr	No
NOx (Total)	0.00000000	29.41500000	6.46500000	6.46500000	tons/yr	No
Pb	0.00000000	D	D	D	tons/yr	No
PM-10 (Total)	0.00000000	2.95800000	2.95800000	2.95800000	tons/yr	No
PM-2.5 (Total)	0.00000000	1.91900000	1.91900000	1.91900000	tons/yr	No
SO2	0.00000000	0.68400000	0.68400000	0.68400000	tons/yr	No
TSP	0.00000000	2.95800000	2.95800000	2.95800000	tons/yr	No
VOC (Total)	0.00000000	2.03300000	2.03300000	2.03300000	tons/yr	No

Subject Item: U2 Boilers

Operating Scenario: OS7

Step:

Air Contaminant Category (HAPS)	Fugitive Emissions	Emissions Before Controls	Emissions After Controls	Total Emissions	Units	Alt. Em. Limit
Ammonia	0.00000000	0.00000000	0.4000000	0.40000000	lb/hr	No
Arsenic Emissions	0.00000000	0.0000006	0.0000006	0.0000006	lb/hr	No
Cadmium Emissions	0.00000000	D	D	D	lb/hr	No
Cobalt Emissions	0.00000000	0.00000736	0.00000736	0.00000736	lb/hr	No

Date: 6/23/2022

New Jersey Department of Environmental Protection Potential to Emit

Subject Item: U2 Boilers

Operating Scenario: OS7

Step:

Air Contaminant Category (HAPS)	Fugitive Emissions	Emissions Before Controls	Emissions After Controls	Total Emissions	Units	Alt. Em. Limit
СО	0.00000000	3.31000000	3.31000000	3.31000000	lb/hr	No
Dimethylbenz(a)anthracene (7,12-)	0.00000000	0.00000140	0.00000140	0.00000140	lb/hr	No
HAPs (Total)	0.00000000	0.00000879	0.00000879	0.00000879	lb/hr	No
NOx (Total)	0.00000000	8.9400000	0.89400000	0.89400000	lb/hr	No
Pb	0.00000000	D	D	D	lb/hr	No
PM-10 (Total)	0.00000000	0.67000000	0.67000000	0.67000000	lb/hr	No
PM-2.5 (Total)	0.00000000	0.67000000	0.67000000	0.67000000	lb/hr	No
SO2	0.00000000	0.05000000	0.05000000	0.05000000	lb/hr	No
TSP	0.00000000	0.67000000	0.67000000	0.67000000	lb/hr	No
VOC (Total)	0.00000000	0.45000000	0.45000000	0.45000000	lb/hr	No

Subject Item: U2 Boilers

Operating Scenario: OS8

Step:

Air Contaminant Category (HAPS)	Fugitive Emissions	Emissions Before Controls	Emissions After Controls	Total Emissions	Units	Alt. Em. Limit
Arsenic Emissions	0.00000000	0.00034700	0.00034700	0.00034700	lb/hr	No
Cadmium Emissions	0.00000000	0.00026000	0.00026000	0.00026000	lb/hr	No
СО	0.00000000	3.34000000	3.34000000	3.34000000	lb/hr	No
HAPs (Total)	0.00000000	0.00060800	0.00060800	0.00060800	lb/hr	No
NOx (Total)	0.00000000	2.63000000	2.63000000	2.63000000	lb/hr	No
Pb	0.00000000	D	D	D	lb/hr	No
PM-10 (Total)	0.00000000	1.22000000	1.22000000	1.22000000	lb/hr	No
PM-2.5 (Total)	0.00000000	0.79000000	0.79000000	0.79000000	lb/hr	No

Date: 6/23/2022

New Jersey Department of Environmental Protection Potential to Emit

Subject Item: U2 Boilers

Operating Scenario: OS8

Step:

Air Contaminant Category (HAPS)	Fugitive Emissions	Emissions Before Controls	Emissions After Controls	Total Emissions	Units	Alt. Em. Limit
SO2	0.00000000	0.13000000	0.13000000	0.13000000	lb/hr	No
TSP	0.00000000	1.22000000	1.22000000	1.22000000	lb/hr	No
VOC (Total)	0.00000000	0.76000000	0.76000000	0.76000000	lb/hr	No

00	0000 E	E4 (E	loiler)
Print	Date:	6/23	/2022

Make:	Voyager		
Manufacturer:	Victory		
Model:	VSM-75-66SP		
Maximum Rated Gross Heat Input (MMBtu/hr - HHV):	89.40		
Boiler Type:	Water Tube		
Utility Type:	Non-Utility		
Output Type:	Steam Only		
Steam Output (lb/hr):	75,000.00		
Fuel Firing Method:	Other firing method		
Description (if other):	Natural Gas fired with #2 FO during curtailment		
Draft Type:	Forced		
Heat Exchange Type:	Indirect		
Is the boiler using? (check all the	nat apply):		
Low NOx Burner:	✓ Type: Victory Energy Vision Burner System		
Staged Air Combustion:			
Flue Gas Recirculation (FGR):	Amount (%):		

-

▼

Have you attached a diagram showing the location and/or the configuration of this equipment?

No Have you attached any manuf.'s data or specifications to aid the Dept. in its review of this application?

000000 CD3 (Selective Catalytic Reduction) Print Date: 6/23/2022

Make:	Direct reagent injection SCR
Manufacturer:	Peerless MFG
Model:	701894-1000
Minimum Temperature at	
Catalyst Bed (°F):	363.0
Maximum Temperature at Catalyst Bed (°F):	500.0
Minimum Temperature at Reagent Injection Point (°F):	363.0
Maximum Temperature at Reagent Injection Point (°F):	500.0
Type of Reagent:	Urea
Description:	
Chemical Formula of Reagent:	(NH2)2CO
Minimum Reagent Charge Rate (gpm):	0.1
Maximum Reagent Charge Rate (gpm):	0.1
Minimum Concentration of Reagent in	
Solution (% Volume):	32.50
Minimum NOx to Reagent Mole Ratio:	1.70
Maximum NOx to Reagent Mole Ratio:	1.90
Maximum Anticipated Ammonia Slip (ppm):	7.800
Type of Catalyst:	DNX-929
Volume of Catalyst (ft ³):	124.00
Form of Catalyst:	Honeycomb
Anticipated Life of Catalyst:	3.00
Units:	Years
Have you attached a catalyst	
replacement schedule?	🔵 Yes 🌘 No
Method of Determining Breakthrough:	
Maximum Number of Sources Using this Apparatus as a Control Device (Include Permitted and Non-Permitted Sources):	3
	1
Alternative Method to Demonstrate Control Apparatus is Operating Properly:	
Have you attached any manufacturer's data or specifications in support of the feasibility and/or effectiveness of this control apparatus?	
	🔵 Yes 🌑 No
Have you attached a diagram showing the location and/or configuration of this	
control apparatus?	🔵 Yes 🌑 No

000000 CD3 (Selective Catalytic Reduction) Print Date: 6/23/2022

05574 DARLING INGREDIENTS INC PCP000000 U2 OS7 (Primary Fuel) Print Date: 6/23/2022

Is this fuel a blend?	No
Fuel Category:	Commercial
Fuel Type:	Natural gas
Description (if other):	Natural gas
Amount of Sulfur in Fuel (%):	
Amount of Ash in Fuel (%):	
Fuel Heating Value:	1,020.00
Units:	BTU/scf 🗸
Estimated Maximum Amount of	
Fuel Burned Annually:	500.00
Units:	MMft^3/yr
Estimated Actual Amount of Fuel Burned Annually:	
Units:	
Amount of Oxygen in Flue Gas (%):	
Amount of Moisture in Flue Gas (%):	

05574 DARLING INGREDIENTS INC PCP000000 U2 OS7 (Efficiency Table - CD3) Print Date: 6/23/2022					
Pollutant Category		Capture Efficiency (%)	Removal Efficiency (%)	Overall Efficiency (%)	
СО	\bullet				
HAP (Total)	▼				
NOx	▼	100.00	90.00	90.00	
Other (Total)	▼				
Pb	▼				
PM-10	▼				
PM-2.5	▼				
SO2	\bullet				
TSP	\bullet				
VOC (Total)					

05574 DARLING INGREDIENTS INC PCP000000 U2 OS8 (Primary Fuel) Print Date: 6/23/2022

Is this fuel a blend?	No
Fuel Category:	Commercial 🗨
Fuel Type:	#2 fuel oil
Description (if other):	#2 fuel oil
Amount of Sulfur in Fuel (%):	0.0015
Amount of Ash in Fuel (%):	
Fuel Heating Value:	140,000.00
Units:	BTU/gal 🗨
Estimated Maximum Amount of	
Fuel Burned Annually:	29,000.00
Units:	gal/yr
Estimated Actual Amount of Fuel Burned Annually:	
Units:	
Amount of Oxygen in Flue Gas (%):	
Amount of Moisture in Flue Gas (%):	

APPLICATION FOR AIR PERMIT MODIFICATION REPLACEMENT OF ABCO BOILER WITH A VICTORY BOILER

Submitted to: New Jersey Department of Environmental Protection Bureau of Stationary Sources 401 East State Street Trenton, NJ 08625-0420

Submitted by: Darling Ingredients Inc. 825 Wilson Ave. Newark, NJ

Prepared by:

APTIM Environmental & Infrastructure, LLC 17 Princess Road Lawrenceville, NJ 08648

March 2022

Table of Contents_____

1.0	INTRODUCTION1
2.0	PROJECT DESCRIPTION
2.1	Remove ABCO Boiler and Replace with Victory Boiler With SCR
2.2	Modify Sulfur Emissions Factor for Nebraska BoilerError! Bookmark not defined.
3.0	EMISSIONS
3.1	Emissions Changes Resulting From This Proposed Modification
4.0	REGULATORY ASSESSMENT4
4.1	NJAC 7:27-8 – Air Quality Impact Analysis (Risk Screening)4
4.2	NJAC 7:27-8 – State of the Art (SOTA)4
4.	2.1 SOTA for Boilers
4.	2.2 SOTA for Criteria Pollutants
4.	2.3 SOTA for Hazardous Air Pollutants5
4.	2.4 SOTA for Ammonia5
4.3	NJAC 7:27-8 and NJAC 7:27-16 VOC RACT6
4.4	NJAC 7:27-8 and NJAC 7:27-19 NOx RACT7
4.5	New Source Performance Standards 40 CFR Part 60, Subpart Dc7
4.6	National Emissions Standards for Hazardous Air Pollutants 40 CFR PART 63, Subpart JJJJJJ 9

List of Appendices_____

- Appendix A Air Emissions Calculations and Risk Screening
- Appendix B Manufacturer Specifications Boiler
- Appendix C Manufacturer Emissions Factors
- Appendix D SCR Process

1.0 INTRODUCTION

Darling Ingredients Inc. (Darling) operates a food processing byproduct conversion facility that produces natural animal and vegetable derived protein and fat ingredients, which are used in the production of food, feed, fuel, and organic fertilizer at its Newark, NJ facility ("the facility").

The facility receives "grease" (used cooking oil, or UCO) by truck from roughly 12,000 restaurants and food processors. The UCO is refined to remove impurities and stored in internal tanks or in the outdoor tank farm. The refined product is shipped to customers by tanker truck or by marine vessel, for primary use as an ingredient in the production of feed and renewable fuel.

The Facility also receives food processing byproducts (poultry, pork, beef, feathers, surplus meat, meat/fat/bone scraps, etc.) from roughly 1,200 slaughterhouses, butcher shops, meat markets and grocery stores. This material is processed (rendered) to separate it into two products: fats and proteins. Rendering involves a complex combination of thermal and mechanical separation steps with a primary focus on removing moisture. The fat is further refined to produce a marketable ingredient used primarily in the production of feed and renewable fuel. The protein is further refined to produce a marketable ingredient used primarily in the production of feed and organic fertilizer. Fats are shipped as a bulk liquid to customers by tanker truck or marine vessel. Protein is shipped to customers in bulk by truck/trailer.

The facility uses steam generated by two on-site boilers to process raw materials. The two boilers presently operating at the facility under air permit PCP080001 are as follows:

- ABCO Boiler;
- Nebraska Boiler.

This application is for an air permit modification to replace the existing ABCO Boiler. Darling proposes the following:

- Remove the existing ABCO Boiler;
- Install a Victory Boiler with Selective Catalytic Reduction air pollution control; and
- Limit fuel oil use FOR THE Nebraska boiler (E3) to emergency use

The ABCO boiler is permitted to combust various liquid fuels. The boiler has reached the end of its useful life. The proposed Victory boiler will combust natural gas, and clean No.2 fuel oil in accordance with NESHAP 40 CFR 63 Subpart JJJJJJ. Darling also proposes to operate the Nebraska boiler (E3) in a similar fashion. Clean No. 2 fuel oil would only be combusted during periods of gas curtailment, gas supply interruption, startups, or for periodic testing, maintenance, or operator training (periodic testing, maintenance, or operator training any calendar year.

NOx emissions from the Victory boiler will be controlled by Selective Catalytic Reduction (SCR) air pollution control technology. This proposal will change emissions from the boilers, as follows:

Pollutant	Presently Permitted Emissions (Two Boilers) Tons/Year	Proposed Emissions in This Application (Two Boilers) Tons/Year	Proposed Change in Emissions (Two Boilers) Tons/Year
NOx	23.776	6.465	-17.311
со	19.211	14.532	-4.679
SOx	22.72	0.684	-22.036
VOC	4.129	2.033	-2.096
Particulates	5.139	2.958	-2.181
Ammonia	0	1.141	1.141

2.0 PROJECT DESCRIPTION

This air permit application is for a modification to the air permit PCP080001 at the Darling facility located at 825 Wilson Avenue, Newark. The modification includes the implementation of boiler improvements at the facility to reduce emissions.

The following air permit modifications are being proposed:

- Remove the ABCO Boiler (PCP080001 Equipment E2);
- Replace ABCO Boiler with a Victory boiler (E4) equipped with Selective Catalytic Reduction air pollution control (CD3); and
- Limit fuel oil use FOR THE Nebraska boiler (E3) to emergency use.

2.1 Remove ABCO Boiler and Replace with Victory Boiler With SCR

Darling will remove the existing ABCO boiler. This boiler is permitted to combust 5,250,000 gallons/year of various liquid fuels including No.2 fuel oil, tallow and yellow grease, in addition to 345,000,000 cubic feet/year of natural gas.

Darling with install a new Victory Voyager Series 'O'-style, Model VSM-75 package boiler designed to produce 75,000 pounds/hour of saturated steam. The Victory boiler will have a heat input rate of 89.4 MM BTU/hour (85.61 MM BTU/hour combusting No. 2 fuel oil during natural gas curtailment). This application proposes the following fuel usages for the Victory boiler:

- 500 MM cubic feet per year of natural gas; and
- No. 2 fuel oil only during natural gas curtailment.

The Victory boiler will be equipped with a Peerless Model 701894-1000 SCR system using direct injection of urea. The SCR will reduce NOx emissions to meet New Jersey's State of the Art requirements for boilers (See Section 4.2.1).

3.0 EMISSIONS

Emissions have been calculated based upon factors provided by the boiler manufacturer and USEPA AP-42 Air Pollutant Emissions Factors. Emissions calculations are presented in Appendix A.

This air permit application proposes the following emissions for the existing Nebraska and proposed Victory boilers combined:

- NOx 6.465 tons/year
- CO 14.532 tons/year
- VOC 2.033 tons/year
- SOx 0.684 tons/year
- TSP 2.958 tons/year
- PM₁₀ 2.958 tons/year
- Ammonia 1.141 tons/year

3.1 Emissions Changes Resulting From This Proposed Modification

Emissions calculations have been prepared and are presented in Appendix A. Potential emissions, permitted emissions and the resulting emissions reductions are presented below:

	NOx PTE Tons/Year	CO PTE Tons/Year	VOC PTE Tons/Year	TSP PTE Tons/Year	PM10 PTE Tons/Year	SOx PTE Tons/Year	Ammonia PTE Tons/Year
Proposed PTE for this Modification	6.456	14.532	2.033	2.958	2.958	0.684	1.141
Presently Permitted PTE for PCP080001	23.776	19.211	4.129	5.139	5.139	22.720	0.000
Proposed Change in Emissions Resulting from This Modification	-17.311	-4.679	-2.096	-2.181	-2.181	-22.036	+1.141
Percent Reduction in Emissions Resulting from the Victory Boiler Installation	-72.8%	-24.4%	-50.8%	-42.4%	-42.4%	-97% Note 1	NA

Note 1: The reduction in SOx is due to a significant reduction in the potential use of liquid fuels (No.2 fuel oil, tallow and yellow grease).

The proposed Victory boiler equipped with SCR will result in significant emissions reductions from the two boilers combined, as noted above.

4.0 REGULATORY ASSESSMENT

4.1 NJAC 7:27-8 – Air Quality Impact Analysis (Risk Screening)

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed.

NJAC 7:27-8.5 Air quality impact analysis: An application shall include an air quality impact analysis if the Department determines that an air quality impact analysis is required for an accurate assessment of the environmental impact of the activities proposed.

The NJDEP's Risk Screening Worksheet was completed using the calculated HAPs emissions.

ASSESSMENT: Calculated risks associated with long- and short-term effects are "Negligible" as per the NJDEP's criteria.

4.2 NJAC 7:27-8 – State of the Art (SOTA)

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed.

NJAC 7:27-8.12: State of the Art (SOTA) - If an application proposes construction, installation, reconstruction, or modification of equipment and control apparatus that is a significant source meeting the following criteria, the applicant shall document state of the art (SOTA) for the source:

- 1. The equipment and control apparatus have a potential to emit any HAP at a rate equal to or greater than the SOTA Threshold at N.J.A.C. 7:27-17.9(b).
- 2. The equipment and control apparatus have a potential to emit any other air contaminant or category of air contaminant, except carbon dioxide (CO2), at a rate equal to or greater than the SOTA threshold in NJAC 7:27-8 Appendix 1, Table A.
- 3. The proposed equipment is subject to a NJDEP SOTA standard, as published in a NJDEP manual.

4.2.1 SOTA for Boilers

The NJDEP's State of the Art Manual for Boilers and Process Heaters indicates that the following SOTA emissions limitations must be met:

Criteria Pollutant	Emission Level (LB/MMBTU)	
	≥ 75 MMBTU/hr	
NOx	0.010	
СО	0.0390	
VOC	0.00500	

Natural Gas-Fired Boilers and Process Heaters

The boiler will be equipped with a Peerless Manufacturing, Direct Reagent Injection Selective Catalytic Reduction (SCR) unit. The SCR Model number is 701894-1000 and the unit uses urea as a reagent.

The boiler manufacturer guarantees that the Victory boiler equipped with the Peerless SCR will meet the emissions levels, as published in the SOTA manual.

- NOx: The boiler/SCR will meet the 0.01 pounds/MMBTU requirement;
- CO: The boiler/SCR will meet the 0.039 pounds/MMBTU requirement;
- VOC: The proposed PTE for VOC is less than 5 tons/year. The SOTA requirement, therefore, does not apply.

ASSESSMENT: The proposed Victory boiler will meet the SOTA requirements for Boilers and Process Heaters by implementing SCR technology.

4.2.2 SOTA for Criteria Pollutants

The SOTA applicability thresholds for criteria pollutants are listed at NJAC 7:27-8 – Appendix 1, Table A. The SOTA applicability threshold for each criteria pollutant is listed as 5 tons per year. The PTE for each criteria pollutant not listed in Section 4.2.1 (above) is as follows:

- TSP: 1.9 tons/Year
- PM10: 1.9 tons/Year
- SOx: 0.15 tons/Year

<u>ASSESSMENT</u>: The proposed Victory boiler will meet the SOTA requirements for criteria pollutants, as the potential emissions for each pollutant are less than the respective published SOTA threshold of 5 tons/year.

4.2.3 SOTA for Hazardous Air Pollutants

The PTE for the following hazardous air pollutants (HAPs)was calculated. The compounds were determined to be reportable under NJAC 7:27-8 and are therefore subject to the SOTA applicability assessment.

Chemical Name	Calculated Emissions Pounds/Year	Reporting threshold as per NJAC 7:27- Subch 8 (Pounds/Year)	Is it Reportable According to NJAC 7:27- Subch 8	SOTA threshold According to NJAC 7:27- Subch 17 (Pounds/Year)	ls SOTA Applicable?
Arsenic	0.0170	0.01	Reportable	10	No
Cadmium	0.0125	0.01	Reportable	20	No
Cobalt	0.0420	0.005	Reportable	200	No
7,12- Dimethylbenz(a) anthracene	0.0080	0.0007	Reportable	20	No

ASSESSMENT: The SOTA requirements for HAPs will not be applicable to the Victory boiler, as the potential emissions for each of the reportable HAPs are less than their respective published SOTA thresholds.

4.2.4 SOTA for Ammonia

Ammonia is not listed under the HAPs/TXSs regulations at NJAC 7:27-17.9. Therefore, the SOTA threshold for "other" pollutants at NJAC 7:27-8 – Appendix 1, Table A is used to evaluate SOTA applicability for ammonia. PTE for ammonia has been calculated to be 1.141 tons per year. The SOTA applicability threshold for "other" pollutants as per NJAC 7:27-8 – Appendix 1, Table A is 5 tons/year. The PTE for ammonia, therefore, is below the regulatory SOTA applicability threshold.

ASSESSMENT: The SOTA requirement for ammonia will not be applicable to the to the Victory boiler, as potential ammonia emissions are less than the SOTA threshold.

4.2.5 SOTA Documentation – LAER Non-Applicability

The SOTA assessment guidelines at NJAC 7:27-8.12(e) require that the Lowest Achievable Emissions Rate (LAER) be considered, if applicable. The LAER applicability threshold, as per NJAC 7:27-Subchapter 18 is as follows:

Air contaminant	Threshold level
со	100 tons per year
PM10	100 tons per year
PM2.5	100 tons per year
TSP	100 tons per year
SO2	100 tons per year
NOx	25 tons per year
VOC	25 tons per year
Lead	10 tons per year;

As listed in Section 3, the potential to emit for criteria pollutants and HAPs will decrease significantly as a result of the action proposed in this application.

ASSESSMENT: The LAER requirement will not be applicable to the Victory boiler, as the potential emissions increase and the facility's overall potential to emit are less than the regulatory LAER threshold.

4.2.6 SOTA Documentation – BACT Non-Applicability

The SOTA assessment guidelines at NJAC 7:27-8.12(e) require that the Best Available Control Technology (BACT) be considered for New Source Review (NSR) pollutants, if applicable. The applicability thresholds at 40 CFR 52.21 apply to:

- New major sources or modifications with potential to emit of 250 tons per year or more of any regulated NSR pollutant.
- Fossil-fuel boilers (or combinations thereof) totaling more than 250 MM BTU/hour with potential to emit of 100 tons per year or more of any regulated NSR pollutant.

As listed in Section 3, the potential to emit for criteria/NSR pollutants will decrease significantly as a result of the action proposed in this application.

ASSESSMENT: The BACT requirements will not be applicable to the to the Victory boiler, as potential emissions, as listed above, are less than the thresholds at 40 CFR 52.21.

4.3 NJAC 7:27-8 and NJAC 7:27-16 VOC RACT

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed.

The regulatory requirements at NJAC 7:27-8.11(a)(1)(i): Standards for issuing a permit, require a Reasonably Available Control Technology (RACT) assessment as per the requirements under N.J.A.C. 7:27-16.8 for boilers. The RACT requirements for boilers are as follows:

The owner or operator of any industrial/commercial/institutional boiler with a maximum gross heat input rate of at least 50 million BTU per hour or greater shall:

- 1. Cause it to emit VOC in concentrations that do not exceed 50 ppm. This is equivalent to approximately 3.87 pounds/hour for the Victory boiler. The calculated VOC PTE for the Victory boiler combusting natural gas is 0.45 pounds/hour.
- 2. Cause it to emit CO in concentrations that do not exceed 100 ppm. This is equivalent to approximately 13.5 pounds/hour for the Victory boiler. The calculated CO PTE for the Victory boiler combusting natural gas is 3.31 pounds/hour.
- 3. Adjust its combustion process annually, during the same calendar quarter.

ASSESSMENT: The RACT requirements for CO and VOC will be met by the Victory boiler, as the calculated PTE is significantly lower than the RACT regulatory requirement. The facility will conduct annual combustion adjustments, as required by the regulation.

4.4 NJAC 7:27-8 and NJAC 7:27-19 NOx RACT

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed.

The regulatory requirements at NJAC 7:27-8.11(a)(1)(i): Standards for issuing a permit, require a Reasonably Available Control Technology (RACT) assessment as per the requirements under N.J.A.C. 7:27-19.7 – Table 9 for boilers. The RACT requirements for boilers are as follows:

The owner or operator of any industrial/commercial/institutional boiler with a maximum gross heat input rate of at least 25 million BTU per hour but less than 100 million BTU per hour or greater shall:

- 1. Cause it to emit NOx at a rate of <=0.05 pounds/MM BTU .
- 2. Adjust its combustion process annually, during the same calendar quarter.

The Victory boiler/SCR will meet the 0.01 pounds/MMBTU SOTA standard.

ASSESSMENT: The RACT requirements for NOx will be met by the Victory boiler, as the boiler actually meets the SOTA requirements (see Section 5.2.1, above). The facility will conduct annual combustion adjustments, as required by the regulation.

4.5 New Source Performance Standards 40CFR Part 60, Subpart Dc

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed. The regulatory requirements at NJAC 7:27-8.11(a)(1)(i): Standards for issuing a permit, require a regulatory assessment to include New Source Performance Standards (NSPS). The Victory boiler is subject to the sulfur in fuel standard, as well as recordkeeping and reporting standards of the regulation.

<u>Sulfur Content in Fuel:</u> 40CFR 60.42c (d) - no owner or operator of an affected facility that combusts oil shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 215 ng/J (0.50 lb/MMBtu) heat input; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.

ASSESSMENT: The facility will comply with the fuel supplier certification standards by keeping records of certifications for each fuel oil delivery. No. 2 fuel oil in the state of New Jersey is limited to 0.0015% weight percent sulfur (15 ppm), therefore, the facility will easily comply with this standard.

<u>Recordkeeping:</u> 40CFR 60.48c (e) - The owner or operator of each affected facility subject to the fuel oil sulfur limits, shall keep records.

40CFR 60.48c (e) - The owner or operator of each affected facility subject to the fuel oil sulfur limits, shall keep records and submit reports as required.

ASSESSMENT: The facility will comply with the fuel supplier certification standards by keeping records of certifications for each fuel oil delivery. No. 2 fuel oil in the state of New Jersey is limited to 0.0015% weight percent sulfur (15 ppm).

40CFR 60.48c (e) (11) - If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.

ASSESSMENT: The facility will comply with the fuel supplier certification standards by keeping records of certifications for each fuel oil delivery. No. 2 fuel oil in the state of New Jersey is limited to 0.0015% weight percent sulfur (15 ppm).

40CFR 60.48c (g)(1) The owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.

ASSESSMENT: See paragraph below.

40CFR 60.48c (g) (2) As an alternative to meeting the daily fuel recordkeeping requirements of paragraph (g)(1) the owner or operator of an affected facility that combusts only natural gas, fuels using fuel certification in 40CFR 60.48c (f) to demonstrate compliance with the SO2 standard, or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.

ASSESSMENT: The facility will keep records of fuels combusted on a monthly basis.

<u>Reporting</u>: 40CFR 60.48c(a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by 40CFR 60.7. The requirements of 40CFR 60.7 are as follows: Any owner or operator subject to the provisions of this part shall furnish the Administrator written notification, as follows:

40CFR 60.7(a)(1) A notification of the date construction (or reconstruction as defined under §60.15) of an affected facility is commenced postmarked no later than 30 days after such date.

40CFR 60.7(a)(3) A notification of the actual date of initial startup of an affected facility postmarked within 15 days after such date.

40CFR 60.7(a)(4) A notification of any physical or operational change to an existing facility which may increase the emission rate of any air pollutant to which a standard applies. This notice shall be postmarked 60 days or as soon as practicable before the change is commenced and shall include information describing the precise nature of the change, present and proposed emission control systems, productive capacity of the facility before and after the change, and the expected completion date of the change.

ASSESSMENT: The facility will submit the appropriate reports.

40CFR 60.48c (d) The owner or operator of each affected facility subject to the fuel oil sulfur limits shall submit reports to the Administrator semi-annually.

ASSESSMENT: The facility will submit annual NSPS reports prior to January 31 and July 31 of each year.

<u>ASSESSMENT</u>: The NSPS standards for fuel sulfur content, recordkeeping and reporting will be applicable to the proposed Victory boiler. The facility will comply with the NSPS standards as noted under each paragraph above.

4.6 National Emissions Standards for Hazardous Air Pollutants 40 CFR PART 63, Subpart JJJJJJ

As required by NJAC 7:27-Subchapter 8 of New Jersey's air permitting regulations, the following assessment of the facility's proposed emissions was performed.

The regulatory requirements at NJAC 7:27-8.11(a)(1)(i): Standards for issuing a permit, require a regulatory assessment to include National Emissions Standards for Hazardous Air Pollutants (NESHAPs). The NESHAPs requirements for boilers at 40 CFR Part 63, Subpart JJJJJJJ were reviewed. These requirements apply to boilers at "area sources", also referred to as minor sources. The Darling Newark facility is an area source, as its potential to emit is below major source (Title V) permitting thresholds. The proposed Victory boiler meets the definition of a "gas-fired boiler" as per 40CFR 63.11237. Subpart JJJJJJJ does not apply to gas-fired boilers.

ASSESSMENT: Subpart JJJJJJ does not apply to the proposed Victory boiler, as it meets the definition of a "gas-fired boiler".

APPENDIX A
AIR EMISSIONS CALCULATIONS and RISK SCREENING

DARLING INGREDIENTS INC. Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

PCP080001 - BOILERS

EMISSION UNIT: U2 - BOILERS

TABLE OF CONTENT

- 1.0 EMISSION SUMMARY
 - 1.1 VICTORY BOILER EMISSIONS SUMMARY
 - 1.2 NEBRASKA BOILER EMISSIONS SUMMARY (EXISTING PERMIT- NO EMISSIONS II
 - 1.3 POTENTIAL TO EMIT REVISION SUMMARY
- 2.0 VICTORY BOILER EMISSIONS (E4)
 - 2.1 EMISSION FACTORS
 - 2.1.1 Natural Gas Emission Factors
 - 2.1.2 No 2 Fuel Oil Emission Factors
 - 2.2 FUEL USAGE & HEAT INPUT RATE
 - 2.2.1 Annual usage
 - 2.2.2 Heat Input rate
 - 2.3 EMISSIONS CALCULATION
 - 2.3.1 Emission calculation Natural Gas (OS7)
 - 2.3.2 Emission calculation No 2 Fuel Oil (OS8)
 - 2.3.3 Emission calculation HAPs (OS7 and OS8 Combined)

3.0 NEBRASKA EMISSIONS (E3)

- 3.1 EMISSION FACTORS
 - 3.1.1 Natural Gas Emission Factors
 - 3.1.2 No 2 Fuel Oil Emission Factors
- 3.2 FUEL USAGE & HEAT INPUT RATE
 - 3.2.1 Annual usage
 - 3.2.2 Heat Input rate

Attachment 1

Polycyclic Organic Matter (POM) Emission Factors

Attachment 2

Trace Metals (Arsenic, Cadmium and Nickel) in Natural Gas

DARLING INGREDIENTS INC. Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

PCP080001 - BOILERS

EMISSION UNIT: U2 - BOILERS

1.0 EMISSION SUMMARY

1.1 VICTORY BOILER EMISSIONS SUMMARY

Operating	Fuel Type	Proposed	Units	Proposed	Units	NC)x	С	0	VC	DC DC	TS	SP	PN	110	SC)x	N	-13
Scenario		Fuel amount		Run hours		lbs/hr	tons/yr												
OS7	Natural Gas	500.00	MM FT ³ /yr	5,705	Hours/yr	0.89	2.55	3.31	9.44	0.45	1.28	0.67	1.90	0.67	1.90	0.05	0.15	0.40	1.14
OS8	No. 2 Fuel Oil	29.355	1000's gal/yr	48	Hours/yr	2.63	0.06	3.34	0.08	0.76	0.02	1.22	0.03	1.22	0.03	0.13	0.00		
			TOTAL		TOTAL		2.613		9.515		1.293		1.929		1.929		0.153		1.141

1.2 NEBRASKA BOILER EMISSIONS SUMMARY (EXISTING PERMIT- NO EMISSIONS INCREASES)

Operating	Fuel Type	Proposed	Units	Proposed	Units	NC)x	С		VC	C	TS	SP	PN	10	SC)x
Scenario		Fuel amount		Run hours			tons/yr		tons/yr								
OS5	No. 2 Fuel Oil	31.500	1000's gal/yr	48	Hours/yr	8.23	0.21	3.56	0.09	0.46	0.01	0.92	0.02	0.92	0.02	18.38	0.45
			TOTAL				3.852		5.017		0.740		1.029		1.029		0.531

1.3 POTENTIAL TO EMIT REVISION SUMMARY

	NOx	CO	VOC	TSP	PM10	SOx
NEW PTE FOR TWO (2) BOILER COMBINED (tons/yr)=	6.465	14.532	2.033	2.958	2.958	0.684
	NOx	CO	VOC	TSP	PM10	SOx
PERMITTED FOR TWO (2) BOILER COMBINED (tons/yr)=	23.776	19.211	4.129	5.139	5.139	22.720
	-					
	NOx	CO	VOC	TSP	PM10	SOx
TOTAL PROPOSED CHANGE (tons/yr) =	-17.311	-4.679	-2.096	-2.181	-2.181	-22.036

Newark, NJ

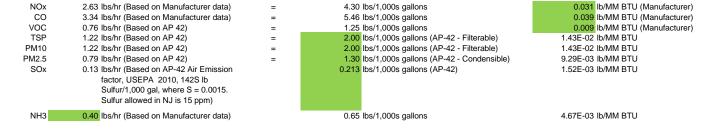
AIR PERMIT APPLICATION FOR BOILERS

PCP080001 - BOILERS

2.0 VICTORY BOILER EMISSIONS (E4)

2.1 EMISSION FACTORS

2.1.1 Natural Gas Emission Factors


NOx	0.89 lbs/hr (Based on Manufacturer data)	=	10.20 lbs/MM FT ³	1.00E-02 lb/MM BTU (Manufacturer)
CO	3.31 lbs/hr (Based on Manufacturer data)	=	37.74 lbs/MM FT ³	3.70E-02 lb/MM BTU (Manufacturer)
VOC	0.45 lbs/hr (Based on Manufacturer data)	=	5.10 lbs/MM FT ³	5.00E-03 lb/MM BTU (Manufacturer)
TSP	0.67 lbs/hr (Based on (AP-42 Filter+Cond)	=	7.60 lbs/MM FT ³ (AP-42 Filter+Cond)	7.45E-03 lb/MM BTU
PM10	0.67 lbs/hr (Based on (AP-42 Filter+Cond)	=	7.60 lbs/MM FT ³ (AP-42 Filter+Cond)	7.45E-03 lb/MM BTU
PM2.5	0.67 lbs/hr (Based on (AP-42 Filter+Cond)	=	7.60 Ibs/MM FT ³ (AP-42 Filter+Cond)	7.45E-03 lb/MM BTU
SOx	0.05 lbs/hr (AP-42)	=	0.60 lbs/MM FT ³ (AP-42)	5.88E-04 lb/MM BTU
NH3	0.40 lbs/hr (Based on Manufacturer data)	=	4.56 lbs/MM FT ³	4.47E-03 lb/MM BTU

0.01 lbs/ MM BTU

0.1 lbs/ MM BTU and AFTER Control (SCR) is =

NOx BEFORE Control (SCR) Emission Factor from Manufacturer is = Conversion Factor Natural Gas= 1020 BTU/FT³

2.1.2 No 2 Fuel Oil Emission Factors

Conversion factor Fuel #2 Oil = 140000 BTU/ gallons

Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

2.2 FUEL USAGE & HEAT INPUT RATE

2.2.1 Annual usage

OS-7 Natural Gas: 500.0 MM FT³/YEAR = (hr/year) x (MMbtu/Hr) x (1,000,000 btu/MMbtu) x (1/1,020 BTU/ft3) x (MM ft3/1,000,000 ft3)

OS-8 No 2 Fuel Oil: 29 1,000s GALLONS/YEAR = (hr/year) x (MMbtu/Hr) x (1,000,000 btu/MMbtu) x (1/BTU/ft3) x (MM ft3/1,000,000 ft3)

2.2.2 Heat Input rate

Nat Gas: 89.40 MMBTU/hr

No 2 Fuel Oil: 85.61 MMBTU/hr

2.3 EMISSIONS CALCULATION

2.3.1 Emission calculation Natural Gas (OS7)

NOx lbs/yr = NOx lbs/yr = NOx =	10.200 5100.00 2.55 to	lbs/MM FT ³ x lbs/yr / ns / yr	500 2000	MM FT ³ /yr Ibs/tons
CO lbs/yr = CO lbs/yr = CO =	37.740 18870.00 9.44 to	lbs/MM FT ³ x lbs/yr / ons / yr	500 2000	MM FT ³ /yr Ibs/tons
VOC lbs/yr = VOC lbs/yr = VOC =	5.100 2550.00 1.28 to	lbs/MM FT ³ x lbs/yr / ns / yr	500 2000	MM FT ³ /yr Ibs/tons
TSP lbs/yr = TSP lbs/yr = TSP =	7.600 3800.00 1.90 to	lbs/MM FT ³ x lbs/yr / ns / yr	500 2000	MM FT ³ /yr Ibs/tons
PM10 lbs/yr = PM10 lbs/yr = PM10 =	7.600 3800.00 1.90 to	lbs/MM FT ³ x lbs/yr / ons / yr	500 2000	MM FT ³ /yr lbs/tons
PM2.5 lbs/yr = PM2.5 lbs/yr = PM2.5 =	7.600 3800.00 1.90 to	lbs/MM FT ³ x lbs/yr / ns / yr	500 2000	MM FT ³ /yr lbs/tons
SOx lbs/yr = SOx lbs/yr = SOx =	0.60 300.00 0.15 to	lbs/MM FT ³ x lbs/yr / ns / yr	500 2000	MM FT ³ /yr lbs/tons
NH3 lbs/yr = NH3 lbs/yr = NH3 =	4.56 2281.88 1.14 to	lbs/MM FT ³ x lbs/yr / ons / yr	500 2000	MM FT ³ /yr lbs/tons

Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

2.3.2 Emission calculation No 2 Fuel Oil (OS8)

NOx lbs/yr = NOx lbs/yr = NOx =	4.30 lbs/1,000s gallons x 126.17 lbs/yr / 0.06 tons / yr	29 2000	1000s gallons/yr Ibs/tons
CO lbs/yr = CO lbs/yr = CO =	5.46 lbs/1,000s gallons x 160.28 lbs/yr / 0.08 tons / yr	29 2000	1000s gallons/yr lbs/tons
VOC lbs/yr = VOC lbs/yr = VOC =	1.25 lbs/1,000s gallons x 36.58 lbs/yr / 0.02 tons / yr	29 2000	1000s gallons/yr lbs/tons
TSP lbs/yr = TSP lbs/yr = TSP =	2.00 lbs/1,000s gallons x 58.71 lbs/yr / 0.03 tons / yr	29 2000	1000s gallons/yr lbs/tons
PM10 lbs/yr = PM10 lbs/yr = PM10 =	2.00 lbs/1,000s gallons x 58.71 lbs/yr / 0.03 tons / yr	29 2000	1000s gallons/yr Ibs/tons
PM2.5 lbs/yr = PM2.5 lbs/yr = PM2.5 =	1.30 lbs/1,000s gallons x 38.16 lbs/yr / 0.02 tons / yr	29 2000	1000s gallons/yr Ibs/tons
SOx lbs/yr = SOx lbs/yr = SOx =	0.21 lbs/1,000s gallons x 6.25 lbs/yr / 0.00 tons / yr	29 2000	1000s gallons/yr lbs/tons
NH3 lbs/yr = NH3 lbs/yr = NH3 =	0.65 lbs/1,000s gallons x 19.20 lbs/yr / 0.01 tons / yr	29 2000	1000s gallons/yr Ibs/tons

Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

2.3.3 Emission calculation HAPs (OS7 and OS8 Combined)

HAPs emission reporting thresholds are based on 7:27-17 Table 2.

Boiler Natural Gas HAPs emission factors are based on AP-42 Table 1.4-3 & Table 1.4-4, unless noted otherwise

Boiler Fuel Oil HAPs emission factors are based on AP-42 Table 1.3-9 & Table 1.3-10. "NA" means Not Available, unless noted otherwise

CAS	Chemical Name	EPA AP-42 Unless noted Ibs/ MMft3	EPA AP-42 Unless noted Ibs/1,000 gal	Reporting threshold as per NJAC 7:27- Subch 8	Emissions OS-7 NAT GAS	Emissions OS-8 FUEL OIL	Emissions Ibs/Yr	Emissions Tons/Yr	Is it Reportable According to NJAC 7:27-Subch 8
		of NAT GAS	of FUEL OIL	lb/Yr	lb/Hr	lb/Hr			
71-43-2	Benzene	2.10E-03	2.14E-04		1.84E-04	1.31E-04	1.0563	5.28E-04	Diminimis
50-00-0	Formaldehyde Note 4	1.50E-05	3.30E-02		1.31E-06	2.02E-02	0.9762	4.88E-04	Diminimis
110-54-3	Hexane	1.80E+00	NA	2000	1.58E-01	NA	900.0000	4.50E-01	Diminimis
91-20-3	Naphthalene	6.10E-04	1.13E-03		5.35E-05	6.91E-04	0.3382	1.69E-04	Diminimis
108-88-3	Toluene	3.40E-03	6.20E-03	2000	2.98E-04	3.79E-03	1.8820	9.41E-04	Diminimis
25321-22-6	Dichlorobenzene	1.20E-03	NA	4	1.05E-04	NA	0.6000	3.00E-04	Diminimis
7440-38-2	Arsenic Note 5	6.58E-07	5.68E-04	0.01	5.77E-08	3.47E-04	0.0170	8.50E-06	Reportable
7440-41-7	Beryllium Note 1	1.20E-05	4.26E-04	0.02	1.05E-06	2.60E-04	0.0185	9.25E-06	Diminimis
7440-43-9	Cadmium Note 5	1.25E-08	4.26E-04	0.01	1.09E-09	2.60E-04	0.0125	6.26E-06	Reportable
7440-47-3	Chromium Note 1	1.40E-03	4.26E-04	1000	1.23E-04	2.60E-04	0.7125	3.56E-04	Diminimis
7440-48-4	Cobalt	8.40E-05	NA	0.005	7.36E-06	NA	0.0420	2.10E-05	Reportable
7439-96-5	Manganese Note 1	3.80E-04	8.52E-04	0.6	3.33E-05	5.21E-04	0.2150	1.08E-04	Diminimis
7439-97-6	Mercury Note 1	2.60E-04	4.26E-04	2	2.28E-05	2.60E-04	0.1425	7.13E-05	Diminimis
7440-02-0	Nickel Note 5	6.20E-07	4.26E-04	0.6	5.44E-08	2.60E-04	0.0128	6.41E-06	Diminimis
7782-49-2	Selenium Note 1	2.40E-05	2.13E-03	925	2.10E-06	1.30E-03	0.0745	3.73E-05	Diminimis
7440-62-2	Vanadium	2.30E-03	3.18E-02	NA	2.02E-04	1.94E-02	2.0835	1.04E-03	Diminimis
7440-66-6	Zinc Note 1	2.90E-02	5.68E-04	NA	2.54E-03	3.47E-04	14.5167	7.26E-03	Diminimis
7440-39-3	Barium	4.40E-03	2.57E-03	NA	3.86E-04	1.57E-03	2.2754	1.14E-03	Diminimis
7440-50-8	Copper Note 1	8.50E-04	8.52E-04	NA	7.45E-05	5.21E-04	0.4500	2.25E-04	Diminimis
7439-92-1	Lead Note 1	5.00E-04	1.28E-03	2	4.38E-05	7.81E-04	0.2875	1.44E-04	Diminimis
56-55-3	Benz(a)anthracene	1.80E-06	4.01E-06	0.4	1.58E-07	2.45E-06	0.0010	5.09E-07	Diminimis
50-32-8	Benzo(a)pyrene	1.20E-06	NA	0.04	1.05E-07	NA	0.0006	3.00E-07	Diminimis
205-99-2	Benzo(b)fluoranthene	1.80E-06	1.48E-06	0.4	1.58E-07	9.05E-07	0.0009	4.72E-07	Diminimis
218-01-9	Chrysene	1.80E-06	2.38E-06	2	1.58E-07	1.46E-06	0.0010	4.85E-07	Diminimis
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.67E-06	0.04	1.05E-07	1.02E-06	0.0006	3.25E-07	Diminimis
<mark>57-97-6</mark>	7,12- Dimethylbenz(a)anthracene Note 3	1.60E-05	NA	0.0007	1.40E-06	NA	0.0080	4.00E-06	Reportable
193-39-5	Indeno(1,2,3-cd)pyrene	1.80E-06	2.14E-06	0.4	1.58E-07	1.31E-06	0.0010	4.81E-07	Diminimis
NA	Polycyclic Organic Matter (POM) is a HAP Note 2	4.10E-05	3.30E-03	2	3.59E-06	2.02E-03	0.1174	5.87E-05	Diminimis
4- <u></u>					8.82E-06	6.08E-04		3.98E-05	

Note 1: AP 42 - Table 1.3-10 Emission Factor - converted from lb/10¹² BTU to lb/MM ft3

Note 2: See Attachment 1 for Polycyclic Organic Matter (POM)

Note 3: 7,12- Dimethylbenz(a)anthracene is a Polycyclic Organic Matter (POM). Per NJAC 7:27-17.9 (b) Table 2, it has a lower Reporting threshold than the POM group.

Note 4: Formaldehyde Natural Gas Emission factor based on the "Mean value" from "Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type" Table 3; Chemosphere Vol 42 (2001); Authors: Glenn C England et al.

Note 5: Per Energy Fuels 2018, 32, 6397–6400, "Characterization and Comparison of Trace Metal Compositions in Natural Gas, Biogas, and Biomethane"; by M. Cachia et al. (See Attachment 2)

DARLING INGREDIENTS INC. Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

PCP080001 - BOILERS

3.0 NEBRASKA EMISSIONS (E3)

3.1 EMISSION FACTORS

3.1.1 Natural Gas Emission Factors

NOx	2.27 lbs/hr (Per Air Permit PCP080001)	=	27.47 lbs/MM FT ³
CO	3.53 lbs/hr (Per Air Permit PCP080001)	=	37.22 lbs/MM FT ³
VOC	0.52 lbs/hr (Per Air Permit PCP080001)	=	5.50 lbs/MM FT ³
TSP	0.72 lbs/hr (Per Air Permit PCP080001)	=	7.60 lbs/MM FT ³
PM10	0.72 lbs/hr (Per Air Permit PCP080001)	=	7.60 lbs/MM FT ³
SOx	0.06 lbs/hr (Per Air Permit PCP080001)	=	0.63 lbs/MM FT ³

Conversion Factor = Ib/MM BTU x 1020 BTU/FT³

3.1.2 No 2 Fuel Oil Emission Factors

NOx	8.23 lbs/hr (Per Air Permit PCP080001)	=	13.48 lbs/1,000s gallons
CO	3.56 lbs/hr (Per Air Permit PCP080001)	=	5.42 lbs/1,000s gallons
VOC	0.46 lbs/hr (Per Air Permit PCP080001)	=	0.70 lbs/1,000s gallons
TSP	0.92 lbs/hr (Per Air Permit PCP080001)	=	1.40 lbs/1,000s gallons
PM10	0.92 lbs/hr (Per Air Permit PCP080001)	=	1.40 lbs/1,000s gallons
SOx	18.38 lbs/hr (Per Air Permit PCP080001)	=	28.400 lbs/1,000s gallons (Based on AP-42 1998 with 0.142 MMBTU/gal and 0.2 % of Sulfur)

Conversion factor = 140 MMBTU/ 1000s gallons

NOTES: 1. Emission factor reference: NJDEP-required stack tests conducted on the two boilers on May 9, 2006 (Nebraska Boiler combusting Natural gas) and January 23 and 24, 2007 (Abco Boiler combusting Natural Gas, No. 2 Fuel Oil, Tallow and Yellow Grease, as well as Nebraska Boiler combusting No. 2 Fuel Oil). These stack tests were pre-approved and witnessed by the NJDEP.

2. The emission factors used are the worst case for the three runs conducted under each condition and are NOT averages. This was done to lend as much conservatism to the factors and emissions as possible.

3.2 FUEL USAGE & HEAT INPUT RATE

3.2.1 Annual usage

OS-1 Natural Gas: <u>265.0</u> MM FT³/YEAR

OS-2 No 2 Fuel Oil: 31.500 1,000s GALLONS/YEAR

3.2.2 Heat Input rate

Nat Gas: 96.75 MMBTU/hr No 2 Fuel Oil: 91.88 MMBTU/hr

DARLING INGREDIENTS INC. Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

3.3 EMISSIONS CALCULATION

3.3.1 Emission calculation Natural Gas (OS6)

NOx lbs/yr = NOx lbs/yr = NOx =	27.47 7279.55 3.64 to	lbs/yr /	265 2000	MM FT ³ /yr Ibs/tons
CO lbs/yr = CO lbs/yr = CO =		lbs/MM FT ³ x lbs/yr / ons / yr	265 2000	MM FT ³ /yr Ibs/tons
VOC lbs/yr = VOC lbs/yr = VOC =	5.50 1457.50 0.73 to	lbs/yr /	265 2000	MM FT ³ /yr Ibs/tons
TSP lbs/yr = TSP lbs/yr = TSP =	7.60 2014.00 1.01 to	lbs/MM FT ³ x lbs/yr / ons / yr	265 2000	MM FT ³ /yr Ibs/tons
PM10 lbs/yr = PM10 lbs/yr = PM10 =	7.60 2014.00 1.01 tc	lbs/MM FT ³ x lbs/yr / ons / yr	265 2000	MM FT ³ /yr Ibs/tons
SOx lbs/yr = SOx lbs/yr = SOx =	0.63 166.95 0.08 to	lbs/MM FT ³ x lbs/yr / ons / yr	265 2000	MM FT ³ /yr Ibs/tons

DARLING INGREDIENTS INC. Newark, NJ

AIR PERMIT APPLICATION FOR BOILERS

3.3.2 Emission calculation No 2 Fuel Oil (OS5)

NOx lbs/yr = NOx lbs/yr = NOx =	13.48 lbs/1,000s gallons x 424.62 lbs/yr / 0.21 tons / yr	32 2000	1000s gallons/yr Ibs/tons
CO lbs/yr = CO lbs/yr = CO =	5.42 lbs/1,000s gallons x 170.73 lbs/yr / 0.09 tons / yr	32 2000	1000s gallons/yr Ibs/tons
VOC lbs/yr = VOC lbs/yr = VOC =	0.70 lbs/1,000s gallons x 22.05 lbs/yr / 0.01 tons / yr	32 2000	1000s gallons/yr lbs/tons
TSP lbs/yr = TSP lbs/yr = TSP =	1.40 lbs/1,000s gallons x 44.10 lbs/yr / 0.02 tons / yr	32 2000	1000s gallons/yr lbs/tons
PM10 lbs/yr = PM10 lbs/yr = PM10 =	1.40 lbs/1,000s gallons x 44.10 lbs/yr / 0.02 tons / yr	32 2000	1000s gallons/yr lbs/tons
SOx lbs/yr = SOx lbs/yr = SOx =	28.40 lbs/1,000s gallons x 894.60 lbs/yr / 0.45 tons / yr	32 2000	1000s gallons/yr lbs/tons

ATTACHMENT 1

Polycyclic Organic Matter (POM) Emission Factors

Polycyclic Organic Matter (POM) is a HAP as defined by Section 112(b) of the Clean Air Act.

Natural Gas - Polycyclic Organic Matter (POM)

The emission factor listed below has been compile based on AP-42 Table 1.4-3

POM	91-57-6	2-Methylnaphthalene	2.40E-06	lbs/ MMft3
POM	56-49-5	3-Methylcholanthrene	1.80E-06	lbs/ MMft3
POM	83-32-9	Acenaphthene	1.80E-06	lbs/ MMft3
POM	203-96-8	Acenaphthylene	1.80E-06	lbs/ MMft3
POM	120-12-7	Anthracene	2.40E-06	lbs/ MMft3
POM	191-24-2	Benzo(g,h,i)perylene	1.20E-06	lbs/ MMft3
POM	207-08-9	Benzo(k)fluoranthene	1.80E-06	lbs/ MMft3
POM	206-44-0	Fluoranthene	3.00E-06	lbs/ MMft3
POM	86-73-7	Fluorene	2.80E-06	lbs/ MMft3
POM	85-01-8	Phenanathrene	1.70E-05	lbs/ MMft3
POM	129-00-0	Pyrene	5.00E-06	lbs/ MMft3

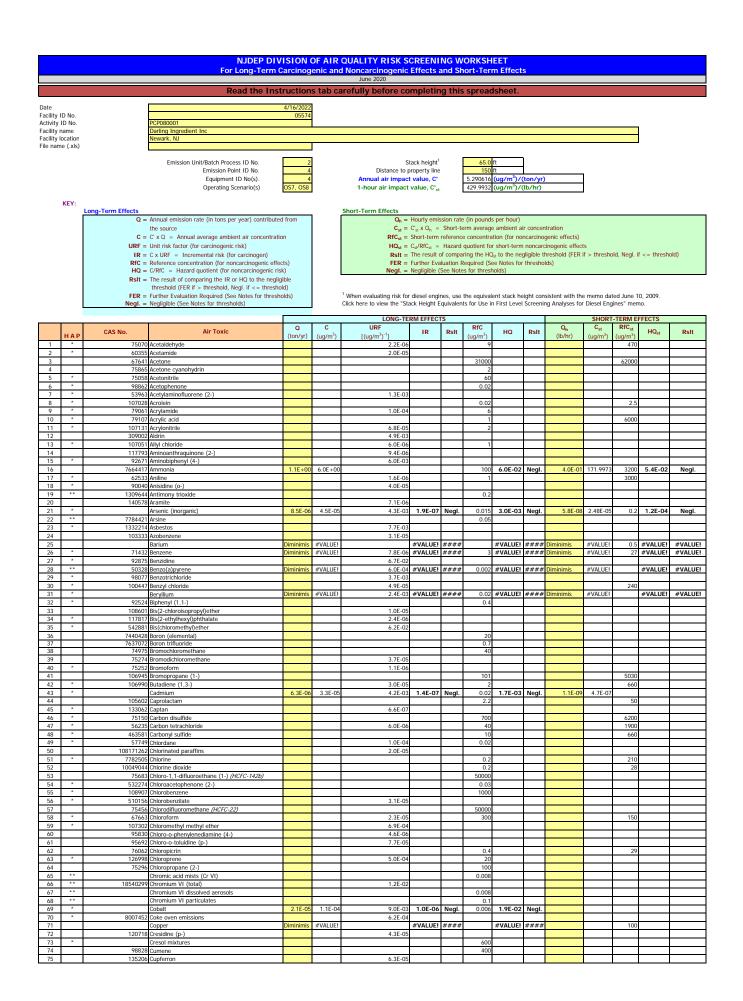
Distillate Oil - Polycyclic Organic Matter (POM)

The POM emission factor is based on AP-42 Table 1.3-8

POM = 0.0033 lbs / 1000 gal

ATTACHMENT 2

Trace Metals (Arsenic, Cadmium and Nickel) in Natural Gas


Per Energy Fuels 2018, 32, 6397–6400, "Characterization and Comparison of Trace Metal Compositions in Natural Gas, Biogas, and Biomethane"; by M. Cachia et al.

Arsenic	6.33	ng / N m3	of Natural Gas
Cadmium	0.12	ng / N m3	of Natural Gas
Nickel	5.97	ng / N m3	of Natural Gas

Conversions

Convert N m3 to Actual m3 at plant conditions

1 N	m3 = 0.601	m3 @	12 PSI and 2	5 degrees C using	V2 = V1 x (P1	/P2) x (T2/T	1)
		Where:	V2=	0.601 Actual m3	3 @ actual plant	conditions ((pressure & Temp)
			V1 =	1 N m3			
			P1=	1 atmosphe	ere N		
						PSI	(12 PSI gauge + 14.7
			P2 =	1.817 atmosphe	ere Actual at	26.7 PSI)	
			T1 =	273.15 degrees k	K Normal at	0 degi	rees C
			T2 =	298.15 degrees k	K Normal at	25 degi	rees C
Convert ng/	N m3 to ng/m3			-			
Arsenic	6.33 ng / N m3 x	(1 Nm3/	0.601 m	3 = 10.536	6 ng/m3		
Cadmium	0.12 ng / N m3 x	(1 Nm3/	0.601 m	3 = 0.200) ng/m3		
Nickel	5.97 ng / N m3 x	(1 Nm3/	0.601 m3	3 = 9.937	7 ng/m3		
Convert ng	m3 to Ib/MM ft3						
Arsenic	10.536 ng/m3 x	2.20E-12	2 lb/ng) /	35.31 ft3/m3 x	1.00E+06 ft3/	′MM ft3 =	6.58E-07 lb/MMft3
Cadmium	0.200 ng/m3 x		2 lb/ng) /	35.31 ft3/m3 x	1.00E+06 ft3/	′MM ft3 =	1.25E-08 lb/MMft3
Nickel	9.937 ng/m3 x		2 lb/ng) /	35.31 ft3/m3 x	1.00E+06 ft3/	MM ft3 =	6.20E-07 lb/MMft3

77		440007	A						1	1			1	(000		
76 77	*		Cyclohexane DDE			9.7E-05								6000		
78		50293	DDT			9.7E-05										
79 80			Diaminoanisole (2,4-) Dibromochloromethane			6.6E-06 2.7E-05										
81	*		Dibromo-3-chloropropane (1,2-)			2.0E-03			0.2							
82			Dichloro-2-butene (1,4-)			4.2E-03			200							
83 84	*		Dichlorobenzene (1,2-) Dichlorobenzene (1,4-)			1.1E-05			200 800							
85	*	91941	Dichlorobenzidine (3,3'-)			3.4E-04										
86 87	*	75718	Dichlorodifluoromethane Dichloroethyl ether			3.3E-04			100							
88	*		Dichloropropene (1,3-)			4.0E-06			20							
89 90	*		Dichlorvos Dicyclopentadiene			8.3E-05			0.5							
91			Dicyclopentadiene Dieldrin			4.6E-03			0.3							
92		444.400	Diesel particulate matter			3.0E-04			5							
93 94			Diethanolamine Diethylene glycol monobutyl ether						0.1							
95		75376	Difluoroethane (1,1-)						40000							
96 97	*		Dimethyl sulfate Dimethylaminoazobenzene (4-)			4.0E-03 1.3E-03										
98	*		Dimethylcarbamyl chloride			3.7E-03										
99 100	*		Dimethylformamide (N,N-)						30 0.002							
100			Dimethylhydrazine (1,1-) Dimethylhydrazine (1,2-)			1.6E-01			0.002							
102	*		Dinitrotoluene (2,4-)			8.9E-05										
103 104	*	123911	Dioxane (1,4-) Dioxin			5.0E-06			30 See for	otnote "a"				3000		
105	*	122667	Diphenylhydrazine (1,2-)			2.2E-04										
106 107	*		Epichlorohydrin Epoxybutane (1,2-)			1.2E-06			20					1300		
108	*	140885	Ethyl acrylate						8	1					1	
109 110	*		Ethylbenzene Ethyl carbamate			2.5E-06 2.9E-04								1000]
111	*	75003	Ethyl chloride											10000		
112	*	106934	Ethylene dibromide			6.0E-04			0.8							
113 114	*		Ethylene dichloride Ethylene glycol			2.6E-05			400 400							
115		111762	Ethylene glycol monobutyl ether						82					4700		
116 117	**	110805 111159	Ethylene glycol monoethyl ether Ethylene glycol monoethyl ether acetate						200					370 140		
118	**	109864	Ethylene glycol monomethyl ether						20					93		
119 120	**	110496	Ethylene glycol monomethyl ether acetate Ethylene oxide			5.0E-03			90 30					42]
120	*		Ethylene thiourea			1.3E-05			30					42		
122	*	151564	Ethyleneimine			1.9E-02	_									
123 124	-	75343 16984488	Ethylidene dichloride Fluoride			1.6E-06			500 13							
125	*	50000	Formaldehyde	Diminimis	#VALUE!	1.3E-05	#VALUE!	####		#VALUE!	####	Diminimis	#VALUE!	55	#VALUE!	#VALUE!
126 127		98011	Furfural Gasoline vapors			1.0E-06			50 15							
128		111308	Glutaraldehyde			1.02*00			0.08					4.1		
129 130	*		Glycidaldehyde			1 35 63			1							
130			Heptachlor Heptachlor epoxide			1.3E-03 2.6E-03					L					
132	*	118741	Hexachlorobenzene			4.6E-04	_									
133 134	**		Hexachlorobutadiene Hexachlorocyclohexane (alpha-)			2.2E-05 1.8E-03										
135	**	319857	Hexachlorocyclohexane (beta-)			5.3E-04										
136 137	*	58899	Hexachlorocyclohexane (gamma-) Hexachlorocyclohexane (technical grade)			3.1E-04 5.1E-04										
138	*	77474	Hexachlorocyclopentadiene						0.2							
139 140	*	19408743	Hexachlorodibenzo-p-dioxin, mixture Hexachloroethane			1.3E+00 1.1E-05			30							
140	*	67721 822060				1.1E-05			30		L					
142	*	110543	Hexane (N-)	Diminimis	#VALUE!		#VALUE!	####	700	#VALUE!	####					
143 144	*		Hydrazine Hydrazine sulfate			4.9E-03 4.9E-03			0.2					10		
145	*	7647010	Hydrogen chloride			4.72-03			20					2100		
146 147	**		Hydrogen cyanide Hydrogen fluoride						0.8					340 240		
148	**	7783075	Hydrogen selenide						14					5		
149	*		Hydrogen sulfide						2					98		
150 151			Isophorone Isopropanol						2000					3200		
152	*		Lead	Diminimis	#VALUE!	1.2E-05	#VALUE!	####		#VALUE!	####	Diminimis	#VALUE!	0.1	#VALUE!	#VALUE!
153 154	*	108316	Maleic anhydride Manganese	Diminimis	#VALUE!		#VALUE!	####	0.7	#VALUE!	####	Diminimis	#VALUE!	0.17	#VALUE!	#VALUE!
155	*		Mercury (elemental)						0.3							
156 157	*	7439976	Mercury (inorganic) Methacrylonitrile	Diminimis	#VALUE!		#VALUE!	####	0.03	#VALUE!	####	Diminimis	#VALUE!	0.6	#VALUE!	#VALUE!
157	*		Methacrylonitrile Methanol						4000					28000		
159	*	74839	Methyl bromide						5					3900		
160 161	*		Methyl chloride Methyl chloroform			1.8E-06			90 1000					9000		
162		78933	Methyl ethyl ketone						5000					13000		
163	*		Methyl isobutyl ketone Methyl isocyanate											3000		
164 165	*		Methyl isocyanate Methyl methacrylate						1 700							
166		25013154	Methyl styrene (mixed isomers)						40							
167 168	-	1634044 108872	Methyl tert butyl ether Methylcyclohexane			2.6E-07	-		3000 3000							
169	*	101144	Methylene bis(2-chloroaniline) (4,4'-)			4.3E-04										
170 171	*		Methylene chloride Methylenedianiline (4,4-)			1.3E-08 4.6E-04			600 20					14000		
172	*		Methylenedianiline (4,4-) Methylenediphenyl diisocyanate (4,4'-)						0.08		L			12		
173	*	60344	Methylhydrazine			1.0E-03			0.02	[[
174 175	*	90948	Michler's ketone Mineral fibers (<1% free silica)			2.5E-04			24							
176	*	91203	Naphthalene	Diminimis			#VALUE!		3	# WILDE.						
177 178	*	1313001	Nickel and compounds Nickel oxide	Diminimis	#VALUE!	4.8E-04	#VALUE!	####	0.014	#VALUE!	####	Diminimis	#VALUE!	0.2	#VALUE!	#VALUE!
179	**	1313991	Nickel refinery dust			2.4E-04										
180	**	10005700	Nickel, soluble salts			105 ***			0.2							
181 182			Nickel subsulfide Nitric acid			4.8E-04								86		
183		88744	Nitroaniline (o-)						0.05							
184		98953	Nitrobenzene			4.0E-05	1	1	9	1	1		1	1	1	

105		704/0	NP4	1		0.75.00			20							
185 186	-		Nitropropane (2-) Nitrosodiethylamine (N-)			2.7E-03 4.3E-02			20							
180	*		Nitrosodimethylamine (N-)			4.3L=02 1.4E-02										
187			Nitrosodi-n-butylamine (N-)			1.6E-03										
189		621647	Nitrosodi-n-propylamine (N-)			2.0E-03										
190		86306	Nitrosodiphenylamine (N-)			2.6E-06										
191		156105	Nitrosodiphenylamine (p-)			6.3E-06										
192		10595956	Nitrosomethylethylamine (N-)			6.3E-03										
193	*	59892	Nitrosomorpholine (N-)			1.9E-03										
194			Nitroso-n-ethylurea (N-)			7.7E-03										
195 196	-	684935	Nitroso-n-methylurea (N-) Nitrosopiperidine (N-)			3.4E-02 2.7E-03										
190			Nitrosopyrolidine (N-)			6.1E-04										
198	*		Pentachlorophenol			5.1E-06										
199	*	108952	Phenol						200					5800		
200	*		Phosgene						0.3					4		
201	*	7803512	Phosphine						0.3					70		
202	*	7664382	Phosphoric acid						10							
203	*		Phosphorus (white)						0.07							
204	*		Phthalic anhydride						20							
205	*	1336363	Polychlorinated biphenyls (PCBs)			1.0E-04										
206 207	*		Polycylic aromatic hydrocarbons (PAHs) Polycylic organic matter (POM)	-					See for	otnote "b"						
207		7758010	Potassium bromate			1.4E-04										
200	*	1120714	Propane sultone (1,3-)			6.9E-04				l						
210	*	57578	Propiolactone (beta-)			4.0E-03				1						
211	*		Propionaldehyde						8							
212		115071	Propylene						3000							
213	*		Propylene dichloride			1.0E-05			4							
214			Propylene glycol monomethyl ether						2000							
215	*	75569	Propylene oxide			3.7E-06			30					3100		
216 217	~ ~	7(010(0	Selenium and compounds	Diminimis	#VALUE!		#VALUE!	####	20	#VALUE!	####					
217			Silica (crystalline, respirable) Sodium hydroxide						3					8		
210	*		Styrene			5.7E-07			1000					21000		
220	*	96093				4.6E-05										
221			Sulfates											120		
222		7664939	Sulfuric acid						1					120		
223	*	1746016				3.8E+01			0.00004							
224		630206				7.4E-06										
225	*	79345	Tetrachloroethane (1,1,2,2-) Tetrachloroethylene			5.8E-05			40					20000		
226 227		127184 811972				6.1E-06			80000					20000		
228		109999							2000							
229		62555	Thioacetamide			1.7E-03			2000							
230	*	7550450							0.1							
231	*	108883	Toluene	Diminimis	#VALUE!		#VALUE!	####	3760	#VALUE!	####	Diminimis	#VALUE!	7520	#VALUE!	#VALUE!
232	*	584849				1.1E-05			0.008					2		
233	*	26471625	Toluene diisocyanate (2,4-/2,6-)			1.1E-05			0.008					2		
234	*	91087	Toluene diisocyanate (2,6-)			1.1E-05		ļ	0.008		L			2		
235	*		Toluene-2,4-diamine		\vdash	1.1E-03										
236 237	*	95534	Toluidine (o-) Toxaphene			5.1E-05 3.2E-04										
237			Trichloro-1,2,2-trifluoroethane (1,1,2-)			3.2E=04			30000							
230	*		Trichlorobenzene (1,2,4-)						20000	t i						
240	*		Trichloroethane (1,1,2-)			1.6E-05			-							
241	*	79016	Trichloroethylene			4.8E-06			2					2		
242		75694	Trichlorofluoromethane						700							
243	*		Trichlorophenol (2,4,6-)			3.1E-06										
244	*		Triethylamine				l		7	L				2800		
245	*		Trifluralin			2.2E-06			/-							
246 247			Trimethylbenzene (1,2,3-) Trimethylbenzene (1,2,4-)						60 60							
247			Trimethylbenzene (1,2,4-)				-		60							
248			Trimethylbenzene (1,2,3-/1,2,4-/1,3,5-)		\vdash				60					1		
250			Vanadium	Diminimis	#VALUE!		#VALUE!	####		#VALUE!	####	Diminimis	#VALUE!	0.8	#VALUE!	#VALUE!
			Vanadium pentoxide											30		
251		1314621	valiaulum pentoxide													
251 252	*	108054	Vinyl acetate						200							
251 252 253	*	108054 593602	Vinyl acetate Vinyl bromide			3.2E-05			3							
251 252 253 254	*	108054 593602 75014	Vinyl acetate Vinyl bromide Vinyl chloride			3.2E-05 8.8E-06			3 100					180000		
251 252 253		108054 593602 75014	Vinyl acetate Vinyl bromide						3					180000		

If any calculated long-term or short-term effects for an air toxic result in "Further Evaluation Required" (FER) on this Risk Screening Worksheet, a Refined Risk Assessment is required for that air toxic.

NOTE:

Clean Air Act hazardous air pollutant Clean Air Act hazardous air pollutant, but not listed individually (part of a group) **

Dioxins may be considered to be all 2,3,7,8-tetrachlorodibenzo(p)dioxin), or separated into congeners (contact AQEv) PAH or POM may be considered to be all benzo(a)pyrene, or separated into individual PAHs (contact AQEv) a b

The results are determined by comparing the long-term and short-term effects to the single-source thresholds, listed below The threshold value of negligible risk for incremental risk (R) is 1 in a million (1.0E-06). An IR value less than or equal to 1 in million is considered negligible The threshold value of negligible risk for on-term hazard quotient (HO) for non-carcinogenic risk is 1.0. An HO less than or equal to 1.0 is considered negligible The threshold value of negligible risk for on-term hazard quotient (HQ) for non-carcinogenic risk is 1.0. An HO_{st} less than or equal to 1.0 is considered negligible.

APPENDIX B MANUFACTURER SPECIFICATIONS - BOILER

victoryenergy.com/watertube-boilers/o-type/

O-TYPE BOILER

Victory Energy manufactures a full line of industrial watertube boilers. Suited for all industrial and institutional applications. We have hundreds of watertube boilers in operation worldwide.

VOYAGER Series O-type watertube boilers provide a rapid ramp rate. They're easy to ship, install, operate and maintain. Engineered and manufactured to be versatile and reliable. Victory Energy Operations, LLC 10701 E. 126th St. N. Collinsville, OK 74021

Call: 918.274.0023 Fax: 918.274.0059 Web: victoryenergy.com

O-TYPE BOILER

victoryenergy.com/watertube-boilers/o-type/

FOLLOW A LEADER

EXCELLENCE IN THE MAKING

From the beginning, the goals of Victory Energy have been to be a single-source solutions provider backed by world-class service. Today, we are a leading boiler supplier offering proven energy solutions through advanced technologies and state-of-the-art manufacturing.

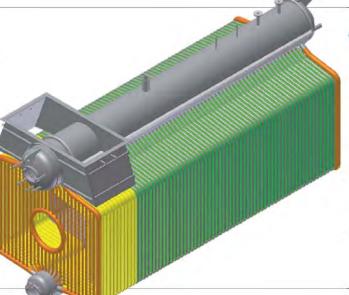
No application is too small or too large. We thrive in an atmosphere of innovative thinking and breakthrough methodology. We carry this attitude forward from "Concept to Completion®" as we work closely with our customers, inhouse engineering teams, in-house project management teams, fabrication personnel, manufacturing crews, logistics department and field technicians.

In addition to providing rock-solid solutions that are reliable and compliant with the most stringent technical requirements, we are constantly looking for ways to maximize the efficiencies and value of total integration for our customers and end users.

Quality materials and superior construction are essential to producing industrialduty boiler systems that are, by design, engineered to be the most reliable boilers in the world. Our approach to modularization is designed to maximize shop assembly while minimizing costly field labor and delivery time.

State-of-the-art manufacturing facilities are located just North of Tulsa, Okla.

From permanent full-scale installations to temporary mobile systems, Victory Energy offers custom-engineered solutions for all types of applications in all kinds of industries including, Petroleum, Utility/Power, Textiles/Pulp & Paper, Chemical Processing, Process Waste Heat, Institutional, District Heating, Ethanol, Oil Sands/Enhanced Oil Recovery and Thermal Solar projects.


Large drums with proprietary internals and moisture separation provide the highest quality steam.

Total integration ensures efficient interaction of all components.

Easy access is provided through manways at both ends of the drums.

Large, welded water-cooled, gas-tight furnace areas are designed to yield optimum emissions performance, boiler reliability, and longevity with reduced maintenance costs.

Each boiler is custom engineered and modeled with a complete circulation analysis.

> High service factors for extreme-duty applications.

Fully welded gas seals are used throughout, eliminating concerns of hot spots.

Fully membrane boiler reduces CO emissions due to bypassing.

Boilers are 100% water cooled and refractory free front and rear walls.

Conservatively designed tube layouts, coupled with large drums, provide flexibility for all operational conditions.

victoryenergy.com/watertube-boilers/o-type/

O-TYPE BOILER

FOLLOW A LEADER

O-TYPE WATERTUBE BOILER

The Victory Energy VOYAGER® O-style Boiler is designed to provide a rapid ramp rate and is easy to ship, install, operate and maintain. These versatile robust boilers have become very popular for applications that are extremely demanding in harsh environments. It's symmetrical configuration is ideally suited for restrictive floor plans, while the gas outlet allows the addition of an enhanced heat recovery system in a vertical configuration to ensure a slim footprint.

Each VOYAGER O-style Boiler is custom engineered with constructability in mind. Steam capacities range from 10,000 PPH up to 500,000 PPH, design pressures from 250 PSIG to 2,000 PSIG with saturated and superheat temperatures up to 1,050 degrees F.

MODEL	MAX CAP	HEIGHT	IEIGHT WIDTH	
VS-1	25,000 PPH	13'-7"	8'-9"	14'-0"
VS-2	37,000 PPH	13'7"	9'-8 3/4"	16'-6"
VS-3	55,000 PPH	13'-11 3/4"	3'-11 3/4" 10'-5 3/4"	
VSM-75	75,000 PPH	14'-0 7/8"	11'-9 3/4"	22'-7"
VS-4	85,000 PPH	14'-7 3/4"	11'-9 1/2"	25'-10"
VS-5	127,000 PPH	15'-1 3/4"	12'-6 1/2"	32'-2"
VS-6	165,000 PPH	16'-1 7/8"	12'-10 1/2"	35'-2"
VS-7	250,000 PPH	17'-4"	12'-11"	42'-6"
VS-8	300,000 PPH	Varies with operation	al requirements	

Larger sizes are available with barge shipments. FUELS: NATURAL GAS, BIO GAS, OFF-GASSES OR #2 - #6 OIL

All fired boilers come with low NO_X burners that are state-of-the-art and fuel-efficient.

Gas outlets are insulated with 8-lb. high density wool for improved efficiencies and safety.

Drum heads are assembled with ceramic insulation covered with carbon steel.

victoryenergy.com/watertube-boilers/o-type/

O-TYPE BOILER

Custom-engineered VOYAGER® A-type boiler.

Superheaters are available with a variety of configuration.

Fully integrated TITAN® water level equipment.

On-site Railway capabilities for over-sized projects.

Fully customized control systems, utilizing the latest PLC technology.

VOYAGER® O-type boiler with EXPLORER® economizer installed.

victoryenergy.com/watertube-boilers/o-type/

O-TYPE BOILER

ANCILLARY EQUIPMENT

Victory Energy can provide a complete suite of ancillary equipment to maximize the value of our products.

- Duct-work
- Transitions including D-type transitions
- Support steel to elevate units off-grade
- Stack
- Controls
- Dampers
- Expansion joints

Heat Recovery Products are a vital part of our sustainability initiative and a part of the many ways in which we provide innovative solutions to maximize waste heat recovery.

THE POWER OF ONE EXTRA DEGREE!

Our commitment to the 212 Principle continues to drive our dedication to customer satisfacion.

At 211 degrees, water is hot. At 212 degrees, it boils. And with boiling water, comes steam. And with steam, we power the progress of change.

1-877-783-2665

VICTORY ENERGY OPERATIONS, LLC | 10701 E. 126TH ST. N., COLLINSVILLE, OK 74021 | TEL: 918.274.0023 FAX: 918.382.4896

APPENDIX C MANUFACTURER EMISSIONS FACTORS

VICTORY ENERGY OPERATIONS, LLC. · 10701 E 126th St. North Collinsville, OK 74021 918.274.0023 Fax: 918.274.0059

 Date:
 April 21, 2022

 Reference:
 Darling Newark, NJ Package Boiler w/ SCR | VEO Job #16286

 Subject:
 Emissions Guarantees

BOILER SYSTEM:

Victory Voyager Series 'O'-style, Model VSM-75 package boiler equipped with Peerless Model 701894-1000 SCR system using direct injection of urea.

BOILER HEAT INPUT RATE:

89.4 MM BTU/HR combusting natural gas

EMISSIONS GUARANTEE:

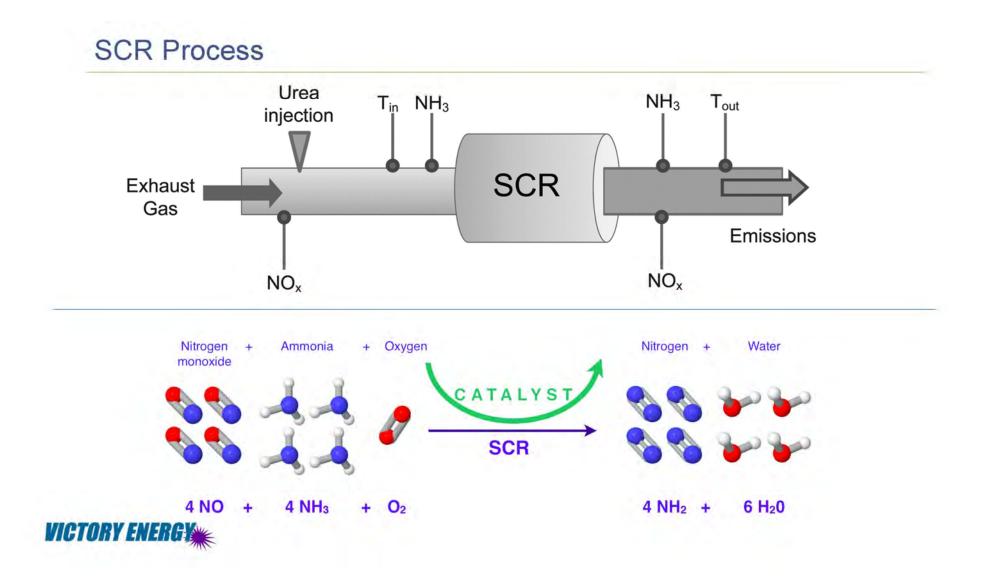
Victory Energy Operations, LLC guarantees the following emissions out of the stack for natural gas operation:

NOx:	< 0.010 lb/MMBtu
CO:	< 0.037 lb/MMBtu
VOC:	< 0.005 lb/MMBtu
NH4:	<10 ppm @ 3% O2 (0.4 lb/h)

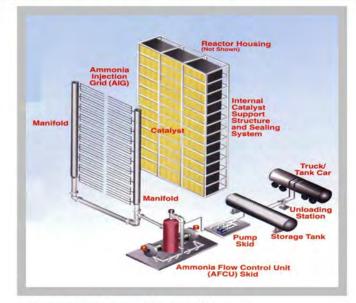
PERFORMANCE GUARANTEE CONDITIONS:

The performance NOx guarantees specified herein will be extended from twenty-five (25) to one hundred (100) percent of boiler load.

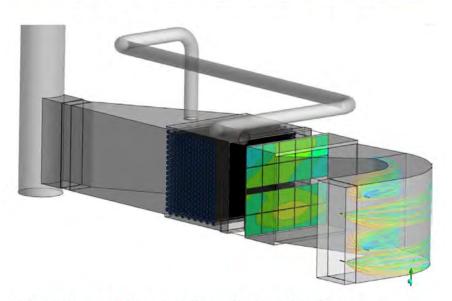
We appreciate the opportunity to provide our boiler system. Please don't hesitate to contact the undersigned should you need any additional information.


Aaron Anderson

Sr. Application Engineer 10701 East 126th Street North Collinsville, OK 74021


<u>aanderson@victoryenergy.com</u> Desk: 918-382-4852 Mobile: 918-629-5029 Main: 918-274-0023

APPENDIX D SCR Process


AIG Based SCR System

- Requires Less Mixing Space
 - Reduces Duct Length from injection point to Catalyst Face
- Allows for complete NH3 mixing, resulting in lowest possible NOx and NH3 Slip emissions

Direct Inject SCR System

VS.

- Injection of Reagent Directly into the Flue Gas Ducting with Specialty Lances
- Lower Capitol and Operating Costs
- Ease of Operation / Installation
- Still capable of achieving >90% NOx Reduction

Direct Injection – Operational Benefits

Less Equipment

- Direct Injection does not require the use of dilution air blowers and electric heaters typically associated with vaporizer systems
 - Reduces capital cost
 - Reduces operation cost
- Reduces operational maintenance
 - No maintenance associated with blowers and heaters
- o Ease of operation
 - Fewer "moving parts" means reduced operation learning curve for site personnel

VICTORY ENERGY

Direct Injection for SCR System Components

Reactor Housing

Injection Skid

Urea/Ammonia Injector

Reagent Bulk Tank

Catalyst Module

SCR Reagent – Urea vs Ammonia

Anhydrous Ammonia

- Concentrated Ammonia (NH₃) with a Purity Level of 99.95%
- · Stored as a Liquid Under Pressure
- Major Safety Concerns

Aqueous Ammonia

- · Mixture of Ammonia with Water
- Stored Under Low Pressure
- Typically 19% to 29% Ammonia by Weight
- Safety Concerns

Aqueous Urea

- · Mixture of Urea Prills / Powder with Water
- Stored in Atmospheric Tank
- Available in 32%, 40% and 50% solutions
- Less Transportation and Permitting Risk
- No Safety Concerns

SCR Reagent - Urea

Corrosion

- · Urea is a corrosive substance
- Store in stainless steel or fiberglass reinforced plastic (FRP) tanks
 Carbon Steel tanks will corrode
- All piping and tubing should be stainless steel
- · Verify seals compatibility
 - Viton and EPDM are standard

Temperature

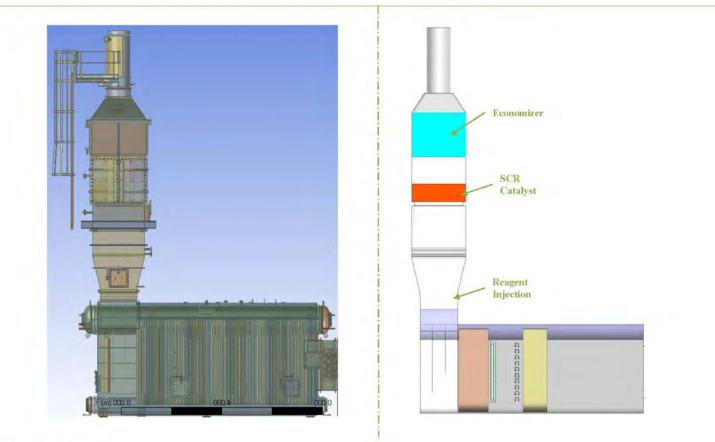
- · Urea will crystallize at low temperatures
 - 32% = 14 deg F; 40% = 35 deg F; 50% = 65 deg F
- Urea tanks must be located in temperature-controlled area or be heated and insulated

Capacity

- · How many days of storage are required?
- Typical urea truck delivery is 6000 gallons

Storage Options

- · Double wall FRP tanks available for self containment
 - · Eliminates need for containment area
 - Double wall tanks available up to 8,500 gallons
- 250 gallon totes available as low cost / temporary storage
- · Larger SS or Plastic tanks could store urea for multiple units
 - Number of units and desired storage times to be considered when choosing storage options



75 KPPH Boiler SCR – Vertical Arrangement

VICTORY ENERGY