IBI Study New Jersey Passaic, Wallkill, Delaware and Raritan Drainages summer (1990-1993)

Participating Personnel:

Report Prepared by:

Approved for the Director By:

U.S. Environmental Protection Agency James Kurtenbach, Aquatic Biologist Michael Chadwick, Student Trainee

James Kurtenbach, Aquatic Biologist Ambient Monitoring Section

Richard D. &ear, Chief Surveillance and Monitoring Branch

Table of Contents

...

.

List of, Figures ii
List of Tables iii
Executive Summaryiv
Background
Development and Description of the IBI 1
Field Collection 3
Sample Processing 5
Measurement of Physical and Chemical Parameters 5
Habitat Assessment6
Using and Interpreting the IBI 6
Testing and Application of the IBI in Northern New Jersey Streams
Methods 13
Study Area ¹⁵
Results and Discussion
conclusions 19
Literature Cited 20
Appendix 1: Fish Data Sheet 22
Appendix 2: Physical Characterization/Water Quality Field Data Sheet23
Appendix 3: Impairment Assessment Sheet 24
Appendix 4: Habitat Assessment Field Sheets 4.1 Habitat Assessment Field Sheet 25 4.2 Habitat AssessmentCoastal Plain Region 26
Appendix 5: Proposed IBI for Northern New Jersey 27
Appendix 6: Freshwater Fishes of New JerseyTrophic Guild, Tolerance and Historical Presence 28
Appendix 7: IBI Sampling Sites 32

List of Figures

1.	Total number of fish species versus watershed area for New Jersey ecbregion reference sites	7
2.	Total number of benthic insectivorous fish species versus watershed area 'for New Jersey ecoregion reference sites _	8
3.	Total number of intolerant fish species versus watershed area for New Jersey ecoregion reference sites	9
4.	Total number of trout and sunfish species versus watershed area for New Jersey ecoregion reference sites	10

List of Tables

a parte de la companya de la company

1.	Requirements for fish sampling based on stream size	4
2.	IBI and water quality data for stream sites sampled during 1990 - 1993	14
3.	IBI and rapid bioassessment protocol data for stream sites sampled during 1988 - 1993	16

Executive Summary

Under the Clean Water Act, states are required to measure status and trends of surface water quality and determine the extent to which waterbodies support balanced biological communities. To date, this has been accomplished through monitoring'programs designed to routinely monitor waterbodies for various chemical, physical and biological parameters. Fish have a long history of use as biological indicators of water quality. For example, the re-establishment of fish populations in waterbodies from which they were once absent, has been used to demonstrate the successfulness of various pollution abatement programs. In addition, to determine the extent and magnitude of chemical contamination in the environment, fish are routinely collected and their tissue analyzed for chemical contaminants. More recently, with the development of the Index of Biotic Integrity (IBI), the use of fish communities is gaining support for assessing environmental quality. The IBI utilizes various ecological attributes of fish communities (i.e., species richness, trophic composition, abundance, fish condition) to assess environmental quality of streams and rivers.

This document reports the findings of a study conducted to evaluate the application and use of the IBI in New Jersey, including several recommendations regarding the use of the IBI as a water monitoring assessment tool.

Fish samplings were conducted over a four summer period (1990 - 1993), at 122 stream sites located in the Passaic, Wallkill, Delaware and Raritan drainages. Stream drainages ranged in size from approximately 5 to 350 square miles. Chemical and benthic macroinvertebrate data were obtained at 30 and 63 sites, respectively, and used to examine their relationship with the IBI.

Study findings suggests the IBI may be limited to screening sites for the detection of seriously degraded conditions., Strong relationships between IBI data and both chemical and benthic macroinvertebrate data were not apparent. Several trends were evident suggesting that some biometrics comprising the IBI may contribute little information to the overall IBI. Like most monitoring tools, it is not recommended the IBI be used to replace information obtained by other monitoring tools, but rather to enhance existing information.

<u>Background</u>

New Jersey like other states, is required to measure status and trends of surface water quality and determine the extent to which waterbodies. support balanced biological communities (Section 305(b) of the Clean Water Act). To accomplish this, the New Jersey Department of Environmental Protection and Energy routinely monitors waterbodies for various chemical, physical and biological parameters. In practice, measurements of these parameters should enable states to determine whether they are meeting the goals of the Clean Water Act. Objectives stated in Section 101 of the Clean Water Act are "to restore and maintain the chemical, physical and biological integrity of the Nation's waters". At the present time, numerous assessment tools are being utilized or proposed for the routine monitoring of surface water quality. Unfortunately, there is substantial controversy regarding the present ability of monitoring programs to document water quality improvements Or declines on a regional and national scale. In response to this concern, a number of recommendations have been made to enhance surface water monitoring, including the application and development of promising biological techniques (U.S. EPA 1987). As an outgrowth of these recommendations and a renewed interest in biological assessments, Environmental Services Division personnel examined the potential application of two newly proposed bioassessment tools: rapid bioassessment protocols (RBP's) and the index of biological integrity (IBI). This report describes our assessment and application of the IBI in northern New Jersey streams. To date, a rigorous analysis of the relationship of the IBI to environmental quality in New Jersey streams has not occurred.

. . .

Develonment and Description of the IBI

The IBI developed by Karr et al. (1986), utilizes various ecological attributes of stream fish communities to assess habitat and water quality. Karr and Dudley (1981) defined biotic integrity as "a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitat of the region". The original IBI was developed for use on small wadable streams located in Illinois and Indiana. More recently, a number of modifications and regional applications of the IBI have occurred (Leonard and Orth 1986; Hughes and Gammon 1987; Miller et al. 1988; Steedman 1988; Lyons 1992). Regional modifications were necessary to account for regional differences in fish distribution and community structure.

The New Jersey version of the IBI described here consists of ten biometrics:

Species Richness and Composition

- 1. Total number of fish species (excluding trout)
- 2. Number and identity of benthic insectivorous species
- 3. Number and identity of trout (non-stocked) and/or sunfish species
- 4. Number and identity of intolerant species
- 5. Proportion of individuals as white suckers

Trophic Composition

- 6. Proportion of individuals as omnivores
- 7. Proportion of individuals as insectivorous cyprinids
- a. Proportion of individuals as non-stocked trout or proportion
- of individuals as piscivores

Fish Abundance and Condition

9. Number of individuals in the sample lo. Proportion of individuals with disease or anomalies

Consistent with Karr et al. (1986), a theoretical framework utilizing several biological metrics is used to assess a fish communities richness, trophic composition, abundance and condition as compared to fish communities found in regional reference streams. Six of Karr's (1986) original twelve metrics: total number of fish species, number and identity of intolerant species, proportion of individuals as omnivores, proportion of individuals as insectivorous cyprinids, number of individuals in sample and proportion of individuals with disease, tumors, fin damage, and skeletal anomalies, were retained for the modified version. Two metrics, number and identity of benthic insectivorous species and proportion of individuals as white suckers (Catostomus commersoni) were taken from (Miller et al. The trophic composition metric, proportion of individuals 1988). as trout or proportion of individuals as piscivores, was developed for use in Vermont (Langdon 1992). Unlike the Vermont IBI, the New Jersey version was modified not to include stocked Abundances of stocked trout in streams often depend on trout. fish angling pressure and numbers of fish stocked, and may not be directly related to environmental quality.

In high quality streams, fish communities have structural and functional characteristics similar to communities found in ecoregion reference streams. Ecoregion reference sites as defined here, are unimpaired (minimal impact) streams in areas of relatively homogeneous ecological systems. In order to calculate the IBI and make an accurate assessment of environmental conditions, a thorough understanding of species richness, composition and condition of a healthy fish community is necessary. When the fish community observed at a site is similar to the expected (based on ecoregional references), environmental degradation is unlikely. Conversely, when the fish community observed deviates from the expected, environmental degradation can be inferred. In streams exhibiting good water quality, fish' communities are represented by high total **species**, **benthic** insectivorous species and intolerant species richnesses. Intolerant species are those fish which are most sensitive to water pollution and habitat alteration. High quality streams are also characterized by balanced **trophic** composition representing species with specialized and generalized foraging behaviors. Further, fish populations are abundant and individual fish are in healthy condition. When stream degradation occurs, total species richness, intolerant species richness and species richnesses of other taxonomic groups decline. The fish community shifts toward species with more generalized feeding'habits. Omnivores often dominate, while insectivorous cyprinids and top carnivores become less numerous. When water quality is severely degraded, fish population abundances are low and **incidences** of disease and **anomalies** are often prevalent.

Field Collection

Primary objectives of the fish collection are to obtain samples with representative species, and abundances, at a reasonable level of effort. Sampling effort is standardized by using similar stream lengths, collection methods, sampling times and habitat types.

Stream segments selected for sampling must have at a minimum, one riffle, run and pool sequence to be considered representative. Approximately equal proportions of these habitats are sampled among sites being compared. Channelized streams may be an obvious exception, as are streams located in central and southern New Jersey, were low gradient precludes typical riffle habitat. In low gradient streams, the sampling requires that stream lenghts encompass major habitat types such as pools, runs, bends and log jams. Determining stream lengths necessary for adequate sampling is based on stream size (Table 1). Streams with drainage areas less than 5 square miles are excluded from IBI scoring because of naturally occuring low species richness. Often streams classified as trout production waters fall into this category. More appropriate assessment methods for these streams include the measurement of trout abundance and/or young of the year production. Benthic macroinvertebrate assessments are also a viable alternative. In addition, atypical habitats such as bridge **crossings**, dams and mouths of tributaries should be avoided, unless the intent of the study is to determine the influence these habitats have on the fish community. Most often, sampling atypical habitats results in the collection of fish species not represented in typical stream reaches. Sampling intermittent streams should also be avoided. These streams require the development of a separate set of IBI scoring criteria.

Table 1. Requirements for fish sampling based on stream size.

Stream Size:	A Moderate to large streams and rivers (5th order or greater)	B Wadeable streams (3rd and 4th order)	C Headwater streams (1st and 2nd order)
Sampling Distance: (meters)	500 m	200-150 m	150 m
Electrofishing Gear:	12' boat	Longline(400'ànd streambank generator pulsator unit	Backpack shocker
Power Source:	5000 watt generator	2500 watt generator	12 volt battery

•

Fish are sampled using electrofishing gear with pulsed direct Direct current is safer, more effective in current output. turbid water and less harmful to the fish. In low conductivity waters (less than 75 umhos/cm), alternating current should be Selection of appropriate electrofishing gear is dependent used. on stream size (Table 1). A typical sampling crew consists of three to four people depending on the gear being utilized. A minimum of two people is required for netting the stunned fish. Electrofishing is conducted by working slowly upstream and placing the electrodes in all available fish holding habitat. Stunned fish should be netted at and below the electrodes as they drift downstream. Long handled nets with sufficient frame width and depth having a $3/16^{H}$ mesh size are utilized. Netters should attempt to capture fish representing all size classes. To maximize fish capture efficiency, all sampling crew members must wear polarized sunglasses to reduce sun glare.

All fish captured are placed in water filled styrafoam coolers located along the streambank. Coolers should be within at least 20 meters of each other. To reduce fish mortality, coolers must contain sufficient water and never be placed in direct sunlight.

Sampling time generally requires two hours per station. This includes the measurement of routine chemical and physical parameters. Sampling is conducted in the daytime, June through early October, during normal or low flows, and never under atypical conditions such as high flows or excessive turbidity caused by significant precipitation. Fish collections made in the summer and early fall are easier, safer and less likely to disturb spawning fish.

Samnle Processing

Fish are identified to the species level, counted, examined for disease and anomalies, released and recorded on fish data sheets in the field (Appendix 1). Only fish greater than 20 mm in length are counted. All fish must be identified accurately to Reference specimens for difficult to identify species. individuals are placed in jars containing 10 percent fomaldehyde and later confirmed at the laboratory using regional taxonomic keys (Stiles 1978: Werner 1980; Smith 1985). Under certain circumstances, the capture of fish using electrofishing gear may result in some fish receiving electrode scares or apparent These fish must be excluded from the backbone deformities. assessment of disease and anomalies. All fish should be handled gently during counting and released immediately to reduce mortality which may result from handling stress.

Measurement of Physical and Chemical Parameters

Physical and chemical measurements of existing stream conditions are recorded on physical characterization/water quality field

data sheets (Appendix 2) (Plafkin et. al. 1989). Additional notes on the absence or presence of aquatic macrophyte, algae, benthic macroinvertebrate species and other pertinent information should be recorded. In addition, when impairment is observed, an impairment assessment sheet (Appendix 3) (Plafkin et. al. 1989) is completed.

Habitat Assessment

Habitat assessments are conducted at every sampling site and all information is recorded on field data sheets (Appendix 4). Habitat assessments provide useful information on probable causes of impairment to instream biota, when water quality parameters do not indicate any limitations. The habitat assessment consists of an evaluation of the following physical features: substrate, channel morphology and streamside cover. Each of these groups is scored and summed to produce a total score which is assigned a habitat quality category: excellent, good, fair or poor.

Usina and Internretina the IBI

Once fish from sample, collections have been identified, counted, examined for disease and anomalies, and recorded, several biometrics are applied to evaluate biological integrity. Fish community analysis is accomplished using a regional modification of the original IBI (Karr et. al. 1986). The modified IBI (New Jersey version) uses the following ten biometrics: 1) total number of fish species, 2) number and identity of benthic insectivorous species, 3) number and identity of trout and/or sunfish species, 4) number and identity of intolerant species, 5) proportion of individuals as white suckers, 6) proportion of individuals as omnivores, 7) proportion of individuals as insectivorous cyprinids, 8) proportion of individuals as nonstocked trout or proportion of individuals as piscivores, 9) number of individuals in the sample and 10) proportion of individuals with disease or anomalies.

Four biometrics require the use of Maximum Species Richness (MSR) MSR lines relate species richness to stream size and lines. environmental quality. For any given stream, species richness is expected to increase with higher environmental quality. Additionally, in a stream with a given level of environmental quality, species richness should increase with stream size. Thus, large sized streams with good water quality should have significantly more species than a small, poor quality stream. MSR lines (Figures 1-4) were developed to show the relationship between species richness and waterbody size in New Jersey. Historical fisheries data (unpublished New Jersey Division of Fish and Game) collected at 126 stream sites located in the Delaware, Passaic and Raritan drainages were used to plot this The fish collection methods and the stream lengths relationship. sampled in the historical study were similar to ours (Table 1).

Pgs. 7-10 Left Intentionally Blank

Using the procedure described in (Karr et al. 1986), MSR lines for each richness metric were drawn with slopes fit by eye to include 95% of the data points. The area under the MSR line is trisected by two diagonal lines.

1

Points located near the MSR line represent species richness approaching that expected for an unimpacted stream. Points falling within the lowest trisected area, furthest from the MSR line, represent the greatest deviation from an ecoregional reference condition. For example, using total species richness (Figure 1), a sample collection resulting in the capture of five total fish species in a stream with a drainage area of 10 square miles, would receive a score of three and have an intermediate deviation from an expected condition.

Trophic composition metrics, unlike the richness metrics, are scored based on a percentage of the total numbers of individual fish captured. The influence of stream size on trophic composition has not been determined for New Jersey streams. In Illinois and Wisconsin streams (Karr 1981; Lyons 1992), trophic composition was not strongly influenced by stream size. Based on these findings, fixed scoring criteria are used on all stream sires found in New Jersey, with the exception of large rivers.

Quantitative scoring criteria were developed for each biometric based upon the degree of deviation: 5 (none to slight), 3 (moderately) 'and 1 (significantly) from appropriate ecoregional reference sites. Scores for the individual biometrics at each sampling location are summed to produce a total score which is then assigned a condition category (Appendix 5). The maximum possible IBI score is 50, representing excellent biological integrity. A score of less than 18 indicates a stream has very poor biological integrity. 10 is the lowest score a site can Trophic guilds, pollution tolerances and origins receive. (exotic or introduced) for each fish species used in calculating the IBI (Appendix 6) were assigned using several fisheries publications (Stiles 1978; Smith 1985; Hocutt et. al. 1986; Karr et. al. 1986: Ohio EPA 1987; Miller et. al. 1988). A description of each biological metric used to measure biological integrity is presented below.

Species Richness and Composition

1. Total number of fish species:

This metric is simply a measure of the total number of fish species identified from a sample collection. A reduction of taxonomic richness may indicate a pollution, problem (e.g. organic enrichment, toxicity) and/or physical habitat loss. Fish species that are least tolerant of environmental change are the first to become absent when water quality degradation increases. 2. Number and identity .of benthic insectivorous species:

Many benthic species require clean gravel or cobble substrate for reproduction and/or living space. Degradation of this habitat from siltation is often reflected by a loss of benthic species richness (Karr et al. 1986). Several benthic fish require quiet pool bottoms and may decline when benthic oxygen depletion occurs (Ohio EPA 1987). Further, reductions of some benthic insectivorous fish may indirectly indicate a toxics problem. Benthic macroinvertebrates are an important food source for benthic insectivorous fish. Their sessile mode of life, make them particularly susceptible to toxicant effects.

3. Number and identity of trout and/or sunfish species:

Sunfish.species numbers decline with pool habitat degradation and loss of instream cover (Gammon et al. 1981; Angermeier 198~3). In coldwater streams where sunfish are absent, trout fill a similar ecological niche and may be used to replace sunfish. Trout are equally, if not more sensitive to habitat degradation. The relationship between trout populations and habitat is well documented (Boussu 1954; Bowlby and Roff 1986).

4. Number and identity of intolerant species:

This metric provides a measure of the fish species most sensitive to environmental degradation. The absence of some fish species occurs when only subtle environmental changes are caused by chemical or physical perturbations. Fish species classified as intolerant should have historical distributions significantly greater than presently occurring populations and be restricted to streams that have exceptional water quality (Karr et al. 1986).

5. Proportion of individuals as white suckers:

White suckers are a common fish species found in small and large streams representing a wide range of water quality conditions. White suckers adapt well to changing environmental conditions and often become dominant at disturbed sites. This metric is generally useful in distinguishing moderately and severely impaired conditions.

Trophic Composition

6. Proportion of individuals as omnivores:

This metric provides information on the dynamics of a stream ecosystem. Often a shift in feeding behavior from specialized to generalized occurs when water quality becomes degraded. For example, excessive nutrient enrichment may result in the proliferation of algae, thus providing an additional food source available for exploitation by fish species with flexible feeding strategies.

7: Proportion of individuals as insectivorous cyprinids:

Cyprinids are the dominant insectivorous group found in northern New Jersey streams and in general, insectivores are the dominant trophic guild found in **lotic** systems. A shift from insectivores to omnivores often indicates poor conditions associated with water quality and/or physical habitat degradation. Similar to the benthic insectivore metric, insectivorous cyprinids may indirectly measure the effects of toxicity.

8.. Proportion of individuals as non-stocked trout or proportion of individuals as piscivores:

Streams with slight or moderate water quality impairment generally contain several top predator fish species. In coldwater streams were true piscivcres are absent, adult trout may be used to replace piscivores.

Fish Abundance and Condition

9. Number of individuals in the sample:

This metric measures the relative abundance of fish captured in a specified area or stream length and is used to distinguish streams with severe water quality impairment. Severe toxicity and oxygen depletion are examples of perturbations often responsible for extremely low fish abundances.

10. Proportion of individuals with disease or anomalies:

This metric provides a relative measure of the condition of individual fish. Similar to metric nine, this fish condition metric is especially useful for distinguishing streams with serious water quality impacts. This metric often detects impacts occurring below subacute chemical discharges or areas highly contaminated by chemicals.

> Testing and Application of the IBI in Northern New Jersey Streams

<u>Methods</u>

Electrofishing surveys were conducted over a four summer period (1990 - 1993), at 122 stream sites located in the Passaic, Wallkill, Delaware and Raritan drainages (Appendix 7). All sampling was performed in the summer and early fall. Stream drainages ranged in sire from approximately 5 to 350 square miles and were determined using information obtained from the United States Geological Survey (Velnich 1982 and unpublished data). Routine chemical and physical parameters (Appendix 2), including the assessment of habitat, were measured in conjunction with fish collections at each site. Data collected from 30 sites (Table 2) Table 2. IBI and water quality data for stream sites sampled during 1990-1 993.

RIVER	DRAINAGE	WQI 1 SCORE		IBI 2 SCORE
Assunpink Creek	Delaware	7	2	40
Bedens Brook	Raritan	42		46
Big Flat Brook	Delaware	19		48
Black Creek	Walikill	51		36
Crosswicks Creek	Delaware	37		42
Doctors Creek	Delaware	45		40
Elizabeth River	Passaic	82		24
Lamington River	Raritan	58		38
Lamington River	Raritan	22		40
Lamington River	Raritan	30		42
Millstone River	Raritan	25		38
Millstone River	Raritan	32		30
Millstone River	Raritan	43		36
Musconetcong River	Delaware	39		38
Neshanic River	Raritan	85		42
Passaic River	Passaic	80		40
Passaic River	Passaic	57		38
Paulins Kill	Delaware	58		44
Paulins Kill	Delaware	32		42
Pequannock river	Passaic	26		38
Rahway River	Passaic	72		38
Ramapo River	Passaic	42		32
Rockaway River	Passaic	86		36
Saddle River	Passaic	8 3		40
South Branch Raritan River	Raritan	35		44
Spruce Run Creek	Raritan	37		42
Wallkill River	Wallkill	26		40
Wanaque River	Passaic	4		34
Whippany River	Passaic	94		36
Wickecheoke Creek	Delaware	51		40

1 On a scale of 0(excellent) to 100(very poor). WOI scores of the worst three months average were taken from the 1990 New Jersey 305(b) report.

2 On a scale of 10(very poor) to 50 (excellent)

were evaluated to determine the relationship between the IBI and a water quality index (WQI). The WQI is a numeric value, ranging from 0 (best) to 100 (worst), used to reflect the composite influence of eight constituents (temperature, oxygen, pH bacteria, nutrients, solids, ammonia and metals) considered most important'in determining water quality. Statistical analysis of the data set was performed using a correlation coefficient statistic. In addition, at 63 sites where IBI data and benthic macroinvertebrate data were collected (Table 3), the data were compared to examine the relationship between the two measures.

<u>Studv Area</u>

Streams selected for sampling were located near or north of the fall line that runs from approximately Trenton to Raritan Bay. This area is divided disproportionately into four ecoregions: Northern Piedmont, North Central Appalachians, Northeastern Highlands and Northeastern Coastal Zone (Omernik 1987). The Peidmont ecoregion comprises the largest percent area. All watersheds have varied land uses consisting of agriculture, forest, suburban development and urbanization. Watersheds heavily influenced by urbanization are located in the Trenton area and northeastern New Jersey. The extreme northwestern and northern portions of the state are predominantly forested. The remaining areas have a mixture of forest, agriculture and residential development.

Results and Discussion

Assessing the IBI as an Indicator of Stream Quality

In our study, stream health as measured by the IBI was not strongly related to an independent measure of water quality, based on WQI scores. Statistical analyses using Spearman Rank Correlation Coefficient measured a weak correlation (Spearmans r =- 0.1677). Correlation with the WQI is negative because WQI scores decrease as water quality increases. This relationship. implies the IBI may not be a sensitive indicator of overall water quality.

A relationship appeared to exist between IBI and RBP scores for streams with degraded, environmental conditions. 18 sites assessed as poor, fair and fair-good using the IBI were assessed as moderately or severely impacted using RBP's. Relationships between the IBI and RBP were unclear at the other end of the water quality scale. At 45 sites environmental conditions measured by the IBI were good, good-excellent and excellent. Concomitant assessments using RBP's determined that 31 sites (69%) and 14 sites (31%) were non-impacted and moderately impacted, respectively. At 31 percent of the sites, assessments of benthic macroinvertebrates appeared to provide a more sensitive indicator of environmental **quality**.

15

RBP Rapid Bioassessment Protocol

Table 3. IBI and rapid bioassessment protocol data for stream sites sampled during 1933-1993.

BIN	JER.

Assunpink Creak Big Flatbrook Big Flatbrook Big Flatbrook Big Flatbrook Big Fiatbrook Bound Brook Bound Brook Bound Brook Capoolong Creek Crosswicks Creek Doctors Creek **Doctors Creek** Drakes Brook Furnace Brook Furnace Brook Green Brook Green Brook Hakihokake Creek Hakihokake Creek Harihokake Creek Lamington River Lamington River Lockatong Creek Middle Brook Millstone River Millstone River Musconetcong River Nishisakawick Creek North Branch Raritan River North Branch Raritan River North Branch Rockaway Creek Passaic River Passaic River Passaic River Paulins Kill River Peapack Brook **Peckmans** River Pequannock River Pequannock River Pequest River Pchatcong Creek **Pompton** River **Pompton** River Ramapo River **Rockaway** River **Rockaway River Rockaway River** South Branch Raritan River Spruce Run Creek Stony Brook Van Campens Brook Wallkill River Wanague River Wanaque River Whippany river Whippany River Whippany River Wickecheoke Creek

DRAINAG	E CONDITION CATEGORY IBI	RBP 1
Delaware	Good	МІ
Delaware	Good to Excellent	NI
Delaware	e Good	NI
Delaware	Good to Excellent	NI
Delaware	Good to Excellent	NE
Delaware	Good to Excellent	NI
Raritan	Fair	MI
Raritan Raritan	Poor Poor to Fair	MI SI
Raritan	Good	Mi
Delaware	Good	MI
Delaware	Fair to Good	MI
Delawar	e Good	NI
Raritan	Excellent	NI
Delaware	Poor	MI
Delaware		NI
Raritan Raritan	Good to Excellent	NI
Delaware	Good Cood to Excellent	MI
Delaware	Good to Excellent Good	NI NI
Delaware	Excellent	NI
Raritan	Good	NI
Raritan	Good	NI
Delaware	Good	NI
Raritan	Good	MI
Raritan	Fair to Good	MI
Raritan	Good	MI
Delaware	Good	MI
Delaware Rantan	Excellent Good	Ni Mi
Baritan	Good	MI
Baritan	Fair to Good	MI
Passaic	Fair	MI
Passaic	Good	NI
Passaic	Good to Excellent	NI
Delaware	Good to Excellent	MI
Raritan Passaic	Good Poo r	NI
Passaic	Fair	MI MI
Passaic	Good	MI
Delaware	Fair	MI
Delaware	Good to Excellent	NI
Passaic	Fair	SI
Passaic	Fair	SI
Passaic	Fair	MI
Passaic	Good	NI
Passaic Passaic	Good Fair to Good	MI
Raritan	Good to Excellent	<i>MI</i> NI
Raritan	Good	MI
Raritan	Good to Excellent	NI
Raritan	Fair to Good	MI
Raritan	Good	MI
Raritan	Good	NI
Raritan	Good to Excellent	NI
Delaware Walikili	Excellent	NI NI
Passaic	Good Good	NI
Passaic	Fair	SI
Passaic	Good	NI
Passaic	Fair to Good	MI
Passaic	Good to Excellent	NI
Delaware	Good	NI

1 Rapid bioassessment protocol condition categories (NI = nonimpacted, MI = moderately impacted, SI = severly impacted) Our testing of the New Jersey version of the IBI, suggests the IBI may be limited to screening sites for the detection of seriously degraded conditions. Fish community and benthic macroinvertebrate assessments are both effective in distinguising sites that have degraded water quality. Based on the poor relationship between IBI and WQI scores, the present version of the IBI is not recommended as an assessment tool for measuring subtle changes in environmental quality. Further, caution must be exercised when solely using the IBI to evaluate stream health. In our study, several site assessments concluded healhty stream conditions using the IBI. In contrast, benthic macroinvertebrate assessments conducted at the same sites suggested moderate impairment.

Assessment of the Metrics:

After applying the New Jersey version of the IBI on 122 stream sites, certain trends were evident regarding each metric's contribution of useful information to the IBI. Inferences drawn here are based on field observations and the review of IBI data, and should not be construed as conclusions supported by rigorous statistical testing and analyses.

Two of the species richness and composition metrics may require additional refinements or adjustments. The number and identity of trout and/or sunfish species metric appears to have limitations when applied to small coolwater and warmwater streams. Sunfish species richness in New Jersey streams is generally poor. Even for larger streams, the maximum number of sunfish species typically captured in our survey was only five species (not excluding <u>Micropterus</u> sp.) Unlike Karr et al. (1986), black basses (<u>Microuterus</u> sp.) were included in the metric, in order to inflate already low centrachid family richness. Our findings concur with other studies that have evaluated regional applications of the IBI. Maintaining the theoretical rationale of the original metric, Miller et al. (1988) replaced the sunfish richness metric with a water column species richness metric. The authors felt it was not possible to use a sunfish richness metric because drainages located in the northeast were typically depauperate of native sunfish species.

Use of the metric on number and identity of intolerant species was problematic. Information on tolerances of individual fish species to environmental perturbations is incomplete and somewhat subjective, especially for freshwater fish found in New Jersey. Karr et al. (1986)' recommended for the purposes of the IBI, assignment of the intolerant class be restricted to 5 to 10% of the total species known to be sensitive to major environmental disturbances (e.g. nutrient enrichment, channelization). In order to meet this requirement, intolerant species assignments developed for other northeastern drainages were used (Miller et al. 1988). Several species, **redfin** pickerel (**Esox** americanus)

and creek chubsucker (Erimyzon Opionowa), although classified as intolerant, were common throughout a range of water quality conditions in our study, and would not appear to represent pollution sensitive species. This discrepency may be explained in part by zoogeographic fish distributions. Redfin pickerel, creek chubsucker and several other fish species originated from the Mid-Atlantic refugia (Hocutt et al. 1986) and are at northern limits of their distribution in the northeast. These species may be rare in the northeast, but not necessarily intolerant of poor environmental conditions. Limited distributions of these species may have been used to falsely infer intolerance. As a result, the intolerant species metric did not contribute significantly to the overall IBI.

Use of the trophic composition metrics, proportion of individuals as omnivores and piscivores, did not contribute significant information to the IBI. Omnivorous fish species are depauperate Golden shiners (Notemioonus crvsoleucas) are the in New Jersey. only native omnivore present in New Jersey, and are generally restricted to lakes and large streams, thus limiting their use in small and intermediate streams. Common carp (Cyprinus carpio), an introduced omnivore with a known tolerance to pollution are Most streams in northern New commonly found in New Jersey. Jersey are typically characterized by having moderate gradients. Common carp, however, do not prefer stream habitats that have significant gradient. Consequently, the 'use of carp in the omnivore metric is limited to use on low gradient streams. POORLY REPRESENTED

Piscivorous fish species are depauperate in New Jersey streams. Chain pickerel (Esox niger), redfin pickerel and the american eel (Anquilla rostrata) are among the only native predatory species. Introduced species such as smallmouth bass (Micropterus dolomieiu) and largemouth bass (Microaterus salmoides) have well established populations and do inflate the richness of total piscivorous species. With the exception of american eels, piscivorous fish abundances were low at most of our collection sites, and probably reflect the depauperate nature of freshwater streams in New Jersey. American eels on the other hand, were abundant in most of the fish collections. The ubiquity of american eels in streams having a wide range of water quality and habitat conditions, limits their use as an indicator of aquatic Overall, the metric, using proportion of individuals as health. piscivores, appeared to contribute insignificantly to the IBI.

Fish abundance as measured by the number of individuals in the sample generally contributes to the IBI scoring. However, when fish capture abundances are very low, IBI scoring may be biased and not representative of the environmental conditions at a site. When abundances are low, the presence and absence of a few individuals can significantly influence metric scores. Lyons (1992) recommended for samples with fewer than 50 fish, an IBI not be calculated, and instead a correction factor be used that subtracts 10 points from the total IBI score. Low fish capture rates alone should provide sufficient evidence of poor biological integrity.

2

Conclusions

The New Jersey version of the IBI described here should be limited to use only as a screening tool for the detection of seriously impaired water quality. Future analysis of our data with replacement metrics for those metrics that were determined to contribute little information, may improve the overall ability of the IBI to detect a broad range of environmental conditions. Like most monitoring tools, the IBI should not be used to replace information obtained by othermonitoring tools, but rather to enhance existing information.

Literature Cited

Angermeier, P.L. 1983. The importance of cover and other habitat features to the distribution and abundance of Illinois stream fishes. Ph.D. Dissertation, University of Illinois, Urbana.

Boussu, M.F. 1954. Relationship between trout populations and cover on a small trout stream. Journal of Wildlife Management 18:229-239.

Bowlby, J.N., and J.C. Roff. 1986. Trout biomass and habitat relationships in southern Ontario streams. Transactions of the American Fisheries Society 115:503-514.

Gammon, J.R., A. Spacie, J.L. Hamelink, and R.L. Kaesler. 1981. Role of electrofishing in assessing environmental quality of the Walbash River, in Ecological Assessments of Effluent Impacts on Communities of Indigenous Aquatic Organisms (J.M. Bates and C.I. Weber, eds.). STP 730, pp. 307-324. American Society for Testing and Materials, Philadelphia, Pennsylvania.

Hocutt, C.H., and E.O. Wiley, editors. 1986. The zoogeography of North American freshwater fishes. John Wiley and Sons, New York, New York, USA.

Hughes, R.M., and J.R. Gammon. 1987. Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries Society 116: 196-209.

Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6):21-27.

Karr, J.R., and D.R. Dudley. 1981. Ecological perspective on water quality goals. Environmental Management 5:55-68.

Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey, Champaigne, Illinois, Special Publication 5.

Langdon, R.W. -1992. Adapting an index of biological integrity to Vermont streams. Presented at the 16th annual meeting of the New England Association of Environmental Biologists at Laconia, New Hampshire, 4-6 March 1992.

Leonard, P.M., and D.J. Orth. 1986. Application and testing of an index of biotic integrity in small, coolwater streams. Transactions of the American Fisheries Society 115:401-415. Lyons, J. 1992. Using the index of biological integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin. U.S. Department of Agriculture, Forest Service, General Technical Report NC 149.

Miller, D.L., P.M. Leonard, R.M. Hughes, J.R. Xarr, P.B. Moyle, L.H. Schrader, B.A. Thompson, R.A. Daniels, X.D. Fausch, G.A. Fitzhugh, J.R. Gammon, D.B. Halliwell, P.L. Angermeier, and D.O. Orth. 1988. Regional applications of an index of biotic integrity for use in water resource management Fisheries 13:3-11.

Ohio Environmental Protection Agency. 1987. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Ohio Environmental Protection Agency, Division of Water Quality Monitoring and Assessment,-Surface Water Section, Columbus, Ohio, USA.

Omernik, J.M. 1987. Ecoregions of the Conterminous United States. Annals of the Association of American Geographers 77:118-125.

Plafkin, J.L., M.T. Barbour, X.D. Porter and S.X. Gross. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Assessment and Watershed Protection Division, Washington, D.C.

Smith, C.L. 1985.~ The inland fishes of New York State. New York State Department of Environmental Conservation, Albany, New York, USA.

Steedman, R.J. 1988. Modification and assessment of an index of biotic integrity to quantify stream quality in southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45:492-501.

Stiles, E.W. 1978. Vertebrates of New Jersey. Somerset, New Jersey, USA.

U.S. Environmental Protection Agency. 1987. Surface water monitoring: a framework for change. Office of Water and Office of Policy Planning and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.

Velnich, A.J. 1982. Drainage areas in New Jersey: Delaware River basin and streams tributary to Delaware Bay. U.S. Department of Interior, Geological Survey, Open File Report 82-572, Trenton, New Jersey.

Werner, R.G. 1980. Freshwater fishes of New York State. Syracuse University Press, Syracuse, New York, USA.

APPENDIX 1

. -

FISH DATA SHEET

Waterbody Name		Location		
County		state Investigators		
Station Number				
Sampling Distance	Sampling Time	Gear Used		
Number of Species	Comments			
Species	Number		Number of Anomalies	
			1	
			<u> </u>	
			[
l			<u>+</u> +	
			++	
			++	
			<u> </u>	

APPENDIX 2

ATTACRMENT III-1 Physical characterization/water quality field data sheet

faterbody Heme			Location		
each/Milepoin	t	State	Latitude/Long Aquatic Ecore		
ounty					
itation Mumber			Investigators	·	
)ate	Ti:	L÷	Affiliation _		
ydrologie Uni			form Complete		
-	vey				
	····				
HISICAL CHARA	CTERIZATION	• ·			
IPARIAN IONE/WAT	<u>117</u>				
redominant Surre	cending Land Use:	· ·			
orest Field	d/Fasture Agricultur	al Residential	Commercial In	ndustrial Other	
stimated Strem	Fidth m Estimated	Strem Depth: Riffle	u Ruci	B Pool B	
	m Velocity				-
	Den Fartly Open				
SET IMENT 'STRETTA					
indiment Odors:	Scrael Severe	Petroleum Chemica	1 Anserobic	None Other	
Sediment Dils:	Absent Slight Ho	derate Profuse			
Sediment Deposit	is: Sludge Savdust	Paper Fiber	Sand Relict Shel	ls Other	
taa oba uadaarid	les of scones which are no	a deally embedded bla	ck? Yes Na		
ALC LDE 4202.710					
	<u>Conversio Suberrate Conver</u>	Percent	<u> </u>	Ornamic Substrate Conton	Fercent
		Composition	1		Contesition
Culgeware Time	<u> </u>		Substrare True	<u>Characteristic</u>	in Section Are
			l I Detritus	Sticks, Wood,	
Bedrock Eculder	>256-cm (10 in.)		Deriras	Coarse Plant	
Copble	64-256-mm (2.5-10 in.)		1	Haterials (CPOH)	
Gravel	2-54-m (0.1-2.5 in.)		Huck-Hud	Black, Very Fine	
Senc	0.06-2.00-= (gritty)		1	Organic (FPOM)	
Silt	.30496		! Harl	Grey, Shell	
Clav	<.304-cm (slick)		1	Fragments	
WATER QUALITY					
Sepperature	C Dissolwed Oxyge	n pB	Conductivity	Other	
Instrument(.) D)sed		<u></u>	. <u></u>	
Stream Type: C	Coldwater Varmwater				
Water Odors: N	formal Sevage Pe	croleum Chemical	None Otber		
Water Surface G	Dils: Slick Sheen	Globs Flecks	None		
Turbidity: Cle	ear Slightly Turbid	Turbid Opequ	e Water Color		

WEATEER CONDITIONS

PEDTOGRAPE NUMBER

APPENDIX 3

ATTACHMENT	II-4

INPAIRMENT	ASSESSKENT SEET
Vaterbody Name	Location
Reach/Milepoint	Latitude/longitude
County state	
	Investigators
Date Time	Affiliation
Eydrologic Unit Code	Form Completed By
Reason for survey	
1. Detection of impairment: Imp (Co	oairment detected No impairment omplete items 2-6) detected (Stop here)
2. Biological impairment indicat	tor:
Benthic macroinvertebrates _ absence of EPT taxa	Other aquatic communities
dominance of tolerant g	
low benthic abundance	other
low taxa richness	Macrophytes
other	Slimes Fish
	F1511
3. Brief description of problem	:
	rveys:
ACause: (indicate major cause)) organic enrichment toxicants flow
habitat limitations of	her
5. Estimated area1 extent of pro	blem (\mathbf{m}^2) and length of stream reach
	le:
6. Suspected source(s) of proble	
•	
point source discbarge construction site runo combined sever outfall animal feedlot agricultural runoff urban runoff ground vater other	

Briefly explain:

APPENDIX 4.1

-

.

•

..

-

۰.

.

HABITAT ASSESSMENT FIELD SHEET •

	Condition			
Category/Parameter	Excellent	Good	Fair	Poor
PRIMARYSUBSTRATE AND INSTREAM COVER				
1. bottom substrate and available cover	1640	11-15	6-10	0-5
2. embeddedness	1 6- 20	11-15	6-10	O-S
3. flow/velocity	16-20	11-15	6-10	O-S
SECONDARYCHANNEL MORPHOLOGY				
4. channel • ltcrrtion	12-1s	E-11	4-7	o-3
5. bottom scouring and deposition	12-1s	8-11	4-7	0-3
6. pool/riffle, run/bend ratio	12-1s	. 8-11	4-7	0-3
TERTIARYRIPARIAN AND SANK STRUCTURE				
7. bank stability	9-10	6-8	3-S	o-2
8. bank vegetation	9-10	6-8	3-S	0-2
9. streamside cover	9-10	6-8	3-S	o-2
				<u> </u>

Total Score

······

Condition:

Excellent Good Pair Poor	111 - 135 75 - 102 39 - 66 0 - 30	;	
	Plrfkin cc. 1. 1988.		

9

APPENDIX 4.2

HABITAT ASSESSMENT - COASTAL PLAIN REGION

<u>Habitat Parameters</u>		Condit	lon	
GENERAL CHARACTERISTICS	Excellent	Good	<u>Fair</u>	<u>Poor</u>
1. Channel modification	12-15	8-11	4-7 •	0-3
INSTREAM MEASUREMENTS				
2. Instream habitat	16-20	11-15	6-10	o-5
3. Pool variety	12-15	8-11	4-7	0-3
STREANBANK MEASUREMENTS				
4. Bank stability	12-15	8-11	4-7	0-3
5. Bank vegetative type left edge water right edge water		6-8 6-8		0-2 0-2
RIPARIAN ZONE MEASUREMENTS				
6. Shading	9-10	6-8	3-5	o-2
7. Riparian vegetative: left bank rightbank	4-5 4-5	3 3	2 2	0-1 0-1

column totals: ____

Score:

<u>Condition</u>:

Excellent	88 - 1	105
Good	59 - 8	30
Fair	30 🗕 5	51
Poor	0 - 2	22

APPENDIX 5

Proposed IBI for Northern New Jersey (metrics and scoring criteria)

	Scoring Criteria 5 3 1
Species Richness and Composition:	
 Total number of fish species (excluding trout) 	Varies with stream size
2. Number and identity of benthic insectivorous species	Varies with stream size
3. Number and identity of trout (non- stocked) and/or sunfish species	Varies with stream size
 Number and identity of intolerant species 	Varies with stream size
5. Proportion of individuals as white suckers	<10% 10-30% >30%
Trophic Composition:	
6. Proportion of individuals as omnivores	< 20% 21-4 5% >45%
7. Proportion of individuals es insectivorous cyprinids	>45% 20−45% < 20%
8. Proportion of individuals as non-stocked trout or	>10% 3-10% <3%
Proportion of individuals as piscivores	>5% 1-5% < 1%
Fish Abundance and Condition:	
9. Number of individuals in the sample	> 250 75-250 < 75
10.Proportion of individuals with disease or anomalies	<2% 2- 5% >5%
Condition Categories:excellent50-47good to excellent46-43good42-38fair to good37-35fair34-30poor to fair29-27poor26-21very poor to poor20-18very poor<18	

APPENDIX 6

Freshwater Fishes of New Jersey

	Trophic Guild	Tolerance	Historical Presence
Petromyzontidae:			
American Brook Lamprey	_		77
(Lampetra appendix)	F	-	N
(Detromyzon marinug)	П	_	N
(Petromyzon marinus) Acipenseridae:	P	—	IN
Atlantic Sturgeon			
(Acipenser oxyrhynchus)	BI	-	N
Shortnose Sturgeon			
(A. brevirostrum)	BI	-	N
Lepidosoteidae:			
Longnose Gar			
(Lepisosteus osseus)	P	-	N
Amiidae:			
Bowfin			
(Amia calva)	P	-	Ε
Anguillidae			
American Eel	_		
(Anguilla rostrata)	P	-	Ν
Clupeidae:			
Blueback Herring	PL	_	NT
(Alosa aestivalis) Hickory Shad	РЦ	-	Ν
(A. mediocris)	I/P	-	Ν
Alewife	-/-		IN
(A. psendoharengus)	PL	-	Ν
American Shad			
(A. sapidissima)	PL		Ν
Gizzard Shad			
(Drosoma cepedianum)	0	-	Ν
Salmonidae:			
Rainbow Trout	_		
(Oncorhynchus mykiss)	I/P	-	E
Brown Trout	- /5		_
(Salmo trutta)	I/P	-	E
Brook Trout	T / D	то	NT
(Salvelinus fontinalis) Lake Trout	I/P	IS	Ν
(S. namaycush)	Р		E
Osmeridae:	Ŧ		Е
Rainbow Smelt			
(Osmerus mordax)	I		Ν
Umbridae:	-		11
Eastern Mudminnow			
(Umbra pygmaea)	I	-	Ν
· ····································			

Esocidae:			
Redfin Pickerel	_	10	N
(Esox americanus)	P	IS	N
Northern Pike	-		P
(E. lucius)	P		E
Chain Pickerel	P	та	N
(E. niger)	P	IS	IN
Muskellunge	Р		Е
(E. masguinongy)	P		Б
Cyprinidae: Goldfish			
(Carassius auratus)	0		Е
	U		12
Carp (Cyprinus carpio)	0		Е
Culips Minnow	U		11
(Exoglossum maxillingua)	BI	IS	N
Eastern Silvery Minnow	DI	10	1
(Hybognathus regius)	н	IS	N
Golden Shiner		10	
(Notemigonus crysoleucas)	0		N
Comely Shiner	Ū		
(Notropis amoenus)	I		N
Satinfin Shiner	-		
(cyprinella analostana)	I		N
Bridle Shiner			
(Notropis bifrenatus)	I		N
Ironcolor Shiner			
(N. chalybaeus)	I		N
Common Shiner			
(Luxilis cornutus)	I		N
Spottail Shiner			
Notropis hudsonius)	I		N
Shallowtail Shiner			
(N. Procne)	-		N
Spotfin Shiner			
(Cyprinella spiloptera)	I		N
Fathead Minnow			
(Pimephales promelas)	0		E
Bluntnose Minnow			
(P. notatus)	0		N
Blacknose Dace			
(Rhinichtys atratulus)	BI		N
Longnose Dace			
(R. cataractae)	BI		N
Creek Chub	_		
(Semotilus atromaculatus)	I		N
Fallfish	_		
(S. corporalis)	I		N
Catostomidae:			
White Sucker			NI
(Catostomus commersoni)	BI		N
Longnose Sucker			

· -

(C. catostomus) Creek Chubsucker	BI		Ν
(Erimyzon oblongus)	BI	IS	N
Northern Hog Sucker			
(Hypentelium nigricans)	BI	IS	N
Ictaluridae:			
White Catfish	- / ~		N
(Ameiurus catus) Black Bullhead	I/P		N
(A. melas)	BI		Е
Yellow Bullhead	DI		12
(A. natalis)	BI		N
Brown Bullhead			
(A. nebulosus)	BI		Ν
Channel Catfish			
(Ictalurus punctatus)	I/P		E
Tadpole Madtom			
(Noturus gyrinus)	BI	IS	N
Margined Madtom	DT	70	N
(N. insignis) Aphredoderidae:	BI	IS	IN
pirate perch			
(Aphredoderus sayanus)	I		Ν
Cyprinodontidae:			
Banded Killifish			
(Fundulus diaphanus)	I		N
Poeciliidae:			
Mosguitofish	_		_
(Gambusia holbrooki)	I		E
Gasterosteidae: Fourspine Stickleback			
(Apeltes guadracus)	I		N
Threespine Stickleback	-		
(Gasterosteus aculeatus)	I		Ν
Ninespine Stickleback			
(Pungitius pungitius)	I		N
Moronidae:			
white Perch	T (D		
(Morone americana)	I/P		Ν
Striped Bass (M. saxatilis)	Р		Ν
Centrarchidae:	P		TN
Mud Sunfish			
(Acantharchus pomotis)	I		Ν
Rock Bass			
(ambloplites rupestris)	I/P	IS	Е
Blackbanded Sunfish			
(Enneacanthus chaetodon)	I		Ν
Bluespotted Sunfish	-		
(E. gloriosus) Banded Sunfish	I		N
(E. obesus)	I	IS	N
	Ŧ	TO	ТИ

Green Sunfish			_
(Lepomis cyanellus)	I/P	-	E
Pumpkinseed	-	_	N
(L. gibbosus)	I	_	IN
Bluegill	I	-	Е
(L. macrochirus) Redbreasted Sunfish	Ŧ	`	
(L. auritus)	I	-	' N
Smallmouth Bass	-		
(Micropterus dolomieui)	I/P	-	Е
Largemouth Bass	-/-		
(M. salmoides)	P	-	Е
White Crappie			
(Pomoxis annularis)	I/P	-	E
Black Crappie			
(Pomoxis nigromaculatus)	I/P	-	E
Percidae:			
Swamp Darter			
(Etheostoma fusiforme)	BI	IS	Ν
Tessellated Darter			N
(E. olmstedi)	BI		Ν
Yellow Perch	_ /_		Ν
(Perca flavescens)	I/P		IN
Logperch (Percina caprodes)	BI		Ν
Shield Darter	DI		
(P. peltata)	BI		Ν
Walleye			
(Stizostedion vitreum)	Р		Е
Cottidae:	_		
Slimy Sculpin			
(Cottus cognatus)	BI	IS	Ν

Abbreviations:

BI = Benthic Insectivore or Invertivore
E = Exotic
F = Filter Feeder
H = Herbivore
I = Insectivore
IS = Intolerant Species
N = Native
0 = Omnivore
P = Piscivore

PL - Planktivore

APPENDIX 7

CONDITION Good to Excellent

Good to Excellent

Good to Excellent Good to Excellent Good to Excellent

Good to Excellent Fair to Good Good

Good to Excellent

Good to Excellent Good to Excellent Fair to Good Good Poor

Good to Excellent

Good Fair to Good Good Excellent Poor Poor Poor Good Poor to Fair Good to Excellent

Good Good

Good to Excellent Excellent Good Fair Good Good Good Good Good Poor Good Good Fair Fair to good Good Fair Good Fair Good

Good Good Good Good

Good Excellent

Good

Poor Fair to Poor Fair Fair Good Good

WATERBODY Alexauken Creek
Ambrose Brook
Assunpink Creek Bear Creek
Bear Creek Bear Creek
Beaver Brook Beaver Brook
Bedens Brook
Bedens Brook Big Flat Brook
Big Flat Brook
Big Flat Brook Big Flat Brook Big Flat Brook
Big Flat Brook
Black Creek Black River
Blair Creek Bound Brook
Bound Brook Bound Brook
Bound Brook Canoe Brook
Capoolong Creek
Capoolong Creek Clove Brook
Clove Brook
Crooked Brook Crosswicks Creek
Cuckles Brook
Dead River De" Brook
Doctors Creek Doctors Creek
Drakes Brook
Elizabeth River Elizabeth River
Elizabeth River
Furnace Brook Furnace Brook
Goffles Brook
Green Brook Green Brook
Hakihokake Creek Hakihokake Creek
Hakihokake Creek Harihokake Creek
Harrisons Brook
Hohokus Creek Holland Brook
Lamington River Lamington River
Little Flat Brook
Lockatong Creek Lopatcong Creek
Meadow Brook
Middle Brook Millstone River
Millstone River
Millstone River Molly Ann Brook
Musconetcong River
Musquapsink Creek Neshanic River

DATE	LOC	ATION
18-Aug-		oute 29 (S1)
18-Oct-		ose-Doty's Park (Off Centennial Ave.) (SC)
OQ-Jon-		ssunpink Ave. (S1)
		eam of Bear Creek Rd. (SC1)
10-Oct-		stream of Shades of Death Rd. (SC2)
2-Oct-9 13-Aug-		each Glen Rd. (SI) stream of Lake Just It Rd. (SB)
08-Aug		ver Road Downstream of Pike Run con. (SB2)
08-Aug	-	stream of Co. Hwy 601 (Great Road) (SB1)
26-July		istream)
26-July-	•	
05-Jul-		atbrook Road (S1)
IO-Jul-9		eam of Hwy 521 (S2)
IO-Jul-9		615 and Brook Road (S3)
06−Aug	-93 Ds H	vy. 644 (SI)
23-Jul-		ighter Rd. (SI)
14-Aug		eam unpaved bridge off Co. Hwy 602 (SB)
22-Jul-	,	ent to RR Ds of Lakeview Ave. (SB)
17-Jun-		stream of Lakeview Ave. (SI)
17-Jun-		stream of Prospect Ave. (S2)
21 – Jul –		eam of Hobart Rd. (SI)
1 -Aug- 26−Sep -		eam of White Bridge Rd. (SI) eam of Lower LandsdownRoad above R.R. (SF)
04-Sep		stream of Discharge (SB2)
04-Sep		eam of Discharge (SB1)
02-Oct-		stream of Horseneck Rd. (SC)
12-Jul-		ovince Line Rd. (S1)
11 – Jun -	-93 Us M	UA Discharge (sl)
22-Aug-		ay between Allen Rd. and Hwy 512 (SB1)
16-Oct-		eam of Cooper Rd. (SB)
07-Oct-	•	eam from Crosswicks Hamilton Square Rd. (SA2)
07-Oct-		eam of Co. Hwy 524 (SA1)
13-Aug 18-Jun-		ent to West Morris High School (SG) eam of U.S. Hwy 76 (SI)
18-Jun-		stream of Union Ave. (S2)
05-Aug		Dnant Street, downstream of Salem Rd. (S3)
23-Aug		eam Pequest Rd. Downstream of RR grade
23-Aug		stream of Hwy 31 (SD1)
10-Aug		Hadeon Rd. (S1)
15-Jul-		n Brook Park Us of Stony Brook (SA2)
15-Jul		ew Providence Rd Ds of Blue Brook (SA1)
OQ-Aug		d Park (SI)
08-Sep		stream of Water Street (SI)
15-Jul-		NY 619 (S1)
01 - Aug 17 - Oct-		Istream of Hwy 512 & Us of the Dead River (SC1) Istream of Wykoff Rd. (SF1)
16-Jul-		eam of Hwy 202 (SB)
08-Oct-		cCans Mill Rd. (Ds. Potterstown STP) (S1)
17-Jun-		wy. 620 (Ds) (S2)
04-Aug		eam of Ennis Rd. (SI)
23 - Jul -		eam of Co. Hwy 519 (SC)
03–Aug		-burg STP (SI)
16-Aug		lighland Ave. (S1)
13-Jul-		hompson Rd. (SI)
26-Jul-		lillstone Rd. (SI)
30 - Jun		auseway Rd. (S2)
06-Oct- IO-Aug		iver Rd. at Stony Brook STP (SI) reakness Rd. (SI)
24-Jul-9		ettstown behind K-Mart (SE)
II-Jul-		leyer Place, off Sand Rd. (SI)
03-Jun-		ack Point Rd. (SI)

Neshanic River	03–Jun–93	Cff Kuhl's Rd. (S2)
Nishisakawick Creek	oe-Sap-92	Upstream of Kingwood Ave. (S1)
N.B. Raritan River	14-Aug-90	Downstream of Hwy 202 (SA)
N.B. Rockaway Creak	14-Aug-91	Off Rockaway Road (SD)
N.B. Rockaway Creek	31 -July-90	Off Rockaway Rd. (SI)
Papakating Creek	05-Aug-93	Us Plains Rd. (SI)
Pascack Creek	22-Jul-92	CM Brookside Ave. (SI)
Passaic River	15-Jun-93	Off Popular Drive (SI)
Passaic River	15-Jun-93	Off Thackery Rd. (S2)
Passaic River	21 -Aug-90	Upstream of Hwy 202 (SA1)
Passaic River	06-Aug-91	Downstream of Summit Ave.(SA3)
Passaic River	06-Aug-91	Downstream of Stanley Road below USGS st. (SA2)
Paulinskill River	Ol-Jul-93	Off Hwy. 94 (S2)
Paulinskill River	01 – Jul – 93	Ds Smith Hill Rd. (S1)
Peapack Brook	13-Aug-90	Off Hwy 206 Ds of RR crossing (SB)
Peckmans River	22-Jun-92	Downstream of Pompton Ave. (\$1)
Pequannock River	17-Jul-90	Off Garde" Rd. (SG2)
Pequannock River	20-Sep-90	Off Rt. 23 adjacent to Silas Co. Park (SG1)
Pequest River	30-Jul-91	Off Cemetery Rd. (SA)
Peters Brook	I I -Ju"-93	Ds Hwy 612 (S1)
Pike Run	09-Oct-91	Downstream of the Mill Pond Dam and Road (SA)
_		
Pohatcong Creek	09-Jul-93	Ds Tunnel Hill Rd. (\$1)
Pompton River	16-Jun-93	Off Riverside Drive (S1)
Pompton River	16-Jun-93	Off N. Pequannock Ave. (S2)
Preakness Brook	03-Aug-92	Downstream of Ratzer Rd. (S1)
Rahway River	5-Aug-92	Off Washington Ave. (SI)
Rahway River	16-Jun-92	Downstream of Millburn Ave. (S2)
Rahway River (Trib)	16-Jun-92	Downstream of Meisel Ave. (S1)
Ramapo River	OS-Aug-92	Off Hwy 202 on Ramapo Valley Reservation (S1)
Rockaway River	16-Jul-90	Downstream Berkshire Rd Bridge off Taylor Rd (SA1)
Rockaway River	16-Jul-90	Off Berkshire Rd. (SA2)
Rockaway River	07-Aug-92	Off River Rd. adjacent to Knoll Golf Course (S1)
Royce Brook	OQ-Ccl-91	Upstream of Hamilton Road (SC)
Saddle River	25-Jun-92	Saddle River Park off Dunkerhook Rd. (S1)
Saddle River	17-Oct-90	Upstream of Lake Rd. (SE1)
Spruce Run Creek	18-Jul-91	Off Hwy 31 Downstream of Rock Run Confluence (SE)
Stony Brook	29-Sep-92	Off Stony Brook Rd Downstream of Mine Rd. (S1)
Stony Brook	20-Jul-93	Us Green Brook (SI)
S.B. Raritan River	07 - Jul - 93	Off 513/US GrayRock Rd. (SI)
S.B. Raritan River	18-Jul-91	Downstream of River Road (SA3)
S.B. Raritan River	27–Sep–90	Upstream of River Road (SA2)
S.B. Raritan River	27-Jul-90	Upstream of River Road (SA2)
S.B. Raritan River	04-Oct-91	Downstream of Flanders-Drakestown Road (SA1)
S.B. Raritan River	8-Oct-91	Tarn Site (downstream)
S.B. Raritan River	8-Oct-91	Tarn Site (upstream)
S.B. Rockaway Creek	16-Jul-91	Upstream of Mountain Road (SC)
Third River	20-Jul-92	Off Park Rd., upstream of Chestnut Rd. (S1)
Troy Brook	03-Aug-92	Upstream of South Beverwyck Rd. (S1)
VanCampens Brook	15-Oct-91	Ds of 1st wooden bridge of Old Mine Rd. (SF)
Wallkill River	05-Sep-91	Downstream of Hwy 33 (SA)
Wallkill River	05-Sep-91	Upstream of Hwy 565 (SA2)
Wallkill River	14-Aug-90	Sparta Township Park
Wanaque River	02-Aug-91	Off East Shore Rd. (SD1)
Wanaque River	15-Oct-92	Off Highland Ave. Us of Wanague Val WSA (SI)
Whippany River	31-Jul-91	Between Cedar Knolls and US 267 bridges (SA1)
Whippany River	22-Aug-90	Cff Rt. 24 Mendham, East of Tingley Rd.
Whippany River	31 - Jul - 91	Downstream Whippany Rd. (SA2)
Wickecheoke Creek	23-Jul-91	Off Lower Creek Rd. (SD)
W.B. Papakating Creek	05-Aug-93	DS. Hwy 565 (S1)
The aparating Oreen	00-Aug-75	

Good Excellent Good Good Fair to Good Good Fair to Poor Good Good Good to Excellent Fair Good Good Good to Excellent Good Poor Fair Good Fair Fair to Good Excellent Good to Excellent Fair Fair Good Good Fair Fair to Good Fair Good Good Fair to Good Good Good Good Good Good to Excellent Good Good to Excellent Fair to Good Good Good Good to Excellent Good Fair to Good Fair to Good Fair to Good Good Excellent Fair Good Good Good Fair Fair to Good Good to Excellent Good Good Good

t. t