

NJ Department of Environmental Protection Water Monitoring and Standards Marine Water Monitoring

Reappraisal Report of Shellfish Growing Area NE3

Shrewsbury River

June 2014

Reappraisal Report of Shellfish Growing Area NE3 Shrewsbury River

New Jersey Department of Environmental Protection (NJDEP)

Bureau of Marine Water Monitoring (BMWM) Robert Schuster, InterimChief

June 2014 Data from January 1, 2011 – May 31, 2014

Report prepared by:

Tracy Fay, Principal Biologist

Acknowledgements:

This report was funded by a State General Appropriation Federal Clean Water Act and the Monmouth County Hard Clam Relay and Depuration Fund. This report was written under the direction of NJDEP WM&S administration. Special acknowledgment is given to the Boat Captains, the laboratory staff, and the technical and support staff.

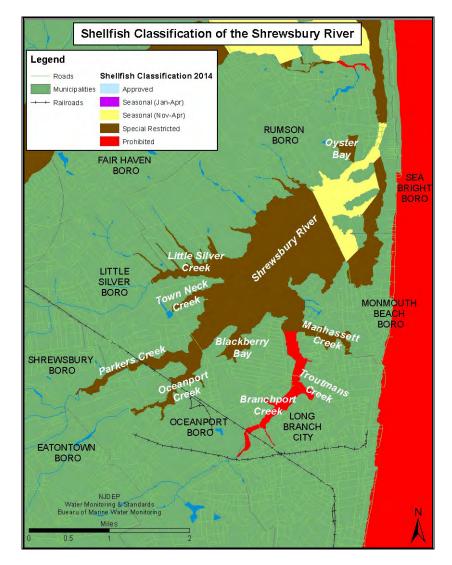

Cover Photo - Gunning Island (photo by Tracy Fay)

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
DESCRIPTION OF GROWING AREA	
Location & Description	
Growing Area Classification Summary	2
Evaluation of Biological Resources	
SHORELINE SURVEY: EVALUATION OF POTENTIAL POLLUTION SOURCES	4
Land Use	4
Surface and Ground Water Discharges	5
Marinas	
Spills, Unpermitted Discharges, and Closures	6
Stormwater Discharges	7
WATER QUALITY STUDIES	
Sampling Strategy	8
Bacteriological Quality	8
Compliance with NSSP Guide Guide Criteria	8
Rainfall Effects	10
Seasonal Effects	11
RELATED STUDIES	
Nutrients	12
Phytoplankton	12
Bathing Beaches	12
Toxic Monitoring	12
CONCLUSIONS	13
RECOMMENDATIONS	13
LITERATURE CITED	14
APPENDICES	14

EXECUTIVE SUMMARY

The Shrewsbury River is located in Monmouth County, New Jersey. The water quality data presented in this Reappraisal Report of the Shrewsbury River was collected between January 1, 2011 and May 31, 2014 using the Systematic Random Sampling (SRS) strategy. Approximately 1,400 water samples were collected and tested for coliform bacteria. Most of the waters in the Shrewsbury River are classified as *Special Restricted*, however, there is a section of *Seasonal (Nov-Apr)* in the eastern portion of the river, and a section of *Prohibited* waters in the Branchport Creek area. Fourteen stations exceeded the *Approved* criteria set by the National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish (NSSP Guide). There are no *Approved* waters in the Shrewsbury River and 30 sets of data show the stations in the *Seasonal (Nov-Apr)* section fit within the criteria for the months they are open for harvest. Three stations exceeded the *Special Restricted* criteria set by the Nasse of the Shrewsbury River shellfish growing area samples indicate that the coliform geometric mean and/or estimated 90th percentile levels meet the standards of the NSSP Guide. Therefore, there are no recommendations for changes in shellfish classification or sampling strategy.

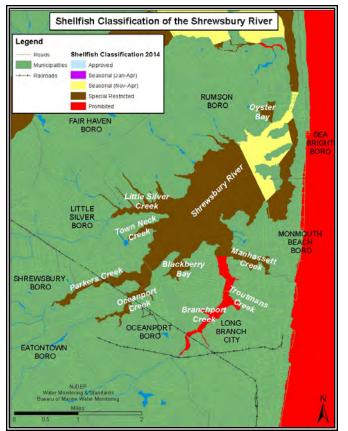
DESCRIPTION OF GROWING AREA

Location & Description

The Shrewsbury River is located in northern Monmouth County. Tidal waters enter the Shrewsbury River Basin via Sandy Hook Bay. The Shrewsbury River connects to the Navesink River via a narrow channel (see adjacent figure). The Navesink River is part of the Shrewsbury River Basin, but for the purpose of this report, it is examined as a separate growing area.

There are numerous small creeks off of the Shrewsbury River including Little Silver Creek, Parkers Creek, Oceanport Creek, and Branchport Creek.

Seven municipalities

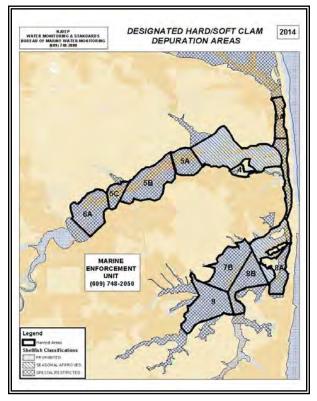

surround the Shrewsbury River; they are Rumson Borough, Little Silver Borough, Shrewsbury Borough, Oceanport Borough, Long Branch City, Monmouth Beach Borough, and Sea Bright Borough (see adjacent figure). In total, the Shrewsbury River drains an area of 27 square miles.

Growing Area Classification Summary

The approximate size of this shellfish growing area is 2,200 acres. Shellfish classifications in this growing area include *Seasonal (November-April), Special Restricted,* and *Prohibited* waters (see figure on following page).

Shelifish Classification Percentages in the Shrewsbury River Prohibited Seasonal (Nov-Apr) 13% 5pecial Restricted 81% The *Seasonal (November-April)* waters can be found on the eastern end of the Shrewsbury River. (see *N.J.A.C.* 7:12 for official boundaries). These waters are open for harvest from November 1^{st} to April 30^{th} , and closed for harvest from May 1^{st} to October 31^{st} of each year.

The majority of waters in this shellfish growing area are classified as Special Restricted. Recreational harvest of shellfish is not permitted from Special Restricted waters. The Special Restricted waters are located throughout the Shrewsbury River, including the connector to Sandy Hook Bay, Oyster Bay, and all of the waters west of the Seasonal (Nov - Apr)section (see adjacent figure). Special Restricted waters are approved for commercial harvest, when they are followed by depuration or relay, which help to cleanse bacteria from the shellfish. Harvesting clams for either depuration or relay requires issuance of a Special Permit, acquired at the Bureau of Marine Water Monitoring. Also, under the Special Permit Program, shellfish can only be harvested from designated lots in Special Restricted waters (see below figure).


A reappraisal report on the Shrewsbury River using data from October 1, 2003 to September 30, 2007 downgraded approximately 150 acres of waters from *Special Restricted* to *Prohibited*. This downgrade encompassed a section of South Shrewsbury River, Branchport Creek, and Troutmans Creek.

The Shrewsbury River is displayed on chart # 3 of the current State of New Jersey Shellfish Growing Water Classification Chart or on the Bureau of Marine Water Monitoring's (BMWM) website at http://www.state.nj.us/dep/bmw/; the official and most current classification descriptions can be found at *N.J.A.C.* 7:12.

Evaluation of Biological Resources

Shellfish species harvested in New Jersey include hard clams (<u>Mercenaria mercenaria</u>), soft clams (<u>Mya arenaria</u>), mussels, bay scallops (<u>Aequipecten irradians</u>), oysters (<u>Crassostrea virginica</u>), ocean quahogs (<u>Arctica islandica</u>), surf clams (<u>Spisula solidissima</u>), and sea scallops (<u>Placopecten magellanicus</u>) (NMFS, 2007).

The Shrewsbury River has moderate to high densities of hard clams (according to the last clam census in the 1980's done by NJDEP's Fish & Wildlife). Populations of soft clams also reside within this estuary. Factors that

contribute to having a viable resource include salinity, dissolved oxygen levels, bottom conditions, and predator activity.

SHORELINE SURVEY: EVALUATION OF POTENTIAL POLLUTION SOURCES

Shoreline surveys were conducted on three dates; see the Appendix for further details.

Waterfowl are known to inhabit this area, especially during winter months. Herons, ducks, geese, and egrets are common sights. When the tributaries ice over in winter months, the bird populations tend to accumulate on the ice.

Vegetation is an essential part of the marine ecosystem, offering habitat and nursery grounds for numerous species. In the Shrewsbury River, the submerged aquatic vegetation (SAV) is prevalent in shallow areas. Some of the most common species of SAV include widgeon grass (*Ruppia maritima*), sago pondweed (*Potamogeton pectinatus*), horned pondweed (*Zannichellia palustris*) and eelgrass (*Zostera marina*).

The area is a well-known tourist spot on the New Jersey shore and entertains an influx of population in the summer months. Since Superstorm Sandy there has been a lot of construction on condominiums and residential homes and rebuilding of docks, bulkheads and other structures at residential homes and commercial marinas (see adjacent photo).

Land Use

The current land use surrounding the Shrewsbury River is predominately urban, commonly residential (see adjacent figure). However, there are sections of wetlands, barren lands, forests, and agricultural areas. Seven municipalities surround the Shrewsbury River; they are Rumson Borough, Little Silver Borough, Shrewsbury Borough, Oceanport Borough, Long Branch City, Monmouth Beach Borough, and Sea Bright Borough. Most properties in this area contain a single family home. However, there are some condominium-type structures, primarily in Sea Bright Borough. Monmouth Park Racetrack is located in Oceanport Borough, along Branchport Creek. The property formally occupied by Fort Monmouth is located in Oceanport Borough, along Parkers Creek. Two Rivers Water Reclamation Authority is located in Monmouth Beach, along the Shrewsbury River.

Surface and Ground Water Discharges

A surface water discharge involves the release of treated effluent from various municipal and industrial facilities directly into a river, stream, or the ocean. The discharge of pollutant from a point source is authorized under New Jersey Pollutant Discharge Elimination System (NJPDES), and the regulations are found at *N.J.A.C.* 7:14A. NJPDES permits limit the amount or concentration of pollutants that can be discharged.

There are no direct discharges into the waters of the Shrewsbury River. However, there are two domestic treatment facilities in the general vicinity, Two River Water Reclamation Authority (TRWRA) and Long Branch Sewerage Authority (LBSA); both discharge treated wastewater into the Atlantic Ocean.

The TRWRA was founded in 1965 and had its first flow in 1971 (TRWRA, 2014 / see below figure). It has six member towns: Monmouth Beach, Fair Haven, Little Silver, Shrewsbury Borough, Oceanport, and West Long Branch. It also has seven customer communities: Sea Bright, Rumson, Red Bank, Eatontown, Shrewsbury Township, Tinton Falls, and Fort Monmouth. The TRWRA serves 90,000 people and discharges treated wastewater one-half mile off Monmouth Beach into the Atlantic Ocean. TRWRA facilities include 200 miles of sanitary sewer mains, 18 pump stations, and 9 meter chambers; the most recent plant expansion allows the TRWRA to handle average flows of 13.83 MGD (TRWRA, 2011).

(Source: TRWRA, 2014 http://www.trwra.org/tr/tr.nsf/site/water-reclamation-overview)

Long Branch's wastewater is handled by the Long Branch Sewerage Authority. The LBSA was founded in 1953 and had its first flow in 1968 (LBSA, 2014). This wastewater treatment facility has a permitted design flow of 5.4 million gallons per day of discharged treated wastewater effluent, which is discharged into the Atlantic Ocean.

According to New Jersey Pollutant Discharge Elimination System (NJPDES), there are a few facilities with an active Discharge to Groundwater (DGW) permit in this area. Besides groundwater dischargers, septic systems are occasionally used where public sewer lines are inaccessible. When septic systems fail to function properly, it could lead to groundwater contamination.

Marinas

Marina facilities have the potential to affect the suitability of shellfish growing areas for the harvest of shellfish. The biological and chemical contamination associated with marina facilities may be of public health significance.

Boating is a very popular summertime activity within the Shrewsbury River. According to the BMW's latest marina survey, there are a total of 25 marinas in the Shrewsbury River (see below figure and appendix for map key). The majority of the marinas, 15, are located in Sea Bright Borough or Monmouth Beach Borough. All marinas, anchorages, or other places where docking or mooring facilities are provided for boats are classified as *Prohibited*. Depending on the size of the marina and the water quality, water immediately adjacent to each marina may be classified as *Prohibited*, *Special Restricted*, or *Seasonally Approved* (no harvest during summer months when the marina is active).

Although good for tourism, the marinas, and the accompanying boats, can discharge many harmful pollutants into the water. Gas fumes, oil, and grease from boats and marinas can contribute to the contamination of the waters. There are some irresponsible boat owners who do not use available pumpout stations or pumpout boats, instead dumping human wastes directly into the local waterbodies; which is not allowed since the Shrewsbury River was made a "No Discharge Zone" in 2000 (EPA, 2011). The biological and chemical contamination associated with marina facilities may be of public health significance.

Spills, Unpermitted Discharges, and Closures

The process of dredging can impair water quality and contaminate shellfish beds that are living near dredging and disposal sites. BMWM is given the opportunity to review such project through CAFRA submission and will recommend a denial of a project if the proposed dredging or disposal site can potentially contaminate shellfish beds or impair water

quality. BMWM's comments are taken into consideration by the NJDEP, Division of Land Use Regulations (DLUR) when approving or denying a permit.

Spills reported to the DEP hotline (1-877-WARN-DEP) are passed on to the BMWM when shellfish waters are involved. Since there is a direct relationship between the pollution of shellfish growing areas and the transmission of diseases to humans, BMWM must carefully assess each spill occurrence. If the spill is determined to be detrimental to the shellfish beds, then a closure is made in the impacted area to

protect public health. The closure is not lifted until the source of the problem is fixed/eliminated and all samples in that area fit within the appropriate classification criteria.

All state waters in New Jersey were closed for shellfish harvest in preparation for Hurricane Irene in 2011 and Superstorm Sandy in 2012. In both instances the shellfish growing waters of the state remained closed until water and, in some cases, tissue tests showed that the shellfish were safe for human consumption.

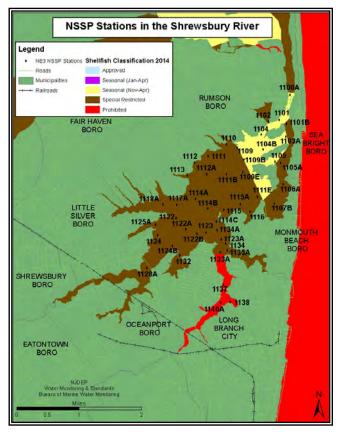
There were no other significant spills, unpermitted discharges, or closures concerning the Shrewsbury River since the last report on the area.

Stormwater Discharges

Runoff is a term for the surface water that moves from land to the ocean. Storm drains along roads collect runoff and transmit it to stormwater outfalls. The outfalls deposit the runoff directly into the bay, or indirectly via other waterbodies. Therefore, pollutants in the runoff gradually make their way to the bay/ocean waters. During this transition the water picks up both nutrients and pollutants. While some nutrients in the runoff provide food for plants and animals, excessive nutrient loads can lead to eutrophic conditions, where algae and other organisms proliferate and cause low levels of dissolved oxygen. In this region, runoff from the urban areas is the most likely cause of pollutants. Pollutants, like bird wastes, agricultural pesticides, animal waste, and remnants from faulty septic systems enter the water through runoff. Fecal waste carries a great deal of bacteria, and runoff can easily bring the bacteria to swimming beaches and other waterbodies. Among other things, this can cause human sickness through recreational contact or through consumption of contaminated shellfish.

There are many storm water inputs into the Shrewsbury River and its tributaries, especially in Oceanport and Brachport Creeks (see adjacent figure). Stormwater outfalls are one of the most significant non-point sources of pollution. Stormwater outfalls are mostly found in urban areas, and are especially common within lagoon communities. Lagoon stormwater discharges are especially harmful because lagoons see little tidal flushing, heavy boat usage, and high quantities of bulkheading.

WM&S's BMWM has the ability to conduct stormwater projects. Water samples are taken before and during a storm event in order to determine the effect of runoff. Once a possible source of the problem is identified, then the appropriate State and local officials are notified to attempt to remedy the situation. Currently, there is not a storm water study scheduled for the Shrewsbury River, however, this report recommends a storm water study in the area of Branchport Creek (see the '*Recommendations*' section).

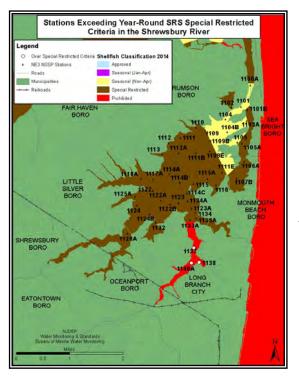


WATER QUALITY STUDIES

Sampling Strategy

The State Shellfish Control Authority has the option of choosing one of two water monitoring sampling strategies for each growing area; total coliform or fecal coliform. For additional information on the types of sampling strategies see the NJDEP *Shellfish Growing Area Report Guidance Document* (2011). New Jersey bases its growing water classifications on the fecal coliform criterion. Each classification criterion is composed of a measure of the statistical 'central tendency' (geometric mean) and the relative variability of the data set. The criteria were developed by the NSSP Guide to ensure that shellfish harvested from designated waters would safe for human consumption. This shellfish growing area is not impacted by discharges from sewage treatment facilities or combined sewer overflows; therefore, it was sampled under the Systematic Random Sampling Strategy (SRS). For the Systematic Random Sampling Strategy, variability is expressed as the estimated 90th percentile. The water quality of each growing area must be evaluated before an area can be classified as *Approved, Seasonal (Nov-Apr or Jan-Apr), Special Restricted,* or *Prohibited.* A *Seasonal* area must be sampled and meet the *Approved* criterion during the time of the year that it is open for harvest. The criteria for the bacterial acceptability of shellfish growing waters are provided in the NSSP Guide.

Water sampling was performed in accordance with the Field Procedures Manual (NJDEP, 2005). Water quality sampling, shoreline, and watershed surveys were conducted in accordance with the NSSP Guide. Data management and analysis were accomplished using database applications developed for the BMWM. Mapping of data was performed with Geographic Information System software (GIS: ArcMap).



Bacteriological Quality

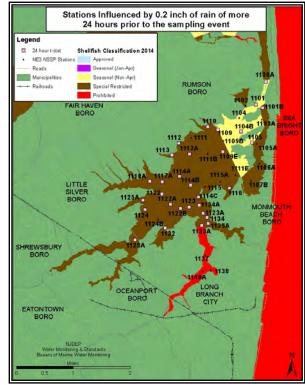
Over 1,400 water samples were collected between January 1, 2011 and May 31, 2014 and analyzed by membrane filtration for fecal coliform levels. The adjacent figure shows the 46 Shellfish Growing Water Quality monitoring stations in the Shrewsbury River (see Appendix for data).

Compliance with NSSP Guide Criteria

Fourteen sampling stations exceeded the NSSP Guide criteria for *Approved* waters (see Appendix). There are no Approved waters within this shellfish growing area. All the noted stations are located in *Special Restricted* or *Prohibited* waters.

An eastern portion of the Shrewsbury River is classified as Seasonal (Nov-Apr). Harvesting of shellfish in this area is permitted from November through April (winter) and prohibited from May through October (summer). To fully evaluate if the Seasonal (Nov-Apr) waters are correctly classified; the timeframe was extended back to October 1, 2005 in order to get the 30 or more SRS samples for both summer and winter. With the extended timeframe, thirty-two stations were over the SRS criteria for Approved waters during the summer, but none of these stations are in Approved or Seasonal waters. Six stations were above the SRS criteria for Approved waters during the winter months with the extended timeframe, but none of these stations are in Approved or Seasonal (Nov-Apr) waters. This means that when the sample size is extended to fit NSSP Guide recommendations, the Seasonal (Nov-Apr) waters are still in compliance.

For waters to be classified as *Special Restricted*, the Geometric Mean must be below 700 MPN/100ml and the Est. 90th Percentile must be below 3300 MPN/100ml. Three

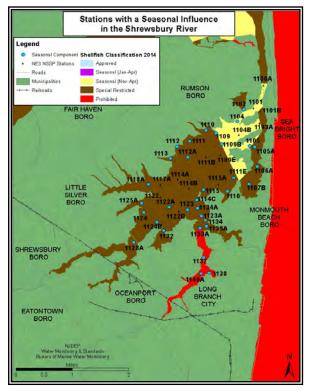

stations exceeded the SRS fecal coliform NSSP Guide *Special Restricted* criteria; stations 1137, 1138, and 1140A (see above figure). These three stations are all in *Prohibited* waters and therefore, correctly classified.

Rainfall Effects

Precipitation patterns in the coastal areas of New Jersey are typical of the Mid-Atlantic coastal region. Summer storms are localized and often associated with thunder and lightning activity. Winter storms are frequently associated with northeasters. Hurricanes sometime occur during the late summer and fall. The primary weather station for this area is in the headwaters of the Shrewsbury River at National Oceanic and Atmospheric Administration's (NOAA) station RA004.

A *t*-test is used to compare log-transformed fecal coliform values for wet verses dry data. The *t*-statistical probability must be less than or equal to 0.05 for a station to be rainfall impacted. There is also a wet/dry cutoff for each growing area that dictates what data is considered 'wet' and what data is considered 'dry'. The scenario used for this growing area was based on a wet/dry cutoff of 0.1 inch.

The effects of the 'first flush' should be captured by the



'24 hours prior to sampling' *t*-statistics. *T*-statistics are also determined for the 'cumulative 48 hours prior to sampling' and the 'cumulative 72 hours prior to sampling'. These *t*-statistics help to determine if there is a delayed impact on the waterbody.

The data were analyzed at '24hr prior to sampling', '48hr prior to sampling', and '72hr prior to sampling'. Rainfall analysis shows that the Shrewsbury River is influenced by rain, particularly around 0.2 inch of rain or more. There were 30 stations that triggered within the first 24 hours prior to sampling, and 17 stations within the 48-72 hours prior to sampling (see previous figure). Overall, there are both immediate and extended effects on the coliform levels in the river due to rainfall. Rainfall appears to be a significant factor for the stations located in this growing area. This is expected since this area is urban and is abundant in impervious surfaces.

Seasonal Effects

The Shrewsbury River undergoes a population surge in the summer, which increases sewage use as well as other utilities. Therefore, it is probable that the stations with a seasonal component are affected by non-point source pollution from increased summer population and/or increased use of water-related activities (boating, etc.) during the summer. Seasonal variation may also be the result of a variety of conditions, including temperature, precipitation, specific agricultural land-use practices, biological activity, stream flow and/or sediment.

Seasonal components were observed at thirty-three stations (see adjacent figure). SRS seasonal components were assessed using a *t*-test to compare log-transformed fecal coliform values for summer verses winter data. The *t*-statistical probability must be less than or equal to 0.05 for a station to have a seasonal component (see Appendix). All of the stations with a seasonal component had higher coliform values in the summer.

Overall, none of the noted stations had a geometric mean that exceeded the established values for the present classifications. The Est. 90th Percentile values for these stations also fit within criteria. No changes in classification are needed as a result of the seasonal components at these stations.

RELATED STUDIES

Water Monitoring and Standard's (WM&S) Bureau of Marine Water Monitoring (BMWM) also monitors New Jersey waters for levels of nutrients (estuarine

monitoring), phytoplankton, and bathing beach standards.

Nutrients

Coastal water quality is monitored for ecological health parameter including dissolved oxygen and total nitrogen. The parameters are evaluated, analyzed, and presented on the web at: <u>www.nj.gov/dep/bmw</u>.

Phytoplankton

Phytoplankton are photosynthetic algae that play a critical role at the base of aquatic food webs. Phytoplankton studies are used to show what species are present and in what concentration. BMWM, in accordance with the NSSP Guide requirements, collects and analyzes phytoplankton data throughout the summer to determine the occurrence of marine phytoplankton species that could produce biotoxins. For more information on the Phytoplankton program visit the BMWM website, <u>www.nj.gov/dep/bmw</u>.

Bathing Beaches

WM&S cooperatively works with the New Jersey Department of Health and local health agencies to monitor the bathing beaches in New Jersey. Together, these agencies implement the Cooperative Coastal Monitoring Program (CCMP). With this program, the coastal and estuarine waters that are open to the public for recreational bathing are surveyed and regularly monitored for the concentration of bacteria. The CCMP, in conjunction with US Army Corps of Engineers, also carries out the NY/NJ Harbor Estuary Program's Floatables Action Plan that utilizes aerial surveillance to detect floating solid waste and debris. Flights are scheduled for six days a week, weather permitting, during the summer months.

Typically, bathing beach samples are taken once a week for the entire summer. These samples are tested for Enterococci as a fecal coliform indicator. Ocean and bay recreational beaches are subject to opening and closing procedures of the State Sanitary Code. Local health agencies and law enforcement may close a bathing beach if the results exceed the State Sanitary Code of 104 Enterococci per 100 mL. Stations must be re-sampled when bacteria concentrations exceed the primary contact standard of 104 Enterococci per 100 mL of sample (NJDEP CCMP, 2012). Consecutive samples that exceed the standard require the closing of the beach until a sample is obtained that is within the standard. Environmental stations are not bathing beaches and do not require re-sampling. Beaches can also be closed at any time if health or enforcement agencies believe it is in the interest of public health. BMWM utilizes this data as adjunct information; the closure of shellfish waters does not correspond with these results. Please see http://www.njbeaches.org/ for further information.

Toxic Monitoring

Toxic chemicals such as heavy metals, pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) are dangerous chemicals that can be found in the environment. These substances can be released into the environment by storm drains, runoff, sewage treatment facilities, and atmospheric deposition. Bottom dwelling organisms are most vulnerable to these chemicals and may pose a risk to human health if consumed.

USEPA National Coastal Assessment Program (NCA)

USEPA National Coastal Assessment EMAP and its partners began sampling in the coastal and estuarine water of the United States in 1990. Data collected include water column parameters, sediment chemistry & toxicity, benthic communities, and tissue contaminants. These data are collected once every five (5) years, as part of USEPA's National Aquatic Resource Surveys. Currently, no NCA data is available for

the Shrewsbury River for the years 2011-2014. Please see <u>http://www.epa.gov/emap/nca/index.html</u> for further information and the most recent data.

National Oceanic and Atmospheric Administration (NOAA) Mussel Watch

The National Oceanic and Atmospheric Administration (NOAA) Mussel Watch Program monitors the levels of toxins and metals in shellfish. The blue mussel, *Mytilus edulis*, occurs worldwide and effectively takes up toxins and metals from seawater and sediments. The toxins and metals then become concentrated in the mussel's living tissues. Assays from the living tissues of this shellfish can be made easily and cheaply. The Mussel Watch Program monitors metals such as mercury, lead, zinc, nickel, cadmium, copper, chromium, aluminum, silicon, manganese, iron, arsenic, selenium, tin, antimony, thallium, and silver. The program also monitors toxins such as the synthetic organic compounds that are widely used in pesticides, solvents, flame-retardants, and other products. There is no mussel watch station in the Shrewsbury River. Please see http://ccma.nos.noaa.gov/about/coast/nsandt/musselwatch.aspx for further information and the most recent data.

CONCLUSIONS

The appendix lists the water quality data obtained from the sampling period of January 1, 2011 to May 31, 2014. Systematic Random Sampling strategy was used to collect the samples, laboratory tests were run, and a thorough analysis of the coliform data was assembled for this report. The bacteriological data for each station must support the respective criteria for the current classification under the fecal coliform standard. Based on the data, fourteen stations exceeded the SRS *Approved* criteria; however, there are no *Approved* waters in the Shrewsbury River. The *Seasonal (Nov-Apr)* portion of the Shrewsbury River fits within the criteria when the timeframe is extended to have at least 30 samples during the winter months. Three stations exceeded the SRS *Special Restricted* criteria; however, these stations are located in *Prohibited* waters. Therefore, analyses of the Shrewsbury River shellfish growing area samples indicate that the fecal coliform geometric mean and/or estimated 90th percentile levels meet the standards of the NSSP Guide.

RECOMMENDATIONS

There are no recommendations for classification changes in this reappraisal report. The Shrewsbury River is currently sampled by one assignment run under the Systematic Random Sampling strategy. There are forty-six stations in the Shrewsbury River and ten sampling runs are done per year. The recommendation for the Shrewsbury River is that the monitoring schedule be maintained. The rainfall/storm water study done in 2005-2006 was very beneficial in providing insight into the actual conditions of the upper Navesink River; if at all possible, a storm water study is recommended in the area of South Shrewsbury, Branchport Creek, and Troutmans Creek. This will give insight the possible pollution source/s.

LITERATURE CITED

American Public Health Association (APHA). 1970. Recommended Procedures for the Examination of Seawater and Shellfish, 4th ed., American Public Health Association, Washington, DC.

American Public Health Association (APHA). 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC.

EPA, 2011. No Discharge Zone Map - Shrewsbury River, NJ. Accessed March 15, 2011. http://www.epa.gov/region2/water/ndz/shrewsbury.html

Long Branch Sewerage Authority (LBSA). About. Accessed March 10, 2014. http://www.lbsa.net/about.htm

National Oceanic and Atmospheric Administration (NOAA). Rainfall Data from station RA004. Accessed monthly. http://www.noaa.gov/

N.J.A.C. (New Jersey Administrative Code), 2011. New Jersey Department of Environmental Protection, Water Monitoring and Standards, Bureau of Marine Water Monitoring. Chapter 7:12.

NJDEP Annual Report on Shellfish Growing Area NE3, Shrewsbury River, 2010-2013. Water Monitoring & Standards, Marine Water Monitoring, Leeds Point, NJ.

NJDEP, Clean Marina Program. Accessed April 15, 2013. http://www.njcleanmarina.org/

NJDEP Cooperative Coastal Monitoring Program (CCMP), 2012. NJDEP. Water Monitoring & Standards, Marine Water Monitoring, Leeds Point, NJ.

APPENDICES

- A. Statistical Summary
- B. Seasonal Evaluation
- C. Precipitation

Rainfall Amount Wet/Dry Statistics

- D. Data Listing: January 1, 2011 May 31, 2014
- E. Marina Map Key
- F. Shoreline Survey Reports

NJDEP Division of Fish & Wildlife, 1980's. Hard Clam Density in the Navesink River. New Jersey Department of Environmental Protection, Division of Fish and Wildlife, Port Republic, NJ.

NJDEP Field Sampling Procedures Manual, 2005. New Jersey Department of Environmental Protection, Trenton, NJ.

NJDEP Shellfish Growing Area Report Guidance Document, 2011. New Jersey Department of Environmental Protection, Marine Water Monitoring, Leeds Point, NJ.

NJDEP State of New Jersey Shellfish Growing Water Classification Charts. 2011, 2012, 2013, & 2014. New Jersey Department of Environmental Protection, Marine Water Monitoring, Leeds Point, NJ.

NSSP Guide, 2011 Revision. National Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish. Model Ordinance. Interstate Shellfish Sanitation Conference. US Public Health Service, Food and Drug Administration, Washington, DC

Two Rivers Water Reclamation Authority (TRWRA). About. Accessed March 10, 2014. http://www.trwra.org/about.html

A. Statistical Summary

Fecal Coliform Statistical Summary: SRS (Approved)

From: 1/1/2011

To: 5/31/2014

Note: NSSP requires a sample set (N) of 30 or more.

					Year-Rou	nd			Summe	r			Winter	·	
Station	Depth	Status	Criteria	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N
1100A	S	S	35	3.6	8.4		32	3.9	10.8		15	3.4	6.7		17
1101	S	S	35	4.7	15.3		32	5.7	17.1		15	4.0	13.8		17
1101B	S	SR	35	4.7	14.9		32	6.1	23.0		15	3.8	9.3		17
1102	S	SR	35	7.1	36.5	\checkmark	32	15.4	86.0		15	3.5	9.1		17
1103A	S	S	35	5.3	17.3		32	7.2	28.5		15	4.0	9.8		17
1104	S	S	35	4.5	14.3		32	6.4	23.6		15	3.3	7.8		17
1104B	S	S	35	4.3	11.5		32	5,6	16.2		15	3,5	7.8		17
1105	S	S	35	6.1	22.0		32	9.2	36.6		15	4.2	11.7		17
1105A	S	SR	35	6.1	20.9		32	11.2	39.8		15	3.6	7.0		17
1106A	S	SR	35	6.3	27.3		32	10.9	65.2		15	3.9	7.8		17
1107B	S	SR	35	5.8	21.5		32	9.7	43.5		15	3.7	8.0		17
1109	S	SR	35	4.9	17.0		32	7.5	29.2		15	3.4	8.5		17
1109B	S	S	35	4.8	14.6		32	6.8	27.2		15	3.5	6.4		17
1109E	S	SR	35	4.9	17.5		32	6.6	29.4		15	3.8	10.0		17
1110	S	SR	35	7.9	39.3	~	32	16.5	89.1		15	4.1	10.8		17
1111	S	SR	35	5.0	20.3		32	7.9	46.3		15	3.4	6.6		17
1111B	S	SR	35	4.8	14.9		32	6.4	21.9		15	3.7	9.7		17
1111E	S	SR	35	9.2	39.7	~	32	19.2	88.6		15	4.8	9.9		17
1112	S	SR	35	6.4	28.3		32	12.5	56.4		15	3.6	9.7		17
1112A	s	SR	35	5.0	21.1		32	7.6	41.9	ō	15	3.4	9.1		17
1113	S	SR	35	6.5	32.8		32	13.3	72.6		15	3.5	9.8		17
1114A	S	SR	35	4.9	21.7		32	5.9	37.7		15	4.1	12.3		17
1114B	S	SR	35	6.4	33.9		32	9.8	83.3	Ē	15	4.4	11.1	ē	17
1114C	S	SR	35	7.0	37.0	~	32	12.7	90.4		15	4.2	11.2		17
1115	S	SR	35	5.5	24.4	$\overline{\Box}$	32	8.6	50.1		15	3.7	10.1		17
1115A	S	SR	35	5.8	22.0	Ē	32	8.4	36.0	Ē	15	4.1	12.4		17
1116	S	SR	35	7.2	29.3		32	11.8	62.6	Ā	15	4.6	10.6	Ē	17
1117A	S	SR	35	4.8	18.8		32	6.4	33.2		15	3.7	10.2	\Box	17
1118A	S	SR	35	6.9	27.8		32	11.5	44.3		15	4.4	14.4		17
122	S	SR	35	5.2	18.5		32	7.4	29.9		15	3.8	10.7		17
122A	S	SR	35	5.0	16.2		32	7.7	34.0	Ē	15	3.4	5.4		17
122B	S	SR	35	5.2	20.3		32	6.4	36.8	Ē	15	4.4	10.5	Ē	17
123	S	SR	35	6.2	29.4	Ē	32	10.6	59.3		15	3.8	11.8		17
123A	s	SR	35	7.7	36.0		32	13.9	71.0		15	4.6	14.2	ā	17
124	S	SR	35	6.3	25.1		32	9.8	47.1		15	4.3	11.5	ŏ	17
124B	S	SR	35	9.7	49.3	~	32	16.6	102.8		15	6.1	19.6		17
125A	S	SR	35	6.2	26.7		32	10.8	51.7	H	15	3.8	10.9	Ē	17
128A	s	SR	35	9.9	54.5	\checkmark	32	16.9	93.8		15	6.1	27.5		17
132	S	SR	34	6.0	26.1		31	9.4	58.2		14	4.1	10.3		17
133A	S	SR	35	7.7	44.7	~	32	9.4 16.8	122.5		15	3.9	9.4		17
134	S	SR	35	7.2	44.7	~	32	12.5	90.0		15				17
134A	S	SR	35	7.3	45.5 39.6		32	13.8	90.0 81.9		15	4.4	20.1		
135A	S	SR	35	8.1	46.7	~	32				15	4.2	14.7		17 17
137	S	P	35	20.7	214.6	V		17.2	116.7			4.1	11.9		
138	S	P	35			\checkmark	32	59.2	596.6		15	8.2	42.9		17
140A	S	P		38.5	424.8	V	32	111.1	989.7		15	15.1	104.5		17
1404	3	P	35	58.2	560.7	(W)	32	202.8	1,059.9		15	19.4	110.9		17

Fecal Coliform Statistical Summary: SRS (Special Restricted)

From: 1/1/2011

To: 5/31/2014

Note: NSSP requires a sample set (N) of 30 or more.

					Year-Rou	ind			Summe	r			Winter		
Station	Depth	Status	Criteria	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N
1100A	S	S	190	3.6	8.4		32	3.9	10.8		15	3.4	6.7		17
1101	S	S	190	4.7	15.3		32	5.7	17.1		15	4.0	13.8		17
1101B	S	SR	190	4.7	14.9		32	6.1	23.0		15	3.8	9.3		17
1102	S	SR	190	7.1	36.5		32	15.4	86.0		15	3.5	9.1		17
1103A	S	S	190	5.3	17.3		32	7.2	28.5		15	4.0	9.8		17
1104	S	S	190	4.5	14.3		32	6.4	23.6		15	3.3	7.8		17
1104B	S	S	190	4.3	11.5		32	5.6	16.2		15	3.5	7.8		17
1105	S	S	190	6.1	22.0		32	9.2	36.6		15	4.2	11.7		17
1105A	S	SR	190	6.1	20.9		32	11.2	39.8		15	3.6	7.0		17
1106A	S	SR	190	6.3	27.3		32	10.9	65.2		15	3.9	7.8		17
1107B	S	SR	190	5.8	21.5		32	9.7	43.5		15	3.7	8.0		17
1109	S	SR	190	4.9	17.0	Ē	32	7.5	29.2		15	3.4	8.5		17
1109B	S	S	190	4.8	14.6	Ē	32	6.8	27.2		15	3.5	6.4		17
1109E	S	SR	190	4.9	17.5	Ē	32	6.6	29.4		15	3.8	10.0		17
1110	S	SR	190	7.9	39.3		32	16.5	89.1	ō	15	4.1	10.8	Ē	17
1111	S	SR	190	5.0	20.3	Ē	32	7.9	46.3		15	3.4	6.6	Ē	17
1111B	S	SR	190	4.8	14.9		32	6.4	21.9		15	3.7	9.7		17
1111E	s	SR	190	9.2	39.7	Ē	32	19.2	88.6		15	4.8	9.9		17
1112	S	SR	190	6.4	28.3		32	12.5	56.4		15	3.6	9.7	$\overline{\Box}$	17
1112A	S	SR	190	5.0	21.1	Ē	32	7.6	41.9		15	3.4	9.1		17
1113	s	SR	190	6.5	32.8	$\overline{\Box}$	32	13.3	72.6		15	3.5	9.8		17
1114A	S	SR	190	4.9	21.7		32	5.9	37.7		15	4.1	12.3		17
1114B	S	SR	190	6.4	33.9		32	9.8	83.3		15	4.4	11.1		17
1114C	S	SR	190	7.0	37.0		32	12.7	90.4		15	4.2	11.2		17
1115	S	SR	190	5.5	24.4		32	8.6	50.1		15	3.7	10.1	\Box	17
1115A	s	SR	190	5.8	22.0		32	8.4	36.0		15	4.1	12.4		17
1116	S	SR	190	7.2	29.3		32	11.8	62.6		15	4.6	10.6	Ē	17
1117A	s	SR	190	4.8	18.8		32	6.4	33.2		15	3.7	10.2	Ē	17
1118A	S	SR	190	6.9	27.8		32	11.5	44.3	ō	15	4.4	14.4		17
1122	S	SR	190	5.2	18.5		32	7.4	29.9		15	3.8	10.7	Ē	17
1122A	S	SR	190	5.0	16.2		32	7.7	34.0		15	3.4	5.4	Ē	17
1122B	S	SR	190	5.2	20.3		32	6.4	36.8	ā	15	4.4	10.5		17
1123	S	SR	190	6.2	29.4		32	10.6	59.3		15	3.8	11.8		17
1123A	s	SR	190	7.7	36.0	Ē	32	13.9	71.0	ō	15	4.6	14.2		17
1124	s	SR	190	6.3	25.1		32	9.8	47.1		15	4.3	11.5		17
1124B	S	SR	190	9.7	49.3		32	16.6	102.8		15	6.1	19.6	ö	17
11246 1125A	S	SR	190	6.2	26.7		32	10.8	51.7	ä	15	3.8	10.9		17
1128A		SR	190	9.9	54.5		32	16.9	93.8		15	6.1	27.5		17
	S	SR	187	1 V				1	58.2				10.3		17
1132	S S	SR	190	6.0	26.1 44.7		31 32	9.4 16.8	122.5		14 15	4.1 3.9	9.4		17
1133A			190	7.7	44.7				90.0				9.4 20.1		17
1134	S	SR		7.2			32	12.5			15	4.4			
1134A	S	SR	190	7.3	39.6		32	13.8	81.9		15	4.2	14.7		17
1135A	S	SR	190	8.1	46.7		32	17.2	116.7		15	4.1	11.9		17
1137	S	P	190	20.7	214.6	\checkmark	32	59.2	596.6		15	8.2	42.9		17
1138	S	P	190	38.5	424.8	\checkmark	32	111.1	989.7		15	15.1	104.5		17
1140A	S	Р	190	58.2	560.7	\checkmark	32	202.8	1,059.9		15	19.4	110.9		17

Fecal Coliform Statistical Summary: SRS (Approved)

From: 10/1/2005

To: 5/31/2014

Note: NSSP requires a sample set (N) of 30 or more.

					Year-Rou	Ind		14	Summe	r			Winter		
Station	Depth	Status	Criteria	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N	Geometric Mean	Est.90th Percentile	Exceed Criteria	N
1100A	S	S	43	4.5	16.9		78	5.0	20.0		45	3.8	13.2		33
1101	S	S	43	4.8	22.3		78	5.7	24.0		45	3.9	19.6		33
1101B	S	SR	43	4.7	23.0		78	5.6	26.8		45	3.6	18.2		33
1102	S	SR	43	8.0	47.7	~	78	12.7	69.6	~	45	4.2	20.9		33
1103A	S	S	43	5.5	27.0		78	6.7	29.9		45	4.2	22.4		33
1104	S	S	43	5.2	23.6		78	7.0	29.7		45	3.5	15.0		33
1104B	S	S	43	5.4	22.6		78	5.4	20.0		45	5.4	27.0		33
1105	S	S	43	6.2	23.1		78	7.2	26.4		45	5.0	18.5		33
1105A	S	SR	43	6.8	33.6		78	9.7	43.8	~	45	4.3	19.4		33
1106A	S	SR	43	7.6	42.8		78	11.6	58.9	~	45	4.3	21.6		33
1107B	S	SR	43	7.5	36.4		78	10.5	45.8	\checkmark	45	4.8	22.5		33
1109	S	SR	43	6.3	31.9		78	8.2	39.0		45	4.3	22.0		33
1109B	S	S	43	5.1	21.1		78	6.2	24.9		45	4.0	16.0	Ē	33
1109E	S	SR	43	6.4	28.3		78	7.8	30.1		45	4.9	24.4		33
1110	S	SR	43	8.2	40.0		78	11.2	50.8	~	45	5.4	25.0		33
1111	S	SR	43	6.1	29.7		78	8.4	49.3	~	45	3.8	11.5		33
1111B	S	SR	43	5.4	20.6		78	6.2	23.6		45	4,4	16.7		33
1111E	S	SR	42	10.3	43.6	V	76	14.6	59.3	~	44	6.4	23.0		32
1112	S	SR	43	7.4	36.8		78	11.9	49.9	~	45	3.9	16.9		33
1112A	S	SR	43	5.6	27.1		78	7.1	35.2		45	4.0	17.5		33
1113	S	SR	43	9.9	67.0	~	78	18.5	107.5	~	45	4.2	20.0		33
1114A	S	SR	43	5.8	31.1		78	7.0	39.2		45	4.4	21.8	Ē	33
1114B	S	SR	42	8.5	52.0	~	77	10.8	68.0	~	45	6.0	33.2		32
1114C	S	SR	42	10.6	69.2	~	77	12.9	81.2	~	45	8.0	53.5	~	32
1115	S	SR	42	7.6	36.4		77	9.2	45.3	~	45	5.8	25.5	õ	32
1115A	S	SR	42	7.1	35.6		77	8.9	46.9	~	45	5.1	22.4		32
1116	S	SR	42	8.2	44.9	~	77	10.7	60.7	~	45	5.6	26.6		32
1117A	S	SR	43	6.8	41.0		78	8.6	50.9	~	45	5.0	28.9		33
1118A	S	SR	43	10.6	71.1	~	78	16.3	97.0	~	45	5.9	36.4	Ē	33
1122	S	SR	43	6.9	33.6		78	7.8	39.4	õ	45	5.7	26.9		33
1122A	S	SR	43	7.2	40.6	Ē	78	8.7	52.3		45	5.6	27.7		33
1122B	S	SR	43	8.1	40.4	Ē	78	9.0	50.5	\checkmark	45	7.0	29.5	Ē	33
1123	S	SR	43	9.6	58.2		78	14.2	82.3		45	5.6	29.2	ö	33
1123A	S	SR	43	10.4	51.5		78	14.6	66.8		45	6.6	30.5		
1124	S	SR	43	8.5	49.8		78	10.7	71.2		45				33
1124B	S	SR	43	10.5	56.1		78	13.7	80.5	V	45	6.1	28.1	H	33
1125A	S	SR	43	8.7	59.1	1.1.1	78	12.9	98.4	~		7.4	30.8		33
128A	s	SR	43	13.7	96.2		78			V	45	5.2	23.4		33
1132	s	SR	42	9.4	60.1	(TTT)	1.2	17.5	124.8	~	45	9.8	63.8		33
1133A	s	SR	42	9.4 13.8	97.8		77	12.3	85.3	V	44	6.5	34.6		33
134	S	SR	43				78	21.0	148.5	\mathbf{V}	45	7.8	44.2	\checkmark	33
134A	S	SR	43	11.6	80.5		78	17.1	119.2	\mathbf{V}	45	6.8	38.8		33
135A		SR		9.7	61.9		78	13.4	88.4		45	6.3	33.4		33
137	S		43	12.4	77.6		78	19.3	98.0		45	6.8	42.9		33
		P	43	33.5	275.8		78	60.0	414.7		45	15.1	103.4		33
138	S	P	43	57.3	480.0		78	108.8	777.3		45	23.9	147.6	~	33
140A	S	Р	43	68.2	563.2	\checkmark	78	149.0	874.7	~	45	23.5	136.3	\checkmark	33

Fecal Coliform Statistical Summary: SRS (Special Restricted)

From: 10/1/2005

Report Area: NE3

To: 5/31/2014

Note: NSSP requires a sample set (N) of 30 or more.

Year-Round Summer Winter Est.90th Geometric Exceed Geometric Est.90th Exceed Est.90th Geometric Exceed Station Depth Status Criteria Mean Percentile Criteria Mean Percentile Criteria Mean Percentile Criteria N N N 1100A S S 249 4.5 16.9 78 5.0 20.0 45 3.8 13.2 33 s 1101 S 249 4.8 22.3 78 5.7 24.0 45 3.9 19.6 33 1101B S SR 249 4.7 23.0 78 5.6 26.8 45 3.6 18.2 33 1102 s SR 249 8.0 47.7 78 12.7 69.6 45 20.9 4.2 33 1103A S S 249 5.5 27.0 78 6.7 29.9 45 4,2 22.4 33 S 1104 S 249 5.2 23.6 78 7.0 29.7 45 3.5 15.0 33 1104B S S 249 5.4 22.6 78 20.0 5.4 45 27.0 5.4 33 s S 1105 249 6.2 23.1 78 7.2 26.4 45 5.0 18.5 33 249 1105A S SR 6.8 33.6 78 9.7 43.8 45 19.4 4.3 33 S 1106A SR 249 7.6 42.8 78 11.6 58.9 45 4.3 21.6 33 1107B S SR 249 -7.5 36.4 78 10.5 45.8 45 4.8 22.5 33 1109 S SR 249 6.3 31.9 78 8.2 39.0 45 4.3 22.0 33 1109B S S 249 78 5.1 21.1 6.2 24.9 45 4.0 16.0 33 1109E S SR 249 6.4 28.3 78 7.8 30.1 45 4.9 24.4 33 s SR 249 8.2 40.0 1110 78 11.2 50.8 45 5.4 25.0 33 1111 S SR 249 6.1 29.7 78 8.4 49.3 45 3.8 11.5 33 S ÷., 1111B SR 249 5.4 20.6 78 6.2 23.6 45 4.4 16.7 33 1111E s SR 247 10.3 43.6 76 14.6 59.3 44 6.4 23.0 32 s SR 1112 249 7.4 36.8 78 11.9 49.9 45 16.9 3.9 33 S 1112A SR 249 5.6 27.1 78 7.1 35.2 45 4.0 17.5 33 Ś SR -1113 249 9.9 67.0 78 18.5 107.5 45 4.2 20.0 33 S 1114A SR 249 5.8 31.1 78 7.0 39.2 45 4.4 21.8 33 1114B S SR 248 8.5 52.0 77 10.8 68.0 45 6.0 33.2 32 1114C Ś SR 248 77 10.6 69.2 12.9 81.2 45 53.5 8.0 32 S 1115 SR 248 7.6 36.4 77 9.2 45.3 45 5.8 25.5 32 S SR 7.1 77 1115A 248 35.6 46.9 8.9 45 5.1 22.4 32 S 1116 SR 248 8.2 44.9 77 10.7 60.7 45 5.6 26.6 32 1117A S SR 249 6.8 78 41.0 8.6 50.9 45 5.0 28.9 33 S 1118A SR 249 10.6 71.1 78 16.3 97.0 45 36.4 5.9 33 S SR 249 78 1122 6.9 33.6 7.8 39.4 45 5.7 26.9 33 S SR 249 1122A 7.2 40.6 78 8.7 52.3 45 5.6 27.7 33 s SR 1122B 249 8.1 40.4 78 9.0 50.5 45 7.0 29.5 33 1123 S SR 249 9.6 58.2 78 14.2 82.3 45 29.2 5.6 33 S SR 1123A 249 10.4 51.5 78 14.6 66.8 45 30.5 6.6 33 1124 S SR 249 8.5 49.8 78 10.7 71.2 45 28.1 6.1 33 S SR 1124B 249 10.5 56.1 78 13.7 80.5 45 7.4 30.8 33 1125A S SR 249 8.7 78 59.1 12.9 98.4 45 5.2 23.4 33 1128A S SR 249 13.7 96.2 78 17.5 124.8 45 9.8 63.8 33 1132 S SR 248 77 9.4 60.1 85.3 12.3 44 6.5 34.6 33 S 1133A SR 249 13.8 97.8 78 21.0 148.5 45 7.8 44.2 33 S SR 1134 249 11.6 80.5 78 17.1 119.2 45 6.8 38.8 33 1134A S SR 249 78 9.7 61.9 13.4 88.4 45 6.3 33.4 33 S SR 1135A 249 12.4 77.6 78 98.0 19.3 45 6.8 42.9 33 ~ 1137 S Ρ ~ 249 33.5 275.8 78 60.0 414.7 45 15.1 103.4 33 P ~ ~ S 1138 249 57.3 480.0 78 108.8 777.3 45 23.9 147.6 33 V ~ 1140A S P 249 68.2 563.2 78 149.0 874.7 45 23.5 136.3 33

B. Seasonal Evaluation

Fecal Coliform Statistics Summary: Seasonal

From: 1/1/2011

To: 5/31/2014

					Serve Server 10	Summ	er	Winte	r	1) Tarley
E. B.	2.55	Contract.		t-Statistic	Exceed Criteria	Geometric		Geometric	1	GeoMean
Station	Depth	Status	Strategy	Probability	(t-Stats < 0.05)	Mean	N	Mean	N	Difference
100A	S	S	SRS	0.545		3.9	15	3.4	17	0.5
101	S	S	SRS	0.290		5.7	15	4.0	17	1.7
101B	S	SR	SRS	0.135		6.1	15	3.8	17	2.3
102	S	SR	SRS	0.001	\checkmark	15.4	15	3.5	17	11.9
103A	S	S	SRS	0.070		7.2	15	4.0	17	3.2
104	S	S	SRS	0.036	\checkmark	6.4	15	3.3	17	3.1
104B	S	S	SRS	0.082		5.6	15	3.5	17	2.1
105	S	S	SRS	0.025	\checkmark	9.2	15	4.2	17	5.0
105A	S	SR	SRS	0.000	\checkmark	11.2	15	3.6	17	7.6
106A	S	SR	SRS	0.008	\checkmark	10,9	15	3.9	17	7.0
107B	S	SR	SRS	0.006	\checkmark	9.7	15	3.7	17	6.0
109	S	SR	SRS	0.017	\checkmark	7.5	15	3.4	17	4.1
109B	S	S	SRS	0.029	\checkmark	6.8	15	3.5	17	3.3
109E	S	SR	SRS	0.129		6.6	15	3.8	17	2.7
110	S	SR	SRS	0.001	\checkmark	16.5	15	4.1	17	12.4
111	S	SR	SRS	0.026	\checkmark	7.9	15	3.4	17	4.5
111B	S	SR	SRS	0.082		6.4	15	3.7	17	2.7
111E	S	SR	SRS	0.000	\checkmark	19.2	15	4.8	17	14.4
112	S	SR	SRS	0.001	\checkmark	12.5	15	3.6	17	8.9
112A	S	SR	SRS	0.041	\checkmark	7.6	15	3.4	17	4.2
113	S	SR	SRS	0.001	\checkmark	13,3	15	3.5	17	9.8
114A	S	SR	SRS	0.383		5.9	15	4.1	17	1.8
114B	S	SR	SRS	0.078		9.8	15	4.4	17	5.5
114C	S	SR	SRS	0.013		12.7	15	4.2	17	8.6
115	S	SR	SRS	0.039	\checkmark	8.6	15	3.7	17	4.9
115A	S	SR	SRS	0.052		8.4	15	4.1	17	4.3
116	S	SR	SRS	0.014	\checkmark	11.8	15	4.6	17	7.2
117A	S	SR	SRS	0.149		6.4	15	3.7	17	2.7
118A	S	SR	SRS	0.010		11.5	15	4.4	17	7.2
122	S	SR	SRS	0.059		7.4	15	3.8	17	3.6
122A	S	SR	SRS	0.010		7.7	15	3.4	17	4.3
122B	S	SR	SRS	0.332		6.4	15	4.4	17	2.0
123	S	SR	SRS	0.015	\checkmark	10.6	15	3.8	17	6.8
123A	S	SR	SRS	0.007	\checkmark	13.9	15	4.6	17	9.3
124	S	SR	SRS	0.028	\checkmark	9.8	15	4.3	17	5.5
124B	S	SR	SRS	0.022	\checkmark	16.6	15	6.1	17	10.5
125A	S	SR	SRS	0.008	\checkmark	10.8	15	3.8	17	7.0
128A	S	SR	SRS	0.030	\checkmark	16.9	15	6.1	17	10.7
132	S	SR	SRS	0.042	\checkmark	9.4	14	4.1	17	5.4
133A	S	SR	SRS	0.001	\checkmark	16.8	15	3.9	17	12.9
134	S	SR	SRS	0.039	v	12.5	15	4.4	17	8.1
134A	s	SR	SRS	0.008	v	13.8	15	4.2	17	9.6
135A	S	SR	SRS	0.002	\checkmark	17.2	15	4.1	17	13.1
137	S	P	SRS	0.001		59.2	15	8.2	17	50.9
138	s	P	SRS	0.001	\checkmark	111.1	15	15.1	17	96.0
140A	S	P	SRS	0.000	\checkmark	202.8	15	19.4	17	183.4

C. Precipitation -Rainfall Amount -Wet/Dry Statistics

Rainfall Summary

From: 1/1/2011

To: 5/31/2014

		Ra	infall Amou	int
Date	NOAA	24Hrs	48Hrs	72Hrs
3/3/2011	RA004	0.00	0.00	0.07
4/20/2011	RA004	0.02	0.02	0.02
5/4/2011	RA004	0.03	0.03	0.03
6/13/2011	RA004	0.00	0.42	0.42
8/3/2011	RA004	0.00	0.00	0.06
9/28/2011	RA004	0.01	0.01	0.01
10/25/2011	RA004	0.00	0.00	0.00
11/15/2011	RA004	0.00	0.00	0.00
11/30/2011	RA004	0.42	0.42	0.42
2/8/2012	RA004	0.00	0.00	0.00
3/21/2012	RA004	0.00	0.00	0.00
4/17/2012	RA004	0.00	0.00	0.04
3/1/2012	RA004	0.00	0.00	0.00
9/5/2012	RA004	0.53	0.89	1.16
9/14/2012	RA004	0.00	0.00	0.00
0/1/2012	RA004	0.00	0.00	0.14
2/12/2012	RA004	0.12	0.26	0.70
/15/2013	RA004	0.24	0.24	0.24
3/12/2013	RA004	0.00	0.00	0.00
1/4/2013	RA004	0.00	0.00	0.00
/9/2013	RA004	0.00	0.00	0.00
5/28/2013	RA004	0.00	0.00	0.05
/22/2013	RA004	0.02	0.02	0.02
3/19/2013	RA004	0.00	0.00	0.00
0/7/2013	RA004	0.00	0.00	0.04
1/21/2013	RA004	0.00	0.00	0.01
2/6/2013	RA004	0.00	0.00	0.00
/16/2014	RA004	0.00	0.37	0.37
/18/2014	RA004	0.16	0.27	0.27
/3/2014	RA004	0.06	0.06	0.18
6/12/2014	RA004			
5/27/2014	RA004			

Rainfall Statistics Summary: 24Hrs Cumulative

From: 1/1/2011

To: 5/31/2014

Report Area: NE3

Wet/Dry Cutoff: 0.2

							Dry Wea	ather	Wet Wet	ather	
Station	Depth	Status	Strategy	NOAA	t-Statistic Probability	Exceed Criteria (t-Stats <0.05)	Geometric Mean	N	Geometric Mean	Ń	GeoMean Differenc
1100A	S	s	SRS	RA004	0.002	~	3.3	29	10.5	3	-7
1101	S	S	SRS	RA004	0.005	\checkmark	4.1	29	18.4	3	-14
1101B	S	SR	SRS	RA004	0.012	\checkmark	4.2	29	15.6	3	-11
1102	S	SR	SRS	RA004	0.134		6.3	29	20,4	3	-14
1103A	S	S	SRS	RA004	0.054		4.8	29	14.0	3	-9
1104	S	S	SRS	RA004	0.341		4.3	29	7.3	3	-3
1104B	S	S	SRS	RA004	0.000	\checkmark	3.8	29	16.8	3	-13
1105	S	S	SRS	RA004	0.007	\checkmark	5.2	29	25.7	3	-21
1105A	S	SR	SRS	RA004	0.203		5.7	29	12.0	3	-6
1106A	S	SR	SRS	RA004	0.060		5.6	29	20.4	3	-15
107B	S	SR	SRS	RA004	0.050		5.2	29	17.3	3	-12
1109	S	SR	SRS	RA004	0.006	\checkmark	4.2	29	20.3	3	-16
1109B	S	S	SRS	RA004	0.119		4.4	29	10.1	3	-6
1109E	S	SR	SRS	RA004	0.001	\checkmark	4.1	29	27.8	3	-24
1110	S	SR	SRS	RA004	0.031	\checkmark	6.8	29	34.1	3	-27
1111	S	SR	SRS	RA004	0.053		4.4	29	15.9	3	-11
111B	S	SR	SRS	RA004	0.056		4.4	29	12.1	3	-8
111E	S	SR	SRS	RA004	0.283		8.5	29	18.2	3	-10
112	S	SR	SRS	RA004	0.039	\checkmark	5.6	29	23.6	3	-18
112A	S	SR	SRS	RA004	0.001	~	4.1	29	33.6	3	-29
113	S	SR	SRS	RA004	0.046	\checkmark	5.7	29	25.7	3	-20
114A	S	SR	SRS	RA004	0.003	\checkmark	4.1	29	29.2	3	-25
114B	S	SR	SRS	RA004	0.011	\checkmark	5.3	29	37.2	3	-32
114C	S	SR	SRS	RA004	0.017	\checkmark	5.9	29	37.2	3	-31
115	S	SR	SRS	RA004	0.072		4.9	29	17.4	3	-12
115A	S	SR	SRS	RA004	0.212		5.4	29	11.9	3	-7
116	S	SR	SRS	RA004	0.014	~	6.2	29	30.5	3	-24
117A	S	SR	SRS	RA004	0.001	\checkmark	3.9	29	29.2	3	-25
118A	S	SR	SRS	RA004	0.011	\checkmark	5.9	29	30.3	3	-24
122	s	SR	SRS	RA004	0.001	\checkmark	4.4	29	26.8	3	-22
122A	S	SR	SRS	RA004	0.031	\checkmark	4.5	29	14.7	3	-10
122B	S	SR	SRS	RA004	0.030	~	4.6	29	18.2	3	-14
123	S	SR	SRS	RA004	0.004	\checkmark	5.1	29	39.0	3	-34
123A	S	SR	SRS	RA004	0.005	 Image: A start of the start of	6.4	29	46.4	3	-40
124	S	SR	SRS	RA004	0.014	~	5.5	29	26.2	3	-21
124B	S	SR	SRS	RA004	0.230		8.9	29	22.7	3	-14
125A	S	SR	SRS	RA004	0.007	\checkmark	5.3	29	31.8	3	-27
128A	S	SR	SRS	RA004	0.001		7.8	29	90.4	3	-83
132	S	SR	SRS	RA004	0.012	\checkmark	5.1	28	27.9	3	-23
133A	S	SR	SRS	RA004	0.012		6.3	29	48.3	3	-42
134	S	SR	SRS	RA004	0.001	V	5.5	29	91.8	3	-86
134A	S	SR	SRS	RA004	0.004		5.9	29	54.5	3	-49
135A	s	SR	SRS	RA004	0.008		6.6	29	56.4	3	-50
137	S	P	SRS	RA004	0.065		17.1	29	131.0	3	-114
138	s	P	SRS	RA004	0.054		31.4	29	277.9	3	-246
140A	S	P	SRS	RA004	0.055	ī	48.1	29	371.5	3	-323

Rainfall Statistics Summary: 48Hrs Cumulative

From: 1/1/2011

To: 5/31/2014

Report Area: NE3

Wet/Dry Cutoff: 0.2

							D				
					t-Statistic		Dry Wea	uther	Wet Wet	ther	
Station	Depth	Status	Strategy	NOAA		Exceed Criteria (t-Stats <0.05)	Geometric Mean	N	Geometric Mean	N	GeoMear Differenc
1100A	S	s	SRS	RA004	0.165		3.3	25	4.9	7	-2
1101	S	S	SRS	RA004	0.175		4.2	25	7.2	7	-3
1101B	S	SR	SRS	RA004	0.168		4.2	25	7.2	7	-3
1102	S	SR	SRS	RA004	0.089		5.8	25	14.7	7	-9
1103A	S	S	SRS	RA004	0.150		4.6	25	8.3	7	-4
1104	S	S	SRS	RA004	0.456		4.2	25	5.6	7	-1
1104B	S	S	SRS	RA004	0.161		3.9	25	6.2	7	-2
1105	S	S	SRS	RA004	0.091		5.2	25	10.7	7	-6
1105A	S	SR	SRS	RA004	0.608		5.8	25	7.2	7	-1
1106A	S	SR	SRS	RA004	0.299		5.6	25	9.4	7	-4
1107B	S	SR	SRS	RA004	0.189		5.1	25	9.1	7	-4
1109	S	SR	SRS	RA004	0.071		4.1	25	8.8	7	-5
1109B	S	S	SRS	RA004	0.190		4.3	25	7.0	7	-3
1109E	S	SR	SRS	RA004	0.058		4.1	25	9.2	7	-5
1110	S	SR	SRS	RA004	0.097		6.5	25	15.8	7	-9
1111	S	SR	SRS	RA004	0.131		4.3	25	8.7	7	-4
1111B	S	SR	SRS	RA004	0.289	Ē	4.4	25	6.6	7	-2
111E	S	SR	SRS	RA004	0.584		8.6	25	11.4	7	-3
112	S	SR	SRS	RA004	0.064	H	5,3	25	13.1	7	-8
112A	S	SR	SRS	RA004	0.016		3.9	25	12.1	7	-8
113	s	SR	SRS	RA004	0.094	Ē	5.4	25	13.2	7	-8
114A	s	SR	SRS	RA004	0.002		3.6	25	15.0	7	-11
114B	S	SR	SRS	RA004	0.048		5.0	25	15.1	7	-10
114C	s	SR	SRS	RA004	0.024		0.002	25			
115	S	SR	SRS	RA004 RA004			5.4		18.4	7	-13
					0.068		4.5	25	11.2	7	-7
115A	S	SR	SRS	RA004	0.469	8	5.4	25	7.5	7	-2
116	S	SR	SRS	RA004	0.189		6.2	25	11.7	7	-5
117A	S	SR	SRS	RA004	0.013	V	3.7	25	11.3	7	-8
118A	S	SR	SRS	RA004	0.010		5.3	25	17.0	7	-12
122	S	SR	SRS	RA004	0.062		4.4	25	9.6	7	-5
122A	S	SR	SRS	RA004	0.089		4.4	25	8.5	7	-4
122B	S	SR	SRS	RA004	0.003		4.0	25	14.3	7	-10
123	S	SR	SRS	RA004	0.024		4.8	25	15.2	7	-10
123A	S	SR	SRS	RA004	0.011		5.8	25	20.8	7	-15
124	S	SR	SRS	RA004	0.010		4.9	25	15.5	7	-11
124B	S	SR	SRS	RA004	0.037	$\mathbf{\nabla}$	7.6	25	23.3	7	-16
125A	S	SR	SRS	RA004	0.042	\checkmark	5.0	25	13.4	7	-8
128A	S	SR	SRS	RA004	0.010	>	7.2	25	29.9	7	-23
132	S	SR	SRS	RA004	0.204		5.2	25	10.3	6	-5
133A	S	SR	SRS	RA004	0.022	\checkmark	5.7	25	21.5	7	-16
134	S	SR	SRS	RA004	0.017	\checkmark	5.2	25	22.2	7	-17
134A	S	SR	SRS	RA004	0.018	\checkmark	5.5	25	20.2	7	-15
135A	S	SR	SRS	RA004	0.047	\checkmark	6.3	25	19.9	7	-14
137	S	P	SRS	RA004	0.119		15.9	25	53.9	7	-38
138	S	P	SRS	RA004	0.145		29.8	25	96.7	7	-67
140A	S	Р	SRS	RA004	0.235		47.7	25	118.6	7	-71

Rainfall Statistics Summary: 72Hrs Cumulative

From: 1/1/2011

To: 5/31/2014

Wet/Dry Cutoff: 0.	.2
--------------------	----

							Dry Wea	ther	Wet Wet	ather	
Station	Depth	Status	Strategy	NOAA	t-Statistic Probability	Exceed Criteria (t-Stats <0.05)	Geometric Mean	N	Geometric Mean	N	GeoMean Differenc
1100A	S	S	SRS	RA004	0.165		3.3	25	4.9	7	-2
1101	S	S	SRS	RA004	0,175		4.2	25	7.2	7	-3
1101B	S	SR	SRS	RA004	0.168		4.2	25	7.2	7	-3
1102	S	SR	SRS	RA004	0.089		5.8	25	14.7	7	-9
1103A	S	S	SRS	RA004	0.150		4.6	25	8.3	7	-4
1104	S	S	SRS	RA004	0.456		4.2	25	5.6	7	-1
1104B	S	S	SRS	RA004	0.161		3.9	25	6.2	7	-2
1105	S	S	SRS	RA004	0.091		5.2	25	10.7	7	-6
1105A	S	SR	SRS	RA004	0.608		5.8	25	7.2	7	-1
1106A	S	SR	SRS	RA004	0.299		5.6	25	9.4	7	-4
107B	S	SR	SRS	RA004	0.189		5.1	25	9.1	7	-4
1109	S	SR	SRS	RA004	0.071		4.1	25	8.8	7	-5
1109B	S	S	SRS	RA004	0.190		4.3	25	7.0	7	-3
1109E	S	SR	SRS	RA004	0.058		4.1	25	9.2	7	-5
1110	S	SR	SRS	RA004	0.097		6.5	25	15.8	7	-9
1111	S	SR	SRS	RA004	0.131		4.3	25	8.7	7	-4
1111B	S	SR	SRS	RA004	0.289		4.4	25	6.6	7	-2
1111E	S	SR	SRS	RA004	0.584	ā	8.6	25	11.4	7	-3
112	S	SR	SRS	RA004	0.064	Ē	5.3	25	13.1	7	-8
112A	S	SR	SRS	RA004	0.016	~	3.9	25	12.1	7	-8
113	S	SR	SRS	RA004	0.094		5.4	25	13.2	7	-8
114A	S	SR	SRS	RA004	0.002		3.6	25	15.0	7	-11
114B	S	SR	SRS	RA004	0.048	~	5.0	25	15.1	7	-10
114C	S	SR	SRS	RA004	0.024		5.4	25	18.4	7	-13
115	s	SR	SRS	RA004	0.068	Ē	4.5	25	11.2	7	-7
115A	s	SR	SRS	RA004	0.469	H	5.4	25	7.5	7	-2
116	S	SR	SRS	RA004	0.189		6.2	25	11.7	7	-5
117A	s	SR	SRS	RA004	0.013	V	3.7	25	11.3	7	-8
118A	S	SR	SRS	RA004	0.010	×	5.3	25	17.0	7	-12
122	s	SR	SRS	RA004	0.062		4.4	25	9.6	7	-12
122A	S	SR	SRS	RA004	0.089	Ħ	4.4	25	8.5	7	-4
122B	s	SR	SRS	RA004	0.003		4.0	25	14.3	7	-10
123	S	SR	SRS	RA004	0.024	\checkmark	4.8	25	15.2	7	-10
123A	S	SR	SRS	RA004	0.011	\checkmark	5.8	25	20.8	7	-15
124	S	SR	SRS	RA004	0.010	V	4.9	25	15.5	7	-11
124B	s	SR	SRS	RA004	0.037	\checkmark	7.6	25			
125A	S	SR	SRS	RA004	0.042				23.3	7	-16
128A	s	SR	SRS	RA004	0.042		5.0	25	13.4	7	-8
132	S	SR					7.2	25	29.9	7	-23
133A	S	SR	SRS SRS	RA004 RA004	0.204		5.2	25	10.3	6	-5
					0.022	V	5.7	25	21.5	7	-16
134	S	SR	SRS	RA004	0.017		5.2	25	22.2	7	-17
134A	S	SR	SRS	RA004	0.018		5.5	25	20.2	7	-15
135A	S	SR	SRS	RA004	0.047		6.3	25	19.9	7	-14
137	S	P	SRS	RA004	0.119		15.9	25	53.9	7	-38
138	S	P	SRS	RA004	0.145		29.8	25	96.7	7	-67
140A	S	Р	SRS	RA004	0.235		47.7	25	118.6	7	-71

D. Data Listing January 1, 2011 to May 31, 2014

Shellfish Growing Water - Data Listing

New Jersey Department of Environmental Protection Bureau of Marine Water Monitoring

Station: 1100A	Depth: S	Station: 1101	Depth: S	Station: 1101	B Depth: S	Station: 1102	Depth: S	Station: 1103	A Depth:
Geo Mean (Y	R): 3.6	Geo Mean (Y	R): 4.7	Geo Mean (YR): 4.7	Geo Mean (YR): 7.1	Geo Mean (VR): 5.3
Est 90th (YR)	: 8.4	Est 90th (YR)	: 15.3	Est 90th (YR	(): 14.9	Est 90th (Yh	36.5	Est 90th (Yh): 17.3
# Samples (YI		# Samples (Y		# Samples ()	A DECEMBER OF	# Samples ()		# Samples ()	
0.0% >	35	6.3% >	35	0.0007172.00	35	1		6.3% >	35
					1.4				
ShellClass:	S	ShellClass:	S	ShellClass:	SR	ShellClass:	SR	ShellClass:	S
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results
3/3/2011	1.5	3/3/2011	1.2 K	3/3/2011	1.2 K	3/3/2011	1.2 K	3/3/2011	1.5
4/20/2011	4.1	4/20/2011	4.1	4/20/2011	9.6	4/20/2011	3.2	4/20/2011	9.6
5/4/2011	4.1	5/4/2011	2.3	5/4/2011	2.8	5/4/2011	25.9	5/4/2011	5.8
6/13/2011	1.2	6/13/2011	5.8	6/13/2011	9.6	6/13/2011	126.0	6/13/2011	17.7
8/3/2011	1.5	8/3/2011	5.8	8/3/2011	4.1	8/3/2011	9.6	8/3/2011	1.5
9/28/2011	4.1	9/28/2011	37.6	9/28/2011	2.8	9/28/2011	63.0	9/28/2011	9.6
10/25/2011	7.0	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	10.0	10/25/2011	3.0 K
11/15/2011	1.2 K	11/15/2011	1.5	11/15/2011	1.5	11/15/2011	1.5	11/15/2011	1.2 K
11/30/2011	5.8	11/30/2011	63.0	11/30/2011	17.7	11/30/2011	25.9	11/30/2011	17.7
2/8/2012	3.0	2/8/2012	3.0 K	2/8/2012	6.0	2/8/2012	3.0 K	2/8/2012	9.0
3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0
4/17/2012	3.0	4/17/2012	3.0	4/17/2012	3.0 K	4/17/2012	6.0	4/17/2012	3.0 K
8/1/2012	3.0	8/1/2012	9.0	8/1/2012	12.0	8/1/2012	9.0	8/1/2012	6.0
9/5/2012	33.0	9/5/2012	33.0	9/5/2012	36.0	9/5/2012	110.0	9/5/2012	52.0
9/14/2012	3.0	9/14/2012	3.0 K	9/14/2012	90.0	9/14/2012	55.0	9/14/2012	73.0
10/1/2012	9.0	10/1/2012	6.0	10/1/2012	6.0	10/1/2012	6.0	10/1/2012	9.0
12/12/2012	3.0 K	12/12/2012	3.0	12/12/2012	3.0 K	12/12/2012	15.0	12/12/2012	3.0
1/15/2013	6.0	1/15/2013	3.0 K	1/15/2013	6.0	1/15/2013	3.0 K	1/15/2013	3.0 K
3/12/2013	3.0	3/12/2013	3.0 K	3/12/2013	12.0	3/12/2013	3.0 K	3/12/2013	3.0 K
4/4/2013	3.0 K	4/4/2013	9.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	3.0 K
/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0 K
5/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	3.0 K	5/28/2013	9.0	5/28/2013	3.0
/22/2013	3.0	7/22/2013	9.0	7/22/2013	6.0	7/22/2013	70.0	7/22/2013	6.0
3/19/2013	3.0	8/19/2013	3.0	8/19/2013	3.0 K	8/19/2013	3.0 K	8/19/2013	3.0
0/7/2013	3.0 K	10/7/2013	6.0	10/7/2013	6.0	10/7/2013	6.0	10/7/2013	3.0 K
1/21/2013	3.0 K	11/21/2013	3.0	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0 K
2/6/2013	3.0 K	12/6/2013	3.0	12/6/2013	3.0	12/6/2013	3.0	12/6/2013	6.0
/16/2014	6.0	1/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	3.0 K	1/16/2014	6.0
5/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K
/3/2014	12.0	4/3/2014	24.0	4/3/2014	3.0	4/3/2014	3.0	4/3/2014	9.0
5/12/2014	6.0	5/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	3.0	5/12/2014	9.0
5/27/2014	3.0	5/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	3.0	5/27/2014	6.0

Station: 1104	Depth: S	Station: 1104	B Depth: S	Station: 1105	Depth: S	Station: 1105	A Depth: S	Station: 1106	A Depth:
Geo Mean (YR): 4.5	Geo Mean ((R): 4.3	Geo Mean (YR): 6.1	Geo Mean (YR): 6.1	Geo Mean (YR): 6.3
Est 90th (YR	14.3	Est 90th (YR): 11.5	Est 90th (YK	22.0	Est 90th (YI	20.9	Est 90th (Yk): 27.3
# Samples ()		# Samples ()		# Samples ()	5 ··· · · · · · · · · · · · · · · · · ·	# Samples (# Samples ()	
6.3% >	35		35		35				
2412		1.1 Y. A.			1			1. 20. 20. 20. 20.	35
ShellClass:	S	ShellClass:	S	ShellClass:	S	ShellClass:	SR	ShellClass:	SR
Date	Results	Date	<u>Results</u>	Date	Results	Date	Results	Date	Results
3/3/2011	1.2 K	3/3/2011	1.2 K	3/3/2011	1.5	3/3/2011	1,5	3/3/2011	2.3
4/20/2011	17.7	4/20/2011	5.8	4/20/2011	1.5	4/20/2011	5.4	4/20/2011	2.3
5/4/2011	2.8	5/4/2011	4.1	5/4/2011	2.8	5/4/2011	5.8	5/4/2011	1.5
5/13/2011	17.7	6/13/2011	2.8	6/13/2011	17.7	6/13/2011	21.7	6/13/2011	9.6
3/3/2011	9.6	8/3/2011	2.8	8/3/2011	9.6	8/3/2011	5.8	8/3/2011	37.6
9/28/2011	37.6	9/28/2011	4.1	9/28/2011	17.7	9/28/2011	17.7	9/28/2011	17.7
10/25/2011	3.0	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	3.0 K
1/15/2011	1.2	11/15/2011	1.5	11/15/2011	2.8	11/15/2011	2.8	11/15/2011	5.8
1/30/2011	2.0	11/30/2011	17.7	11/30/2011	25.9	11/30/2011	5.8	11/30/2011	17.7
2/8/2012	6.0	2/8/2012	3.0	2/8/2012	9.0	2/8/2012	3.0 K	2/8/2012	3.0
3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	3.0
/17/2012	3.0 K	4/17/2012	3.0 K	4/17/2012	3.0 K	4/17/2012	3.0 K	4/17/2012	3.0 K
1/2012	3.0 K	8/1/2012	6.0	8/1/2012	6.0	8/1/2012	12.0	8/1/2012	27.0
9/5/2012	64.0	9/5/2012	45.0	9/5/2012	110.0	9/5/2012	100.0	9/5/2012	160.0
/14/2012	3.0	9/14/2012	27.0	9/14/2012	15.0	9/14/2012	42.0	9/14/2012	77.0
0/1/2012	3.0	10/1/2012	6.0	10/1/2012	30.0	10/1/2012	6.0	10/1/2012	18.0
2/12/2012	3.0	12/12/2012	3.0	12/12/2012	6.0	12/12/2012	3.0 K	12/12/2012	3.0
/15/2013	3.0	1/15/2013	6.0	1/15/2013	6.0	1/15/2013	3.0	1/15/2013	3.0 K
/12/2013	3.0	3/12/2013	3.0 K	3/12/2013	6.0	3/12/2013	3.0	3/12/2013	6.0
/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	6.0	4/4/2013	3.0 K
/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0	4/9/2013	3.0 K
/28/2013	3.0	5/28/2013	6.0	5/28/2013	3.0 K	5/28/2013	3.0 K	5/28/2013	3.0
/22/2013	3,0	7/22/2013	3.0 K	7/22/2013	3.0	7/22/2013	6.0	7/22/2013	3.0 K
/19/2013	6.0	8/19/2013	3.0 K	8/19/2013	21.0	8/19/2013	27.0	8/19/2013	30.0
0/7/2013	9.0	10/7/2013	6.0	10/7/2013	12.0	10/7/2013	18.0	10/7/2013	9.0
1/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0
2/6/2013	3.0 K	12/6/2013	3.0	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	6.0
/16/2014	3.0	1/16/2014	3.0	1/16/2014	3.0	1/16/2014	3.0 K	1/16/2014	3.0 K
/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0	3/18/2014	3.0	3/18/2014	9.0
/3/2014	12.0	4/3/2014	9.0	4/3/2014	21.0	4/3/2014	18.0	4/3/2014	3.0
/12/2014	3.0 K	5/12/2014	3.0	5/12/2014	6.0	5/12/2014	6.0	5/12/2014	3.0
/27/2014	9.0	5/27/2014	9.0	5/27/2014	3.0	5/27/2014	9.0	5/27/2014	3.0

Station: 1107	B Depth: S	Station: 1109	Depth: S	Station: 1109	B Depth: S	Station: 1109	E Depth: S	Station: 1110) Depth:	
Geo Mean (YR): 5.8	Geo Mean (YR): 4.9	Geo Mean (YR): 4.8	Geo Mean (YR): 4.9	Geo Mean (YR): 7.9	
Est 90th (YF	2): 21.5	Est 90th (YE	2): 17.0	Est 90th (YR	14.6	Est 90th (YI	R): 17.5	Est 90th (YI	2): 39.3	
# Samples (YR): 32		# Samples (YR): 32		# Samples (YR): 32		# Samples (YR): 32		# Samples (YR): 32		
	35	3.1% > 35		6.3% > 35		1.1.1.2.2.2.2.3				
C								12.5% > 3		
ShellClass: SR		ShellClass: SR		ShellClass: S		ShellClass: SR		ShellClass: SR		
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results	
3/3/2011	1.2 K	3/3/2011	1.2 K	3/3/2011	3.2	3/3/2011	1.2	3/3/2011	2.8	
4/20/2011	2.8	4/20/2011	9.6	4/20/2011	4.1	4/20/2011	9.6	4/20/2011	5.8	
5/4/2011	17.7	5/4/2011	5.8	5/4/2011	17.7	5/4/2011	4.1	5/4/2011	9.6	
6/13/2011	37.6	6/13/2011	17.7	6/13/2011	14.9	6/13/2011	9.6	6/13/2011	234.3 L	
8/3/2011	5.8	8/3/2011	5.8	8/3/2011	2.8	8/3/2011	5.8	8/3/2011	9.6	
9/28/2011	17.7	9/28/2011	17.7	9/28/2011	5.8	9/28/2011	37.6	9/28/2011	5.8	
10/25/2011	3.0	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	7.0	
11/15/2011	2.8	11/15/2011	1.5	11/15/2011	1.2 K	11/15/2011	4.1	11/15/2011	4.1	
11/30/2011	9.6	11/30/2011	33.8	11/30/2011	4.1	11/30/2011	37.6	11/30/2011	63.0	
2/8/2012	9.0	2/8/2012	3.0	2/8/2012	3.0	2/8/2012	3.0	2/8/2012	3.0	
3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	6.0	3/21/2012	3.0 K	3/21/2012	3.0 K	
4/17/2012	6.0	4/17/2012	3.0 K	4/17/2012	3.0 K	4/17/2012	3.0	4/17/2012	6.0	
8/1/2012	3.0 K	8/1/2012	21.0	8/1/2012	9.0	8/1/2012	6.0	8/1/2012	18.0	
9/5/2012	180.0	9/5/2012	83.0	9/5/2012	83.0	9/5/2012	190.0	9/5/2012	210.0	
9/14/2012	15.0	9/14/2012	18.0	9/14/2012	36.0	9/14/2012	3.0	9/14/2012	21.0	
10/1/2012	21.0	10/1/2012	3.0	10/1/2012	3.0 K	10/1/2012	9.0	10/1/2012	6.0	
12/12/2012	3.0	12/12/2012	3.0	12/12/2012	6.0	12/12/2012	3.0	12/12/2012	3.0	
1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0	1/15/2013	3.0	
3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	3.0	
\$/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	
4/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0 K	
5/28/2013	3.0 K	5/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	3.0	5/28/2013	3.0 K	
7/22/2013	3.0 K	7/22/2013	18.0	7/22/2013	3.0	7/22/2013	3.0	7/22/2013	61.0	
3/19/2013	6.0	8/19/2013	3.0 K	8/19/2013	3.0 K	8/19/2013	3.0	8/19/2013	33.0	
0/7/2013	12.0	10/7/2013	3,0	10/7/2013	12.0	10/7/2013	3.0	10/7/2013	21.0	
1/21/2013	3.0 K	11/21/2013	.3.0	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0 K	
2/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	6.0	
/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	3.0 K	1/16/2014	3.0 K	
/18/2014	3.0	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	
/3/2014	15.0	4/3/2014	3.0 K	4/3/2014	12.0	4/3/2014	9.0	4/3/2014	3.0 K	
/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	6.0	
5/27/2014	9.0	5/27/2014	3.0 K	5/27/2014	3.0	5/27/2014	9.0	5/27/2014	6.0	

Station: 1111	Depth: S	Station: 1111	B Depth: S	Station:1111	E Depth: S	Station: 1112	2 Depth: S	Station:1112	A Depth:
Geo Mean (YR): 5.0	Geo Mean (Y	(R): 4.8	Geo Mean (YR): 9.2	Geo Mean (YR): 6.4	Geo Mean (YR): 5.0
Est 90th (YR	20.3	Est 90th (YR,): 14.9	Est 90th (YK	2): 39.7	Est 90th (YE	28.3	Est 90th (YE	21.1
# Samples ()		# Samples (Y		# Samples ()	2.14.1 (A.M. 2.11)	# Samples (# Samples (
		21.0. Pro 21		10.0112-01-01-0	1.60			10.24	
	35		35	11 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	35			1770 T	
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR
Date	Results	Date	<u>Results</u>	Date	Results	Date	Results	Date	Results
3/3/2011	1.2 K	3/3/2011	1.5	3/3/2011	5.4	3/3/2011	1.5	3/3/2011	2.8
4/20/2011	2.3	4/20/2011	14.9	4/20/2011	2.8	4/20/2011	1.5	4/20/2011	2.8
5/4/2011	126.0	5/4/2011	8.9	5/4/2011	63.0	5/4/2011	9.6	5/4/2011	4.1
5/13/2011	17.7	6/13/2011	5.8	6/13/2011	37.6	6/13/2011	63.0	6/13/2011	37.6
8/3/2011	1.2 K	8/3/2011	5.8	8/3/2011	5.8	8/3/2011	5.8	8/3/2011	1.5
9/28/2011	17.7	9/28/2011	9.6	9/28/2011	17.7	9/28/2011	17.7	9/28/2011	13.1
10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	23.0	10/25/2011	7.0	10/25/2011	27.0
1/15/2011	2.8	11/15/2011	1.2 K	11/15/2011	2.8	11/15/2011	1.2 K	11/15/2011	1,5
1/30/2011	9.6	11/30/2011	9.6	11/30/2011	9.6	11/30/2011	25,9	11/30/2011	63,0
2/8/2012	12.0	2/8/2012	3.0 K	2/8/2012	3.0 K	2/8/2012	3.0 K	2/8/2012	3.0 K
3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K
/17/2012	3.0 K	4/17/2012	3.0	4/17/2012	6.0	4/17/2012	9.0	4/17/2012	3.0 K
3/1/2012	3.0	8/1/2012	3.0	8/1/2012	6.0	8/1/2012	6.0	8/1/2012	3.0 K
9/5/2012	140.0	9/5/2012	61.0	9/5/2012	210.0	9/5/2012	170.0	9/5/2012	200.0
9/14/2012	3.0	9/14/2012	27.0	9/14/2012	18.0	9/14/2012	6.0	9/14/2012	3.0
10/1/2012	12.0	10/1/2012	21.0	10/1/2012	12.0	10/1/2012	9.0	10/1/2012	21.0
12/12/2012	6.0	12/12/2012	6.0	12/12/2012	3.0	12/12/2012	9.0	12/12/2012	3.0 K
1/15/2013	3.0 K	1/15/2013	3.0	1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0 K
3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	12.0	3/12/2013	9.0	3/12/2013	3.0 K
4/4/2013	3.0 K	4/4/2013	3.0	4/4/2013	6.0	4/4/2013	3.0 K	4/4/2013	3.0 K
1/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0
5/28/2013	3.0 K	5/28/2013	3.0 K	5/28/2013	6.0	5/28/2013	6.0	5/28/2013	3.0 K
//22/2013	6.0	7/22/2013	6.0	7/22/2013	9.0	7/22/2013	21.0	7/22/2013	3.0
3/19/2013	9.0	8/19/2013	3.0	8/19/2013	3.0	8/19/2013	15.0	8/19/2013	12.0
0/7/2013	3.0	10/7/2013	3.0	10/7/2013	21.0	10/7/2013	67.0	10/7/2013	6.0
1/21/2013	3.0 K	11/21/2013	3.0	11/21/2013	9.0	11/21/2013	3.0	11/21/2013	3.0
2/6/2013	3.0	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K
/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0 K
/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	12.0	3/18/2014	3.0 K	3/18/2014	3.0 K
/3/2014	3.0 K	4/3/2014	21.0	4/3/2014	9.0	4/3/2014	3.0 K	4/3/2014	3.0 K
/12/2014	3.0	5/12/2014	3.0	5/12/2014	24.0	5/12/2014	3.0 K	5/12/2014	3.0 K
5/27/2014	9.0	5/27/2014	3.0 K	5/27/2014	140.0	5/27/2014	3.0 K	5/27/2014	3.0 K

Station: 1113	Depth: S	Station:1114	A Depth: S	Station: 1114	B Depth: S	Station: 1114	C Depth: S	Station: 1115	Depth:
Geo Mean (YR): 6.5	Geo Mean (YR): 4.9	Geo Mean (YR): 6.4	Geo Mean (YR): 7.0	Geo Mean (YR): 5.5
Est 90th (YR	2): 32.8	Est 90th (YR): 21.7	Est 90th (Yh	R): 33.9	Est 90th (Yh	0: 37.0	Est 90th (Yh	24.4
# Samples ()	March 1997	# Samples ()		# Samples ()	T	# Samples ()	2	# Samples ()	
be en transier				1 1 1 1 1 1 1				10	1.1
14 MARY 11 - 51	35	9.4% > 35		6.3% > 35		9.4% > 35		6.3% > 35	
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results
3/3/2011	2.3	3/3/2011	1.5	3/3/2011	2.8	3/3/2011	2.8	3/3/2011	1,2 K
4/20/2011	1.5	4/20/2011	2.8	4/20/2011	2.8	4/20/2011	2.8	4/20/2011	1.5
5/4/2011	5.8	5/4/2011	1.2	5/4/2011	5.8	5/4/2011	17,7	5/4/2011	5.8
6/13/2011	25.9	6/13/2011	63.0	6/13/2011	63.0	6/13/2011	63.0	6/13/2011	25.9
8/3/2011	5.8	8/3/2011	1.2 K	8/3/2011	1.5	8/3/2011	2.8	8/3/2011	2.3
9/28/2011	63.0	9/28/2011	17.7	9/28/2011	17.7	9/28/2011	37.6	9/28/2011	37.6
10/25/2011	13.0	10/25/2011	3.0	10/25/2011	3.0	10/25/2011	13.0	10/25/2011	3.0
11/15/2011	1.5	11/15/2011	1.2 K	11/15/2011	1.5	11/15/2011	1.2	11/15/2011	1.2 K
11/30/2011	37.6	11/30/2011	37.6	11/30/2011	17.7	11/30/2011	17.7	11/30/2011	5.8
2/8/2012	3.0 K	2/8/2012	3.0 K	2/8/2012	6.0	2/8/2012	3.0	2/8/2012	3.0
3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	3.0	3/21/2012	3.0 K	3/21/2012	3.0 K
4/17/2012	3.0 K	4/17/2012	12.0	4/17/2012	9.0	4/17/2012	9.0	4/17/2012	24.0
8/1/2012	3.0 K	8/1/2012	6.0	8/1/2012	3.0 K	8/1/2012	18.0	8/1/2012	3.0 K
9/5/2012	150.0	9/5/2012	220.0	9/5/2012	970.0	9/5/2012	970.0	9/5/2012	300.0
9/14/2012	21.0	9/14/2012	3.0	9/14/2012	21.0	9/14/2012	3.0 K	9/14/2012	9.0
10/1/2012	21.0	10/1/2012	15.0	10/1/2012	15.0	10/1/2012	9.0	10/1/2012	27.0
2/12/2012	18.0	12/12/2012	12.0	12/12/2012	6.0	12/12/2012	24.0	12/12/2012	9.0
1/15/2013	3.0	1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0	1/15/2013	3.0 K
3/12/2013	3.0 K	3/12/2013	9.0	3/12/2013	21.0	3/12/2013	3.0 K	3/12/2013	9.0
1/4/2013	3.0 K	4/4/2013	6.0	4/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K
/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0
5/28/2013	3.0 K	5/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	9.0	5/28/2013	3.0
/22/2013	12.0	7/22/2013	6.0	7/22/2013	3.0	7/22/2013	6.0	7/22/2013	3.0
3/19/2013	12.0	8/19/2013	3.0	8/19/2013	18.0	8/19/2013	3.0	8/19/2013	3.0 K
0/7/2013	130.0	10/7/2013	3.0	10/7/2013	21.0	10/7/2013	18.0	10/7/2013	18.0
1/21/2013	3.0	11/21/2013	3.0 K	11/21/2013	9.0	11/21/2013	3.0 K	11/21/2013	3.0 K
2/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0	12/6/2013	9.0	12/6/2013	3.0 K
/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	3.0
3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	6.0
/3/2014	3.0 K	4/3/2014	3.0 K	4/3/2014	3.0	4/3/2014	6.0	4/3/2014	6.0
5/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	3.0 K	5/12/2014	6.0	5/12/2014	9.0
5/27/2014	3.0	5/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	3.0 K

Station: 1115	A Depth: S	Station: 1116	Depth: S	Station: 1117	A Depth: S	Station: 1118	A Depth: S	Station: 1122	Depth:
Geo Mean (YR): 5.8 Geo Mean (YR): 7.2		Geo Mean (YR): 4.8		Geo Mean (YR): 6.9		Geo Mean (YR): 5.2		
Est 90th (YK	22.0	Est 90th (YR): 29.3	Est 90th (YE	(): 18.8	Est 90th (YE	27.8	Est 90th (YE	(): 18.5
# Samples ()		# Samples ()	Ser Country III	# Samples ()		# Samples ()		12222222	31
	1000 BB		1.67.0						
	35	140 March 100 Ma	35	6.3% > 35		9.4% > 35		6.3% > 35	
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results
3/3/2011	1.5	3/3/2011	17.7	3/3/2011	1.2 K	3/3/2011	2.8	3/3/2011	4.1
4/20/2011	4.1	4/20/2011	2.3	4/20/2011	2.3	4/20/2011	3.2	4/20/2011	1.5
5/4/2011	17.7	5/4/2011	5.8	5/4/2011	3.2	5/4/2011	17.7	5/4/2011	5.4
6/13/2011	9.6	6/13/2011	9.6	6/13/2011	17.7	6/13/2011	55.3	6/13/2011	14.9
8/3/2011	2.3	8/3/2011	1.5	8/3/2011	2.8	8/3/2011	9.6	8/3/2011	1.5
9/28/2011	37.6	9/28/2011	59.7	9/28/2011	8.9	9/28/2011	5.8	9/28/2011	9.6
10/25/2011	3.0	10/25/2011	7.0	10/25/2011	3.0 K	10/25/2011	3.0 K	10/25/2011	10.0
11/15/2011	1.2 K	11/15/2011	2.3	11/15/2011	1.5	11/15/2011	1.5	11/15/2011	1.5
11/30/2011	1.5	11/30/2011	9.6	11/30/2011	37.6	11/30/2011	92.9	11/30/2011	37.6
2/8/2012	9.0	2/8/2012	6.0	2/8/2012	3.0 K	2/8/2012	6.0	2/8/2012	15.0
3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	9.0	3/21/2012	3.0 K	3/21/2012	9.0
4/17/2012	9.0	4/17/2012	9.0	4/17/2012	9.0	4/17/2012	3.0 K	4/17/2012	3.0 K
8/1/2012	3.0	8/1/2012	15.0	8/1/2012	3.0 K	8/1/2012	30.0	8/1/2012	6.0
9/5/2012	130.0	9/5/2012	330.0	9/5/2012	220.0	9/5/2012	100.0	9/5/2012	170.0
9/14/2012	15.0	9/14/2012	15.0	9/14/2012	3.0	9/14/2012	6.0	9/14/2012	6.0
10/1/2012	9.0	10/1/2012	21.0	10/1/2012	3.0 K	10/1/2012	9.0	10/1/2012	18.0
12/12/2012	9.0	12/12/2012	12.0	12/12/2012	3.0 K	12/12/2012	6.0	12/12/2012	3.0
1/15/2013	9.0	1/15/2013	9.0	1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0
3/12/2013	6.0	3/12/2013	6.0	3/12/2013	3.0	3/12/2013	3.0 K	3/12/2013	3.0 K
4/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	3.0 K
4/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	6.0	4/9/2013	3.0 K
5/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	3.0 K	5/28/2013	3.0 K	5/28/2013	6.0
7/22/2013	3.0	7/22/2013	18.0	7/22/2013	3.0	7/22/2013	9.0	7/22/2013	9.0
3/19/2013	12.0	8/19/2013	15.0	8/19/2013	33.0	8/19/2013	18.0	8/19/2013	3.0
10/7/2013	12.0	10/7/2013	6.0	10/7/2013	18.0	10/7/2013	9.0	10/7/2013	6,0
1/21/2013	36.0	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0	11/21/2013	3.0 K
2/6/2013	3.0	12/6/2013	3.0	12/6/2013	3.0	12/6/2013	3.0 K	12/6/2013	3.0
/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	6.0	1/16/2014	15.0	1/16/2014	3.0 K
/18/2014	3.0	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	3.0 K
1/3/2014	3.0	4/3/2014	3.0	4/3/2014	3.0 K	4/3/2014	3.0 K	4/3/2014	3.0
/12/2014	9.0	5/12/2014	15.0	5/12/2014	3.0 K	5/12/2014	24.0	5/12/2014	3.0
5/27/2014	3.0	5/27/2014	3.0 K	5/27/2014	3.0	5/27/2014	3.0 K	5/27/2014	3.0 K

Station: 1122	A Depth: S	Station: 1122	B Depth: S	Station: 1123	Depth: S	Station: 1123	A Depth: S	Station: 1124	Depth:
Geo Mean ()	YR): 5.0	Geo Mean (YR): 5.2	Geo Mean (YR): 6.2	Geo Mean (YR): 7.7	Geo Mean (YR): 6.3
Est 90th (YR): 16.2	Est 90th (YK	20.3	Est 90th (YR	29.4	Est 90th (Y)	2): 36.0	Est 90th (YR): 25.1
# Samples ()		# Samples ()	1.00	# Samples (# Samples (204 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Samples (And the second second
	35	1.000	The second second			1000			
240.25			35	12.5% >	35		202	12.5% >	35
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR
<u>Date</u>	Results	Date	<u>Results</u>	Date	Results	Date	Results	Date	Results
3/3/2011	5.8	3/3/2011	9.6	3/3/2011	1.2 K	3/3/2011	2.8	3/3/2011	2.8
4/20/2011	2.8	4/20/2011	2.3	4/20/2011	2.8	4/20/2011	2.8	4/20/2011	4.1
5/4/2011	2.8	5/4/2011	9.6	5/4/2011	9.6	5/4/2011	14.9	5/4/2011	37.6
5/13/2011	36.3	6/13/2011	63.0	6/13/2011	59.7	6/13/2011	63.0	6/13/2011	63.0
3/3/2011	1.5	8/3/2011	1.2 K	8/3/2011	2.8	8/3/2011	5.8	8/3/2011	5.8
9/28/2011	17.7	9/28/2011	14.9	9/28/2011	36.3	9/28/2011	25.9	9/28/2011	5.8
0/25/2011	10.0	10/25/2011	7.0	10/25/2011	3.0	10/25/2011	27.0	10/25/2011	10.0
11/15/2011	2.8	11/15/2011	1.5	11/15/2011	1.2 K	11/15/2011	2.3	11/15/2011	4.1
1/30/2011	9.6	11/30/2011	9.6	11/30/2011	59.7	11/30/2011	63.0	11/30/2011	37.6
2/8/2012	3.0	2/8/2012	12.0	2/8/2012	9.0	2/8/2012	6.0	2/8/2012	3.0
3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	3.0 K
/17/2012	6.0	4/17/2012	3.0 K	4/17/2012	6.0	4/17/2012	15.0	4/17/2012	3.0 K
/1/2012	3.0 K	8/1/2012	3.0 K	8/1/2012	3.0	8/1/2012	6.0	8/1/2012	15.0
/5/2012	110.0	9/5/2012	210.0	9/5/2012	330.0	9/5/2012	530.0	9/5/2012	160.0
/14/2012	6.0	9/14/2012	3.0	9/14/2012	15.0	9/14/2012	18.0	9/14/2012	3.0 K
0/1/2012	9.0	10/1/2012	12.0	10/1/2012	15.0	10/1/2012	9.0	10/1/2012	15.0
2/12/2012	3.0	12/12/2012	18.0	12/12/2012	6.0	12/12/2012	15.0	12/12/2012	21.0
/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0 K	1/15/2013	3.0	1/15/2013	3.0 K
/12/2013	3.0	3/12/2013	6.0	3/12/2013	3.0	3/12/2013	3.0 K	3/12/2013	9.0
/4/2013	3.0 K	4/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	3.0 K
/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0 K
/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	6.0	5/28/2013	6.0	5/28/2013	3.0
/22/2013	3.0	7/22/2013	3.0 K	7/22/2013	9.0	7/22/2013	12.0	7/22/2013	12.0
/19/2013	9.0	8/19/2013	3.0 K	8/19/2013	9.0	8/19/2013	6.0	8/19/2013	9.0
0/7/2013	21.0	10/7/2013	3.0	10/7/2013	15.0	10/7/2013	6.0	10/7/2013	3.0
1/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0	11/21/2013	3.0 K	11/21/2013	3.0 K
2/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	3.0 K
/16/2014	3.0 K	1/16/2014	6.0	1/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	3.0 K
/18/2014	3.0	3/18/2014	3.0 K	3/18/2014	3.0 K	3/18/2014	6.0	3/18/2014	3.0 K
/3/2014	3.0 K	4/3/2014	6.0	4/3/2014	6.0	4/3/2014	3.0	4/3/2014	3.0 K
/12/2014	3.0 K	5/12/2014	3.0	5/12/2014	3.0 K	5/12/2014	9.0	5/12/2014	3.0
/27/2014	9,0	5/27/2014	3.0 K	5/27/2014	3.0	5/27/2014	3.0 K	5/27/2014	3.0 K

Report Area: NE3

Station: 1124	B Depth: S	Station: 1125	5A Depth: S	Station: 1128	A Depth: S	Station: 1132	2. Depth: S	Station: 113	3A Depth:
Geo Mean (YR): 9.7	Geo Mean (YR): 6.2	Geo Mean (YR): 9.9	Geo Mean (YR): 6.0	Geo Mean	(YR): 7.7
Est 90th (YR	(): 49.3	Est 90th (YE	26.7	Est 90th (Yh	R): 54.5	Est 90th (YI		Est 90th (Y	
# Samples ()	and the second second	# Samples ()	5 G () () () () () () () () () (# Samples (5 _ · · · · · · · · · · · · · · · · · ·	# Samples (# Samples	
12.5% >	35			- 1. CONTRACTOR		1. 1. 197 (198)	2 A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	10101	100000000000000000000000000000000000000	35	110010	35	12.9% >	1	12.5%	
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	SR
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results
3/3/2011	5.8	3/3/2011	2.8	3/3/2011	1.5	3/3/2011	2.3	3/3/2011	4.1
4/20/2011	1.5	4/20/2011	2.3	4/20/2011	9.6	4/20/2011	1,5	4/20/2011	4.1
5/4/2011	14.9	5/4/2011	36.3	5/4/2011	9.6	5/4/2011	9.6	5/4/2011	2.8
6/13/2011	234.3	6/13/2011	17.7	6/13/2011	59.7	8/3/2011	2.8	6/13/2011	234.3 L
8/3/2011	4.1	8/3/2011	5.8	8/3/2011	5.8	9/28/2011	37.6	8/3/2011	17.7
9/28/2011	17.7	9/28/2011	4.1	9/28/2011	4.1	10/25/2011	87.0	9/28/2011	37.6
10/25/2011	53.0	10/25/2011	10.0	10/25/2011	17.0	11/15/2011	2.8	10/25/2011	17.0
11/15/2011	8.9	11/15/2011	2.8	11/15/2011	5.8	11/30/2011	36.3	11/15/2011	1.5
11/30/2011	17.7	11/30/2011	59.7	11/30/2011	234.3	2/8/2012	9.0	11/30/2011	37.6
2/8/2012	33.0	2/8/2012	3.0 K	2/8/2012	9.0	3/21/2012	3.0	2/8/2012	3.0 K
3/21/2012	3.0	3/21/2012	3.0 K	3/21/2012	3.0	4/17/2012	6.0	3/21/2012	3.0 K
4/17/2012	9.0	4/17/2012	3.0 K	4/17/2012	15.0	8/1/2012	3.0	4/17/2012	3.0 K
3/1/2012	12.0	8/1/2012	18.0	8/1/2012	36.0	9/5/2012	200.0	8/1/2012	6.0
9/5/2012	220.0	9/5/2012	180.0	9/5/2012	350.0	9/14/2012	6.0	9/5/2012	1,000.0
9/14/2012	6.0	9/14/2012	3.0 K	9/14/2012	3.0 K	10/1/2012	6.0	9/14/2012	12.0
10/1/2012	45.0	10/1/2012	6.0	10/1/2012	52.0	12/12/2012	6.0	10/1/2012	9.0
2/12/2012	30.0	12/12/2012	15.0	12/12/2012	18.0	1/15/2013	3.0 K	12/12/2012	9.0
/15/2013	3.0	1/15/2013	3.0 K	1/15/2013	9.0	3/12/2013	6.0	1/15/2013	3.0
3/12/2013	9.0	3/12/2013	3.0 K	3/12/2013	3.0 K	4/4/2013	3.0 K	3/12/2013	6.0
4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/9/2013	3.0 K	4/4/2013	3.0 K
1/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	3.0 K	5/28/2013	3.0 K	4/9/2013	3.0
5/28/2013	3.0	5/28/2013	3.0 K	5/28/2013	6.0	7/22/2013	3.0	5/28/2013	12.0
/22/2013	12.0	7/22/2013	73.0	7/22/2013	12.0	8/19/2013	9.0	7/22/2013	9.0
3/19/2013	24.0	8/19/2013	15.0	8/19/2013	67.0	10/7/2013	33.0	8/19/2013	12.0
0/7/2013	27.0	10/7/2013	6.0	10/7/2013	21.0	11/21/2013	3.0 K	10/7/2013	21.0
1/21/2013	3.0	11/21/2013	3.0	11/21/2013	3.0 K	12/6/2013	3.0	11/21/2013	3.0 K
2/6/2013	6.0	12/6/2013	3.0 K	12/6/2013	3.0 K	1/16/2014	3.0	12/6/2013	3.0
/16/2014	3.0	1/16/2014	3.0	1/16/2014	3.0 K	3/18/2014	3.0	1/16/2014	3.0 K
/18/2014	15.0	3/18/2014	3.0 K	3/18/2014	9.0	4/3/2014	6.0	3/18/2014	3.0
/3/2014	3.0 K	4/3/2014	3.0 K	4/3/2014	3.0 K	5/12/2014	3.0	4/3/2014	3.0 K
/12/2014	3.0 K	5/12/2014	3.0	5/12/2014	18.0	5/27/2014	3.0 K	5/12/2014	6.0
/27/2014	3.0 K	5/27/2014	6.0	5/27/2014	3.0 K			5/27/2014	3.0 K

Report Area: NE3

Station: 113	4 Depth: S	Station: 1134	A Depth: S	Station: 113	5A Depth: S	Station:113	7 Depth: S	Station: 113	8 Depth:
Geo Mean	(YR): 7.2	Geo Mean ((R): 7.3	Geo Mean	(YR): 8.1	Geo Mean	YR): 20.7	Geo Mean	(YR): 38.5
Est 90th (Y	R): 45.5	Est 90th (YR): 39.6	Est 90th (Y	R): 46.7	Est 90th (Y	R): 214.6	Est 90th (Y	R): 424.8
# Samples (YR): 32	# Samples (Y	(R): 32	# Samples (# Samples (# Samples	
		And the second second		10223500			15. 3K		
			35	and the second second		31.3% >		50.0% >	
ShellClass:	SR	ShellClass:	SR	ShellClass:	SR	ShellClass:	Р	ShellClass:	P
Date	Results	Date	Results	Date	Results	Date	Results	Date	Results
3/3/2011	9,6	3/3/2011	5.8	3/3/2011	1.2 K	3/3/2011	1.5	3/3/2011	1.2
4/20/2011	1.2	4/20/2011	2.8	4/20/2011	4.1	4/20/2011	17.7	4/20/2011	9.6
5/4/2011	17.7	5/4/2011	9.6	5/4/2011	17.7	5/4/2011	14.9	5/4/2011	110.3
5/13/2011	63.0	6/13/2011	63.0	6/13/2011	63.0	6/13/2011	1,460.5 L	6/13/2011	785.6 L
3/3/2011	17.7	8/3/2011	17.7	8/3/2011	5.8	8/3/2011	17.7	8/3/2011	59.7
9/28/2011	17.7	9/28/2011	59.7	9/28/2011	37.6	9/28/2011	36.3	9/28/2011	36.3
10/25/2011	3.0	10/25/2011	3.0 K	10/25/2011	10.0	10/25/2011	23.0	10/25/2011	27.0
11/15/2011	1.2 K	11/15/2011	1.2 K	11/15/2011	2.8	11/15/2011	1.5	11/15/2011	5.8
1/30/2011	234.3	11/30/2011	110.3	11/30/2011	59.7	11/30/2011	234.3	11/30/2011	392.9
2/8/2012	9.0	2/8/2012	3.0	2/8/2012	6.0	2/8/2012	3.0 K	2/8/2012	9.0
3/21/2012	3.0 K	3/21/2012	3.0 K	3/21/2012	3.0	3/21/2012	45.0	3/21/2012	12.0
/17/2012	9.0	4/17/2012	6.0	4/17/2012	9.0	4/17/2012	12.0	4/17/2012	150.0
3/1/2012	3.0	8/1/2012	15.0	8/1/2012	3.0	8/1/2012	670.0	8/1/2012	1,000.0
9/5/2012	1,100.0	9/5/2012	490.0	9/5/2012	1,000.0	9/5/2012	1,600.0	9/5/2012	2,600.0
9/14/2012	12.0	9/14/2012	12.0	9/14/2012	27.0	9/14/2012	21.0	9/14/2012	42.0
0/1/2012	15.0	10/1/2012	12.0	10/1/2012	33.0	10/1/2012	48.0	10/1/2012	55.0
2/12/2012	6.0	12/12/2012	15.0	12/12/2012	6.0	12/12/2012	15.0	12/12/2012	130.0
/15/2013	3.0	1/15/2013	3.0 K	1/15/2013	3.0	1/15/2013	6.0	1/15/2013	21.0
3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	3.0 K	3/12/2013	3.0	3/12/2013	3.0 K
/4/2013	3.0	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	3.0 K	4/4/2013	9.0
/9/2013	3.0	4/9/2013	3.0 K	4/9/2013	3.0 K	4/9/2013	9.0	4/9/2013	15.0
/28/2013	15.0	5/28/2013	21.0	5/28/2013	24.0	5/28/2013	140.0	5/28/2013	1,200.0
/22/2013	3.0	7/22/2013	9.0	7/22/2013	3.0 K	7/22/2013	21.0	7/22/2013	9.0
/19/2013	3.0	8/19/2013	3.0 K	8/19/2013	30.0	8/19/2013	100.0	8/19/2013	93.0
0/7/2013	12.0	10/7/2013	12.0	10/7/2013	9.0	10/7/2013	83.0	10/7/2013	160.0
1/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	3.0 K	11/21/2013	24.0	11/21/2013	39.0
2/6/2013	3.0	12/6/2013	3.0 K	12/6/2013	3.0 K	12/6/2013	6.0	12/6/2013	6.0
/16/2014	3.0 K	1/16/2014	3.0 K	1/16/2014	3.0	1/16/2014	9.0	1/16/2014	12.0
/18/2014	3.0	3/18/2014	3.0 K	3/18/2014	6.0	3/18/2014	3.0 K	3/18/2014	3.0 K
/3/2014	3.0 K	4/3/2014	3.0 K	4/3/2014	3.0 K	4/3/2014	9.0	4/3/2014	30.0
/12/2014	9.0	5/12/2014	3.0 K	5/12/2014	9.0	5/12/2014	15.0	5/12/2014	83.0
/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	3.0 K	5/27/2014	12.0

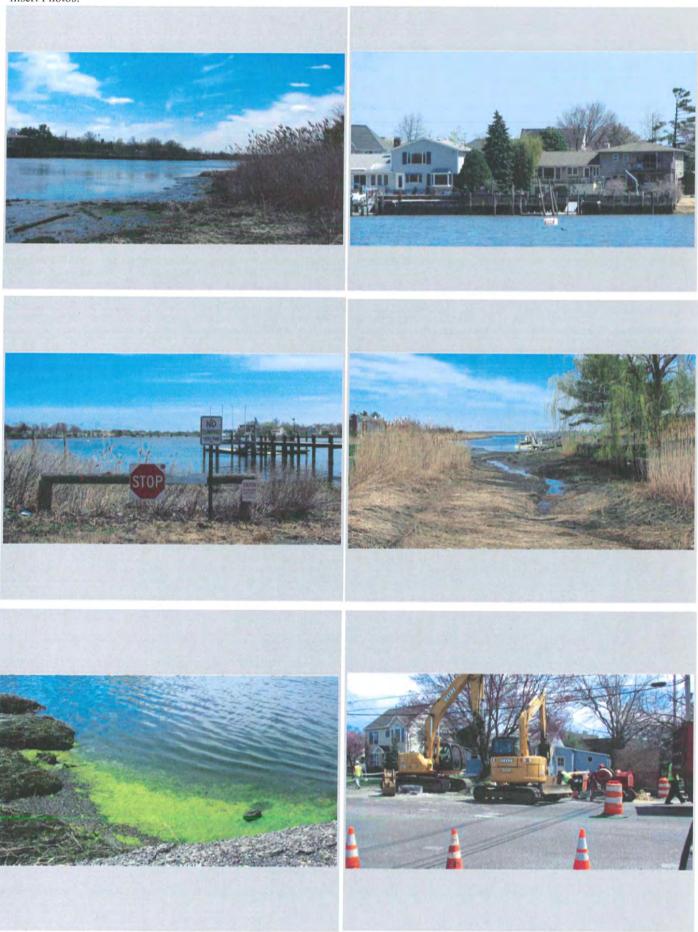
Report Area: NE3

Geo Mean	(YR): 58.2
Est 90th (Y	R): 560.7
# Samples	
65.6%	> 35
ShellClass:	Р
Date	Results
3/3/2011	36.3
4/20/2011	17.7
5/4/2011	392.9
6/13/2011	1,460.5 L
8/3/2011	36.3
9/28/2011	161.2
10/25/2011	57.0
11/15/2011	17.7
11/30/2011	392.9
2/8/2012	3.0 K
3/21/2012	27.0
4/17/2012	39.0
8/1/2012	830.0
9/5/2012	1,500.0
9/14/2012	350.0
10/1/2012	110.0
12/12/2012	70.0
1/15/2013	87.0
3/12/2013	3.0
4/4/2013	3.0
4/9/2013	9.0
5/28/2013	1,000.0
7/22/2013	39.0
3/19/2013	100.0
0/7/2013	190.0
1/21/2013	48.0
2/6/2013	12.0
/16/2014	21.0
3/18/2014	3.0 K
/3/2014	30.0
5/12/2014	97.0
/27/2014	61.0

E. Marina Map Key

Map Key	Marina Name	Estimate # of Slips
0	Breakwater Cove Condominiums	25
1	Weston's Marina	28
2	Wharfside Manor Condos	79
3	Atlantis Yacht Club	55
4	Channel Club Marina	146
5	Monmouth Sailing Center	135
6	Pattern Point Yacht	75
7	Long Branch Ice Boat	60
8	Mariners Emporium	78
9	Marina Bay Condos	72
10	Sea Winds Condo	50
11	Pleasure Bay Marina	90
12	Rumson Country Club	33
13	Oceanport Landing	85
14	The Waterways Condos	30
15	Fort Monmouth Marina	73
16	Bridgewater Townhomes	10
17	Carriage House Marina	37
18	Cove Sail Marina	65
19	Chris Landing Condos	50
20	Anglers Marina	54
21	Surfside Marina	55
22	Trade Winds Condos	20
23	Fountains Condos	50
24	Navesink Marina	115

MARINA FACILITIES LOCATED ON THE SHREWSBURY RIVER

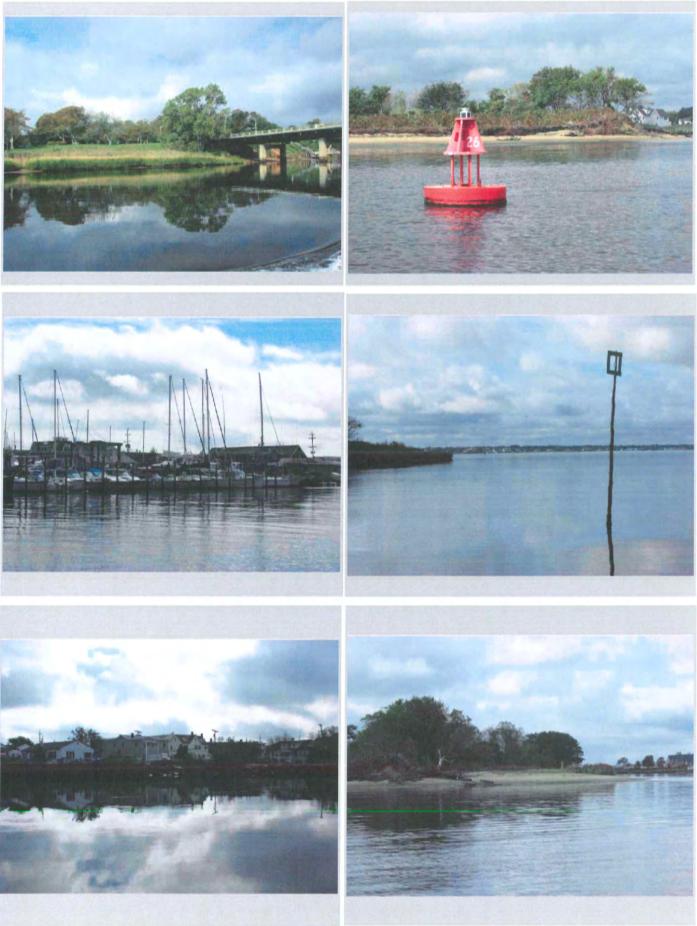

F. Shoreline Survey Reports

SHORELINE SURVEY AREA Shrewsbury River NE3

	EYOR: Tracy Fay		D/	ATE: 4/14/1	1 TIME: 1pm
WEAT	HER CONDITIONS: S	unny			TEMPERATURE: ~56
New St	tormwater Outfalls:				
	General Area	Latitude	Longitude	Diameter	Description (foul odor, damaged, etc.)
1					
2					
3					
4					
6		-			
7					
8		1			
)o you)ucks		imal populations	(migrating bire	ds, horseshoe	crabs , etc.)? Note name and location.
Do you IO.	notice any expansion in l	local marinas? (V	Vithout approa	ching marina	owners) Note name, location, & change
arba	nal Observations and Co ge and debris at low roadwork - couldn't al algae noted in trib	tide. tell if water or			
linima					
linima					
inima					
linima					
linima					

Boat 🗌 Land 🖌 Air 🗌

Insert Photos:



SHORELINE SURVEY AREA Shrewsbury River NE3

	YOR: Tracy Fay		D.	ATE: 9/22/11	TIME: 10am
WEATH	IER CONDITIONS: P	artially Cloudy			TEMPERATURE: ~64
New Sto	rmwater Outfalls:	0			
	General Area	Latitude	Longitude	Diameter	Description (foul odor, damaged, etc.)
1					
2		-			
3					
4					
5	4				
7					
8					
	otice any significant an	imal populations	(migrating bird	ls, horseshoe c	crabs , etc.)? Note name and location.
No.					
NO. Do you ne					crabs , etc.)? Note name and location.
NO. Do you no NO. Additiona		ocal marinas? (W mments (bulkhea	/ithout approac	bing marina d	
NO. Do you no NO. Additiona	otice any expansion in I al Observations and Co	ocal marinas? (W mments (bulkhea	/ithout approac	bing marina d	
VO. Do you no IO.	otice any expansion in I al Observations and Co	ocal marinas? (W mments (bulkhea	/ithout approac	bing marina d	
lO. Do you no lO. dditiona	otice any expansion in I al Observations and Co	ocal marinas? (W mments (bulkhea	/ithout approac	bing marina d	

Boat 🖌 Land 🗌 Air 🗌

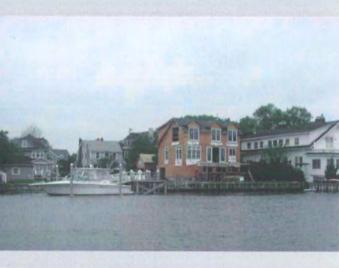
Insert Photos:

SHORELINE SURVEY AREA NE3 Shrewsbury River

New Stormwa	ter Outfalls:					
THE REAL PROPERTY.	eneral Area	Lat	titude	Longitude	Diameter	Description (foul odor, damaged, etc.)
1						
2						
3						
4		<u> </u>				
	성영은 회사에서 가져서 가장했다. 그는			전, 영화 가지 않는 것이 같이 많이 했다.		tline? Note name and location. It have not been repaired also
	any significant and s on Gunning Is		ulations	(migrating bir	ds, horseshoe	crabs , etc.)? Note name and location.
Direct Dischai	·ges:					
Direct Dischar	·ges:	Yes	No			Details
	'ges: arge to Growing Area?	Yes	No V			Details
Any Direct Disch	arge to Growing Area?	Yes	1			Details
Any Direct Disch Plant Survey Con	arge to Growing Area? ducted?	Yes	1			Details
Any Direct Disch Plant Survey Con Improvements Si	arge to Growing Area? ducted? nce Last Survey?	Yes	1			Details
Direct Dischar Any Direct Disch Plant Survey Con Improvements Si Improvements Pla Repairs Since Lag	arge to Growing Area? ducted? nce Last Survey? anned?	Yes	1			Details
Any Direct Disch Plant Survey Con Improvements Si Improvements Pl	arge to Growing Area? ducted? nee Last Survey? anned? st Survey?	Yes	1			Details
Any Direct Disch Plant Survey Con Improvements Si Improvements Pl Repairs Since La Repairs Planned?	arge to Growing Area? ducted? nee Last Survey? anned? st Survey?	Yes	1			Details
Any Direct Disch Plant Survey Con Improvements Si Improvements Pl Repairs Since La Repairs Planned?	arge to Growing Area? ducted? nce Last Survey? anned? st Survey?	Yes	1			Details
Any Direct Disch Plant Survey Con Improvements Si Improvements Pl Repairs Since Lae Repairs Planned?	arge to Growing Area? ducted? nce Last Survey? anned? st Survey? ct Discharge Notes:					Details
Any Direct Disch Plant Survey Con Improvements Si Improvements Pl. Repairs Since Las Repairs Planned? Additional Direct	arge to Growing Area? ducted? nce Last Survey? anned? st Survey?	mments (✓ ✓ ✓ ✓ ✓	ıd, land use, dr	edging, etc.):	Details

Boat 🖌 Land 🗌 Air

Insert Photos:



Seasonal Area

Residential

Wildlife

Gunning Island

Reconstruction

Storm Water Outfalls