

INTER-RPO CONSULTATION BRIEFING BOOK

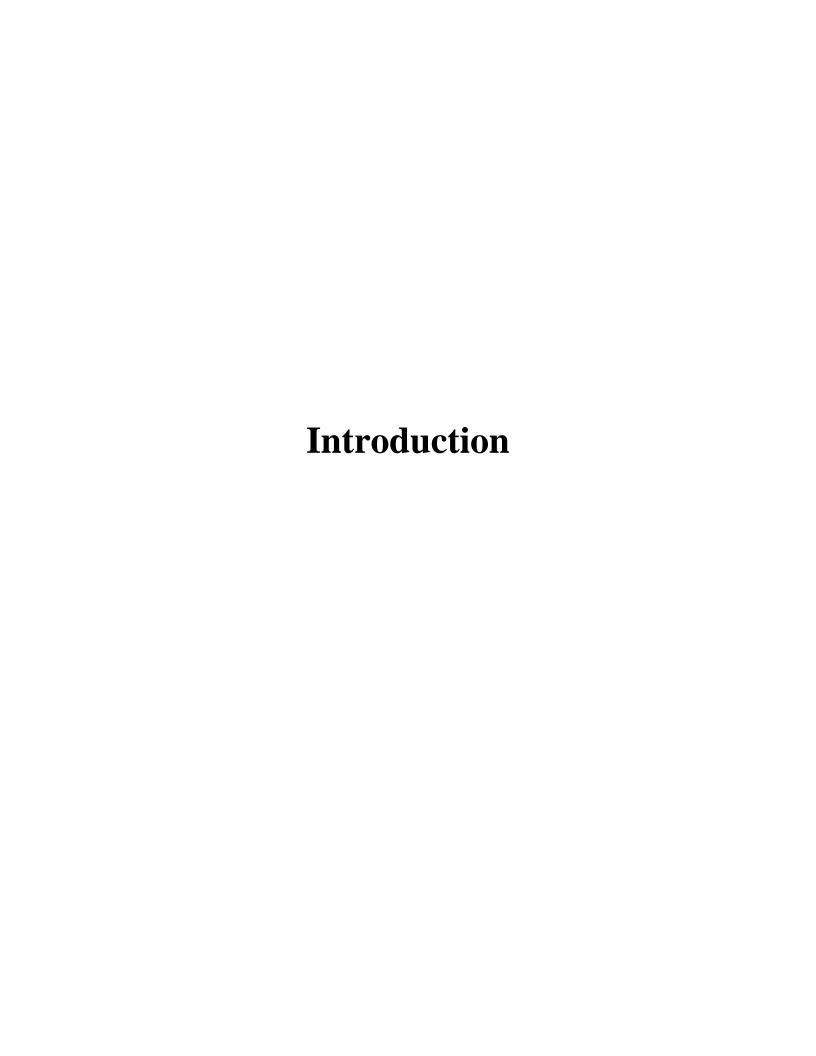

Inter-RPO Consultation Briefing Book

Table of Contents

<u>Tab 1</u> – Introduction
<u>Tab 2</u> – Consultation Overview
<u>Tab 3</u> – MANE-VU Class 1 States' Resolution and MANE-VU Statements
<u>Tab 4</u> – Uniform Rate of Progress
<u>Tab 5</u> – Pollution Apportionment
Tab 6 – BART

- $\underline{\textbf{Tab 7}}$ Technical Support for Reasonable Progress Goals and Long Term Strategies
 - <u>Tab 7A</u> Overview of Control Options and Reasonable Progress Report
 - <u>Tab 7B</u> Approach to Control Measures and EGU Stacks Analysis
 - <u>Tab 7C</u> Summary of MANE-VU's CAIR+ Report

Tab 8 – Summary of Work

I. Background

The States of Maine, New Hampshire, Vermont, and New Jersey have Class I areas in the Mid-Atlantic/Northeast Visibility Union (MANE-VU) region. In preparation for setting reasonable progress goals for their Class I areas, the MANE-VU Class I States are seeking input from the States with emission sources that affect visibility in MANE-VU Class I areas and from Federal Land Managers and EPA. The MANE-VU Class I areas are also seeking input from these other States and agencies concerning strategies that should be adopted to achieve reasonable progress in improving visibility in the MANE-VU Class I areas.

Together with the MANE-VU staff at OTC, NESCAUM, and MARAMA, the MANE-VU Class I States have prepared this briefing book to support the process of consultation with States outside the MANE-VU region and to support consultation with Federal Land Managers. This briefing book is intended to facilitate discussions on an interstate conference call and interstate meetings to be scheduled in July and August 2007. This section presents the consultation requirement and reviews the contents of the briefing book. As detailed below, the consultation process is required by the EPA's Regional Haze Rules (40 CFR 51.300 – 51.309).

As explained in the preamble for the Regional Haze Rules, published in the Federal Register on July 1, 1999 (64 FR 35714) "[t]he EPA expects that much of the consultation, apportionment demonstrations, and technical documentation will be facilitated and developed by regional planning organizations." (See 64 FR 35735). The goals of instituting consultation procedures are mainly:

- 1. To help develop a common technical basis and apportionment for long-term strategies that could be approved by individual State participants and translated into regional haze SIPs for submission to EPA;
- 2. To demonstrate that States are working together to develop acceptable approaches for addressing regional visibility problems to which they jointly contribute; and
- 3. To provide information on areas of agreement and disagreement among States that the Administrator will take into account in the review of a State's implementation plan to determine whether the State's goal for visibility improvement provides for reasonable progress towards natural visibility conditions.

For the purposes of this Briefing Book, the term "consultation" refers solely to the consultation requirements of the Regional Haze Rules, and is not intended to refer to or address the Tribal government/Federal government consultation process.

II. Consultation Requirements Specified in the Regional Haze Rules

The requirements for consultation in the Regional Haze Rules are as follows:

A. Development of the Reasonable Progress Goal:

Section 51.308(d) of the Regional Haze Rules specifies that "-[I]n developing each reasonable progress goal, the State must consult with those States which may reasonably be anticipated to cause or contribute to visibility impairment in the mandatory Class I Federal area.

In any situation in which the State cannot agree with another such State or group of States that a goal provides for reasonable progress, the State must describe in its submittal the actions taken to resolve the disagreement.

In reviewing the State's implementation plan submittal, the [EPA] Administrator will take this information into account in determining whether the State's goal for visibility improvement provides for reasonable progress towards natural visibility conditions." [40 CFR §51.308(d)(1)(iv)].

B. Development of Long-term Strategy:

The Regional Haze Rules provides that – "[w]here the State has emissions that are reasonably anticipated to contribute to visibility impairment in any mandatory Class I Federal area located in another State or States, the State must consult with the other State(s) in order to develop coordinated emission management strategies. The State must consult with any other State having emissions that are reasonably anticipated to contribute to visibility impairment in any mandatory Class I Federal area within the State." [40 CFR § 51.308(d)(3)(i)].

C. State and Federal Land Manager Coordination:

According to Section 51.308(i)(2) of the Regional Haze Rules, ""[t]he State must provide the Federal Land Manager [FLM] with an opportunity for consultation, in person and at least 60 days prior to holding any public hearing on an implementation plan (or plan revision) for regional haze required by this [Subpart P]". The purpose of the consultation in person is to allow the affected FLM to discuss: (1) The FLM's "assessment of impairment of visibility in any mandatory Class I Federal area;" and (2) "Recommendations on the development of the reasonable progress goal and on the development and implementation of strategies to address visibility impairment." [40 CFR §51.308(i)(2)].

The Rules also provides that – "[t]he plan (or plan revision) must provide procedures for continuing consultation between the State and Federal Land Manager on the implementation of the visibility protection program required by [Subpart P], including development and review of implementation plan revisions and 5-year progress reports,

and on the implementation of other programs having the potential to contribute to impairment of visibility in mandatory Class I Federal areas." [40 CFR §51.308(i)(4)].

D. Documentation of Consultation:

Documentation of the consultation process must be included in the Regional Haze SIP submittal. The preamble of the Regional Haze Rules States that "[t]he EPA is requiring States to document their analyses, including any consultations with other States in support of their conclusions...." (64 FR 35721). Formal consultation, as required by the Regional Haze Rules in 40 CFR Part 51, Subpart P, may be built upon prior, documented informal consultations.

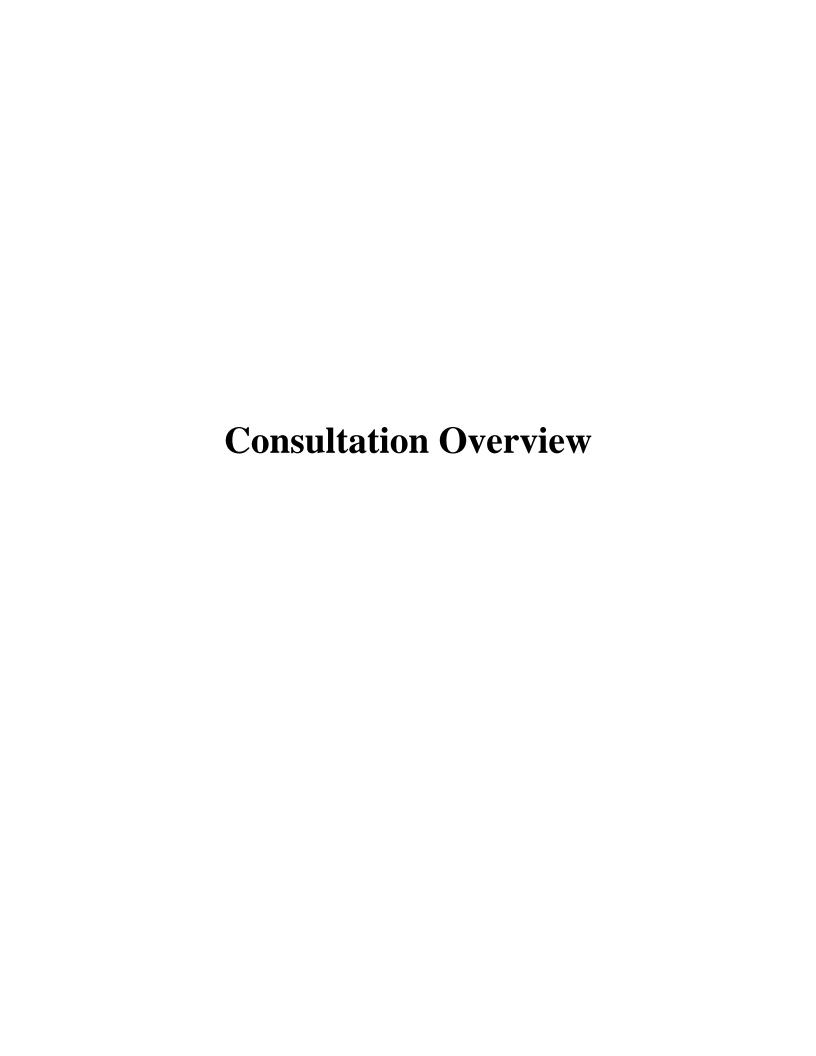
There is a reciprocal and equal obligation by all States to consult with each other. This obligation carries forward into the future at each 10-year comprehensive State implementation plan (SIP) revision milestone. Although there is not an explicit consultation requirement in the regulations for developing the 5-year progress reports that all States must submit to EPA between the 10-year revisions, in acting on any deficiencies in the SIP for achieving reasonable progress, the States must "collaborate" with other States through the regional planning process for the purpose of developing additional strategies to address the plan's deficiencies.

III. Overview of the MANE-VU Inter-RPO Consultation Briefing Book

The primary goal of this Briefing Book is to provide a user-friendly review of MANE-VU's technical work and analyses investigating the nature of the visibility problem, the pollutants and sources contributing to the problem, and possible control measures and strategies to improve visibility. The book is organized into tabbed sections that will allow MANE-VU Class I States to walk our consultation partners through these analytical pieces in a systematic manner from beginning to end, as well as provide a quick reference for locating information responding to specific issues or questions.

Tab 2, "Consultation Overview," includes a brief explanation of the approach that MANE-VU applied in developing a single "consulting group" that encompasses all of the MANE-VU Class I areas. In this tab the reader will also find sample copies of the "intent to consult" letters sent by Maine, New Jersey, New Hampshire and Vermont to the States in the MANE-VU consulting group.

Tab 3, "MANE-VU Class I States' Resolution and Statements," includes four recently approved actions:


- The first is a Resolution adopted by the MANE-VU States with Class I areas outlining the set of principles they will follow in implementing the Regional Haze Rules.
- The second is a Statement that lays out a course of action that MANE-VU, as a region, will pursue toward assuring reasonable progress.

- The third is a Statement that outlines the MANE-VU States' initial ideas
 requesting a course of action by States outside of the MANE-VU region to
 help assure reasonable progress in improving visibility at our Class I areas.
 The course of action described is intended as a starting point for our
 discussions, and will be examined in light of the technical work and findings
 provided by other States during the Technical Call and the in-person
 Consultation Meetings.
- The fourth action is a request that MANE-VU is making of the U.S. Environmental Protection Agency to work with the eastern Regional Planning Organizations to develop a national proposal to achieve additional cost-effective SO₂ reductions.
- Tab 4, "Uniform Rate of Progress," contains Power Point slides illustrating the glide path to natural conditions from 2004 to 2064 for each of the MANE-VU Class I areas, using both the EPA default calculation method for natural conditions and the alternative provided via the new IMPROVE algorithm.
- Tab 5, "Pollution Apportionment," contains a Power Point slide presentation that shows the contribution of various pollutants to visibility extinction on the 20% worst and 20% best days from 2000-2004 at all MANE-VU Class I areas. It also includes a projection of the contribution of these pollutants for 2018.
- Tab 6, "BART," is a section that summarizes the approach that the MANE-VU States are taking in their BART analyses, including an estimate of the potential reductions from BART-eligible sources in the region and possible ranges of controls and costs for SO2 and NOx.
- Tab 7, "Technical Support for Reasonable Progress Goals and Long Term Strategies," comprises 3 subsections. The first, Tab 7A, provides an overview of the potential sources and control options that MANE-VU examined and summarizes the work done by MANE-VU as part of its "Reasonable Progress Goals Project" and report. The second section, Tab 7B, explains MANE-VU's approach to developing a set of regional haze control measures for the 2018 milestone, and includes a detailed discussion of how MANE-VU identified the top EGU stacks whose emissions affect visibility at MANE-VU Class I areas. The information in both Tab 7A and Tab 7B supports the second and third actions that are included in Tab 3 of this briefing book. The third section, Tab 7C, contains a summary of MANE-VU's CAIR+ Report documenting the analysis of the cost of additional SO₂ and NO_x controls at EGUs in the Eastern U.S., which supports the fourth action included in Tab 3 of the briefing book.
- Tab 8, "Summary of Work," is a list of the references, including websites and other location information, for the technical reports and documents supporting MANE-VU's findings and proposed solutions for improving visibility at our mandatory Class I federal areas.

MANE-VU is continuing to develop additional information, and further summaries may be provided for the call or meetings. We recognize the importance of modeling results to assess visibility impacts in 2018.

IV. Conclusion

The MANE-VU Class I States appreciate the time you are taking to review this material and to participate in the technical call and in-person consultation meeting. We look forward to working with you as we establish our reasonable progress goals and together adopt and promote long term strategies that will improve visibility in all of our Class I areas.

MANE-VU Approach to the Development of "Consulting Groups"

On November 1, representatives from each RPO and the FLMs began a dialogue aimed at identifying groups of Class I areas that might serve to focus consultations for purposes of the regional haze rule. While it appears that consultations will be conducted state-to-state, the RPO representatives agreed that there may be a role for the RPO staff in identifying Class I areas with common visibility issues where a joint consultation process might be more efficient. At this point, the focus of the RPO efforts is to help identify common Class I "consulting groups" and leave it to the states involved in any future joint consultation process to discuss details regarding the nature and extent of state contributions to a common Class I group. Another role that the RPOs may play in the process is to assist with the scheduling of consultations so as to ensure that RPO-developed technical products would be ready and available to facilitate state discussions.

The Class I states within the MANE-VU RPO have considered the question of how best to group common Class I areas from the perspective of forming consulting groups. After reviewing monitoring and modeling data related to the sources of visibility impairment for each Class I site, they have proposed an approach that would create a single consulting group that encompasses all MANE-VU Class I sites. The "MANE-VU consulting group" would consist of the Acadia National Park, Maine; Brigantine Wilderness (within the Edwin B. Forsythe National Wildlife Refuge), New Jersey; Great Gulf Wilderness, New Hampshire; Lye Brook Wilderness, Vermont; Moosehorn Wilderness (within the Moosehorn National Wildlife Refuge), Maine; Presidential Range – Dry River Wilderness, New Hampshire; and Roosevelt Campobello International Park, New Brunswick.

The Class I states of MANE-VU recognize some differences between the Brigantine Wilderness and the northern tier of Class I sites in Vermont, New Hampshire and Maine. However, when viewed from the perspective of contributions to sulfate pollution – which is still the dominant form of visibility impairment experienced on the twenty percent worst visibility days at all MANE-VU sites – the group found more similarities than differences and felt that a single consulting group representing all MANE-VU sites offered the best opportunity to engage contributing states in a meaningful consultation process.

MANE-VU, therefore, proposes the addition of the MANE-VU consulting group to those already suggested by the Mid-West RPO in their October 19 memorandum. The revised "Table 1" on the next page reflects the proposed composition of the MANE-VU consulting group in a manner similar to that of the October 19 memo for three other proposed consulting groups. The MANE-VU Class I states are planning to contact those states listed in the proposed consulting group shortly to initiate the consultation process.

RPO	State	MI/MN	AR/MO/KY	VA/WV	MANE-VU
		(BOWA, VOYA, ISRO, SEN)	(UPBU, MINGO, HG, MACA)	(DOSO, SHEN, JRIV)	(ACAD, MOOS, GRGU, LYBR,
MANIENI	G				BRIG)
MANE-VU	Connecticut				X
	Delaware				X
	Maine				X
	Maryland			X	X
	Massachusetts				X
	New Hampshire				X
	New Jersey				X
	New York				X
	Pennsylvania			X	X
	Rhode Island				X
	Vermont				X
VISTAS	Alabama				
	Florida				
	Georgia				X
	Kentucky		X		X
	Mississippi				
	North Carolina				X
	South Carolina				X
	Tennessee		X		X
	Virginia			X	X
	West Virginia			X	X
MRPO	Illinois	X	X		X
	Indiana	?	X		X
	Michigan	X			X
	Ohio			Х	X
	Wisconsin	X			
	** ISCONSIII	A			
CENRAP	Arkansas		X		
	Iowa	X			
	Kansas				
	Louisiana				
	Minnesota	X			
	Missouri	?	X		
	Nebraska				
	Oklahoma				
	Texas				
WRAP	N. Dakota	X			
WINAI	S. Dakota	Λ			
	Other Western States				
	States				
Canada	Manitoba				
	New Brunswick				X
	Ontario	X			X
	Quebec				X
	Other Provinces				

February 26, 2007

Carl Johnson, Acting Exec. Dep. Commissioner 625 Broadway, 14th Floor Albany, NY 12233-1010

Dear Deputy Commissioner Johnson:

I am writing to request your state participate in the development of Maine's regional haze programs under Section 169A of the Clean Air Act. Visibility impairment, or regional haze, is caused by fine particle air pollution from many sources located over a wide region, and is an issue of great importance to both the future of our nation's wild places, and to the health of millions throughout the United States. In Maine, and most of the northeast, regional haze is due primarily to emissions of sulfur oxides (SO_X), organic carbon, and nitrogen oxides (NO_X). Regional haze has reduced visibility in the East by as much as 75% from natural conditions, and the same pollutants that are responsible for visibility degradation also cause a variety of serious health environmental impacts such as cardio-pulmonary disease, and contribute to the acidification of our waters.

The national visibility goal, as set forth in Section 169A of the Clean Air Act (CAA), requires "the prevention of any future, and the remedying of any existing, impairment of visibility in Class I areas which impairment results from manmade air pollution." The 156 Class I areas across the country include many well-known national parks and wilderness areas, such as the Grand Canyon National Park in Arizona and Shenandoah National Park in Virginia. Maine is fortunate to be home to three Class I areas: 1) Acadia National Park; 2) Moosehorn National Wildlife Refuge Wilderness Area; and 3) Roosevelt Campobello International Park. States with Class I areas are required to maintain and improve visibility in these areas to eventually achieve natural background conditions by the year 2064.

The federal regional haze rules implementing Section 169A of the CAA require all states, to prepare State Implementation Plans (SIPs) demonstrating that reasonable progress is being made toward meeting the 2064 visibility goals. The first regional haze SIP is due in December 2007, and for Class I states such as Maine, must include reasonable progress goals for 2018 that have been developed in consultation with any other state having emissions that are reasonably anticipated to contribute to impairment in any of the State's Class I areas. ¹ Future regulations to control air pollutant emissions affecting visibility must be evaluated and included in our regional haze SIPs before setting this first reasonable progress goal. Although future regional haze plans may need to address emissions from a very broad geographic area, for the purposes of this first SIP, we plan to focus our regional haze consultation and planning efforts on a number of eastern states. Appendix 1 provides a listing of these states along with technical justification for their inclusion in our first consultation process.

_

¹ 40 CFR 51.308 (d) (1) (iv)

In an effort to better utilize technical resources and foster inter-state and inter-agency cooperation in regional haze planning, EPA established and is funding Regional Planning Organizations (RPOs). Maine is a member of the Mid-Atlantic Northeast Visibility Union (MANE-VU), which is coordinating plans to reduce regional haze in the Northeast and Mid-Atlantic states. During 2007, MANE-VU will be scheduling consultation meetings with the express intent of establishing reasonable progress goals for the Class I areas in the northeastern states. MANE-VU may also be working with other RPOs to which your State belongs (i.e.; the Mid-West RPO or VISTAS).

I am inviting your state to participate in our consultation process, and to send a representative to future meetings scheduled through our respective Regional Planning Organization. These meetings will provide a forum for discussing the policy and technical foundations behind the establishment of the first reasonable progress goals for the Class I areas of the northeastern United States, and will greatly facilitate the development of a coordinated program to address regional haze that will also significant public health benefits in the form of reduced fine particulate (and precursor) emissions. Please send the name, address and telephone number of the appropriate agency contact person to Jeff Crawford, Maine Department of Environmental Protection, 17 State House Station, Augusta, Maine 04333.

Thank you for considering this request and we look forward to working with you and your staff on this important initiative..

Sincerely,

David P. Littell Commissioner

C:\ James Brooks, ME DEP
Jeffrey Crawford, ME DEP
Arthur Marin, NESCAUM
Susan Weirman, MARAMA
Chris Recchia, OTC
Sandra Silva, USFWS
Tim Allen, USFWS
Bruce Polkowsky, USDA, FS
Randy Moore, USDA, FS
Anne Acheson, USDA, FS
Anne Mebane, UDAA, FS
Chris Shaver, NPS

-

² MANE-VU's members include Connecticut, Delaware, the District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, the Penobscot Nation, the St. Regis Mohawk Tribe, the U.S. Environmental Protection Agency, the U.S. National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), and the U.S. Forest Service (USFS).

Appendix 1

States to be Consulted During the Establishment of Maine's Class I Area 2018 Reasonable Progress Goals

State Technical Justification for Inclusion³

State	recuircal Justification for inclusion					
	MANE-	REMSAD	Q/D	Calpuff	Calpuff	% Time
	VU			NWS	MM5	Upwind
	Member					
Connecticut	X					
Delaware	X					
District of	X					
Columbia						
Georgia			X			
Illinois			X	X		X
Indiana						
Kentucky			X	X	X	X
Maryland	X					
Massachusetts	X					
Michigan		X	X	X	X	X
New	X					
Hampshire						
New Jersey	X					
New York	X					
North Carolina			X		\mathbf{X}	
Ohio		X	X	X	X	X
Pennsylvania	X					
Rhode Island	X					
Tennessee					X	
Vermont	X					
Virginia					X	
West Virginia		X	X	X	X	X

_

³ From the report entitled "Contributions to Regional Haze in the Northeast and Mid-Atlantic United States", prepared by NESCAUM for the Mid-Atlantic / Northeast Visibility Union (MANE-VU), August 2006.

The State of New Hampshire Department of Environmental Services

Thomas S. Burack Commissioner

April 4, 2007

Commissioner/Secretary Address City, State, Zip

Dear Commissioner/Secretary,

As you are aware, New Hampshire is home to two Class I areas as designated under Section 169A of the U.S. federal Clean Air Act. The Great Gulf and the Presidential Range – Dry River Class I areas are located on the beautiful slopes of Mt. Washington, the highest point in the Northeastern United States. While this area is renowned for having some of the most challenging weather in the world, it also is known for providing very impressive vistas, that is, when visibility is not impaired by air pollution. Fortunately for those who visit this region and for those who live and work there, the Regional Haze rule requires that these areas and 154 others nationwide gradually improve visibility, with a goal of achieving natural conditions by 2064. While this ultimate goal is decades away, we begin today by taking reasonable actions and by partnering in consultation with states and Canadian provinces, as needed, to begin planning to take the first steps toward meeting this goal. I write today because we have identified your state or province as one that needs to be part of our collective solution to regional haze in New Hampshire.

According to the Clean Air Act, all U.S. states must submit State Implementation Plans (SIPs) by December 2007 for regional haze, regardless of whether they are home to a Class I area. Under the Act's section 169A (including regulations at 40 CFR 51.300), the regional haze SIP must demonstrate that reasonable progress will be made at nearby Class I areas at 10-year intervals, beginning in 2018. The regulations of 40 CFR 51.308(d)(1)(iv) specify that states with Class I areas should develop reasonable progress goals for their Class I areas and associated measures to meet those goals, in consultation with any jurisdiction that may reasonably cause or contribute to visibility impairment in those areas. The Federal Land Managers for the Class I area are also required to be consulted in this process.

While it is believed by the scientific community that every U.S. state contributes in some way to air pollution in The Great Gulf and the Presidential Range – Dry River Class I areas, we have limited our requests for consultations to only those states and Canadian providences that our analyses indicate have the potential for contributions over certain thresholds for PM_{2.5} and/or sulfate to regional haze in our Class I areas. Beyond this, we are asking all states within our own Regional Planning Organization, the Mid-Atlantic Northeast – Visibility Union (MANE-VU) to consult with us. Because we have asked you to join us in consultation does not necessarily imply that we will be asking for air pollution control beyond measures you may have already identified as necessary for your own state for ozone and PM_{2.5} ambient air standard attainment. By joining us, you can help us shape our regional haze progress goals for 2018 and help play a part in determining the best way to meet those goals for the New Hampshire Class I areas.

We, or a representative from MANE-VU, will be contacting you soon to arrange a consultation meeting. Thank you for your anticipated participation in this consultation and we look forward to working with you and your staff. Should you have any questions, please contact Jeff Underhill of my staff at 603-271-1370 (or email: junderhill@des.state.nh.us).

Sincerely Yours,

Thomas S. Burack Commissioner

Cc: Robert Scott, NHDES Air Resources Division Jeffrey Underhill, NHDES Air Resources Division Anna Garcia, OTC Arthur Marin, NESCAUM Susan Weirman, MARAMA

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION PO Box 402 Trenton, NJ 08625-0402

Tel. # (609) 292-2885 Fax # (609) 292-7695

JON S. CORZINE

Governor

LISA P. JACKSON Commissioner

January 18, 2007

Denise Sheehan, Administrator New York Department of Environmental Conservation 625 Broadway, 14th Floor Albany, NY 12233-1010

Dear Ms. Sheehan,

New Jersey is home to an area designated as a Class I area under Section 169A of the federal Clean Air Act, namely the Brigantine Wilderness area of the Edwin B. Forsythe National Wildlife Refuge. This area is one of 156 Class I areas located throughout the United States. Among the Class I areas in the eastern United States are the Otter Creek Wilderness area in West Virginia, Shenandoah National Park in Virginia, the Cape Romain Wilderness area in South Carolina and Acadia National Park in Maine. States with Class I areas are required to maintain and improve visibility in these areas to achieve natural background conditions by the year 2064. Existing visibility impairment in these Class I areas, also called regional haze, is caused by many sources located over a wide region.

All States, regardless of whether they are home to a Class I area, must prepare a State Implementation Plan (SIP) for Regional Haze by December, 2007, to meet the United States Environmental Protection Agency (USEPA) rules implementing Section 169A of the Clean Air Act (40 CFR 51.300). This Regional Haze SIP must demonstrate that reasonable progress towards improved visibility at the nearby Class I area will be made by certain milestone years. The first milestone year is 2018. The regulations at 40 CFR 51.308 (d) (1) (iv) require States with Class I areas to develop reasonable progress goals in consultation with any State that may reasonably cause or contribute to visibility impairment in the Class I area. This letter is part of New Jersey's consultation process for improving visibility at Brigantine.

Thus we are seeking your consultation on the reasonable progress goal and development of a coordinated emissions management strategy. For the purpose of establishing reasonable progress goals for the first Regional Haze SIP, the New Jersey Department of Environmental Protection has identified several States that may reasonably contribute to visibility impairment at Brigantine³⁵ or

³⁵ From the report entitled "Contributions to Regional Haze in the Northeast and Mid-Atlantic United States", prepared by NESCAUM for the Mid-Atlantic / Northeast Visibility Union (MANE-VU), August 2006.

that are members of the Mid-Atlantic Northeast -Visibility Union (MANE-VU) planning organization. These States and the reason for their inclusion in our first consultation process are listed in the attached Table 1.

Future regulations to control air pollutant emissions that affect visibility must be evaluated and included in our Regional Haze SIPs before setting this first reasonable progress goal for the year 2018. To be as inclusive as possible in this important planning process, this letter is being sent to all States within the eastern United States. We plan to focus our initial planning efforts, and to jointly develop a coordinated emission management strategy to meet the first reasonable progress goal of this first round of SIP development, on the States identified in Table 1.

Regardless of whether your State has been identified as causing or contributing to visibility impairment at the Brigantine Wilderness area, you are invited to send a representative of your State to future meetings to be scheduled through our respective Regional Planning Organizations. At these meetings, establishment of the first reasonable progress goal for the Class I areas of the northeastern United States will be specifically discussed. New Jersey will be working with your State through MANE-VU, a regional planning group formed to coordinate and facilitate the regional haze SIP activities. MANE-VU will also be working with other Regional Planning Organizations (RPOs) to which your State may belong (i.e.; the Mid-West RPO or VISTAS). Please send us the name, address and telephone number of the appropriate person within your organization to contact to inform them of the particulars of the first meeting. Please send this to Ray Papalski, 401 East State Street, P. O. Box 418, Trenton, New Jersey 08625-0418.

Should your staff have any questions on this request or on the technical aspects of this letter, please call Ray Papalski at (609) 633-7225 or e-mail him at ray papalski@dep.state.nj.us. Should you have any questions on New Jersey's plans for the consultation process, please call Mr. Chris Salmi of my staff at (609) 292-6710. Thank you for your anticipated cooperation, and we look forward to working with you and your staff in the near future.

Sincerely yours,

Lisa P. Jackson Commissioner

Attachment

c: Arthur Marin, NESCAUM
Susan Weirman, MARAMA
Chris Recchia, OTC
Raymond Werner, USEPA
Sandra Silva, USFWS
Randy Moore, USDA, FS
Chris Shaver, NPS

Table 1

States to be Consulted on Establishing New Jersey's Class I Area 2018 Reasonable Progress Goals

State Name (alphabetical order)	Technique / Reason for Inclusion ²
Connecticut	MANE-VU member
Delaware	MANE-VU member
District of Columbia	MANE-VU member
Georgia	$> 0.1 \text{ ug/m}^3 \text{ or } > 2\% \text{ Sulfate Contribution}$
Illinois	$> 0.1 \text{ ug/m}^3 \text{ or } > 2\% \text{ Sulfate Contribution}$
Indiana	3 of 5 techniques (Q/D, Calpuff 1 & 2)
Kentucky	> 0.1 ug/m ³ or > 2% Sulfate Contribution
Maine	MANE-VU member
Maryland	4 of 5 techniques (Q/D, Remsad, Calpuff 1 &2)
Massachusetts	MANE-VU member
Michigan	$> 0.1 \text{ ug/m}^3 \text{ or } > 2\% \text{ Sulfate Contribution}$
New Hampshire	MANE-VU member
New York	4 of 5 techniques (Q/D, Remsad, Calpuff 1 &2)
North Carolina	4 of 5 techniques (Q/D, Remsad, Calpuff 1 &2)
Ohio	All techniques
Pennsylvania	All techniques
Rhode Island	MANE-VU member
South Carolina	$> 0.1 \text{ ug/m}^3 \text{ or } > 2\% \text{ Sulfate Contribution}$
Tennessee	$> 0.1 \text{ ug/m}^3 \text{ or } > 2\% \text{ Sulfate Contribution}$
Vermont	MANE-VU member
Virginia	4 of 5 techniques (Q/D, Remsad, Calpuff 1 &2)
West Virginia	All techniques

² From the report entitled "Contributions to Regional Haze in the Northeast and Mid-Atlantic United States", prepared by NESCAUM for the Mid-Atlantic / Northeast Visibility Union (MANE-VU), August, 2006. This table lists the number of techniques where a state was determined to have a greater impact on visibility levels than New Jersey emissions.

AIR POLLUTION CONTROL DIVISION

Building 3 South 103 South Main Street Waterbury, VT 05671-0402

TEL 802-241-3840 FAX 802-241-2590

July 17, 2007

Gina McCarthy, Commissioner Connecticut Department of Environmental Protection 79 Elm Street Hartford, CT 06106-5127

Dear Commissioner McCarthy:

This letter has two purposes. Its first purpose is to present a brief summary of results of analyses which the State of Vermont , in conjunction with the Regional Planning Organization (RPO) MANE-VU, has conducted to fulfill requirements for the protection of visibility in federally managed areas of the United States known as Class I areas (Section 169A of the Clean Air Act). The analyses indicate that sources of visibility impairing air pollutants in the State of Connecticut, though not contributing at a level currently believed to be significant, will require our consultation with you on strategies addressing regional haze in the Class I Lye Brook Wilderness area located in Vermont.

Its second purpose is to invite you and/or representatives from the department/agency responsible in your state for regulatory air matters, to participate in a consultation process to determine an appropriate mitigation strategy for Lye Brook Wilderness. The consultation process will develop a recommendation for the most cost-effective strategy, agreeable to all jurisdictions involved, for implementation of long-term measures and controls which demonstrate that reasonable progress goals for the Class I area, to be established in Vermont's State Implementation Plan (SIP), will be achieved.

Background:

Environmental Protection Agency (EPA) final regional haze rules promulgated on July 1, 1999 require every state, whether containing a Class I area or not, to develop a SIP describing that state's control commitments (if any) to a long-term strategy for achieving reasonable progress goals (RPGs) in all Class I areas by 2018. 2018 is the end of the first 10 year period in a series of periodic SIP submittals that are required by the rules. The first SIPs under the regional haze rules (40 CFR 51.300) must be submitted to EPA by December 2007. Individual state plans that are developed need to be consistent with each other for them to be effective in achieving the RPGs. The regulations at 40 CFR 51.308 (d) (1) (iv) require a documented consultation process between all states involved in any multi-state strategy aimed at achieving the RPGs. This consultation record is one element required in the SIP of any state such as Vermont which contains one or more Class I areas. This letter serves to initiate the formal consultation process between our two states regarding the strategies to be incorporated in our state SIPs for submittal in December 2007.

Because the development of an effective strategy for mitigation of regional haze will be regional in nature, several other states have also been invited to participate in this consultative process to develop a SIP strategy that demonstrates the RPGs for visibility will be met in Lye Brook Wilderness Area by 2018. Vermont is a member of

the Regional Planning Organization MANE-VU which is comprised of the New England States and New York, New Jersey, Pennsylvania, Delaware, Maryland, and the District of Columbia. All other MANE-VU member states are being invited to consult with Vermont on our SIP strategy. In addition, a total of eleven other states outside of MANE-VU have been identified as having a level of impact on regional haze in the Lye Brook Wilderness area which is considered "significant" for this first round of regional haze SIPs with a 2018 target for RPGs. The attached Table 1 identifies all of the states with which Vermont believes it must consult during this planning period.

Table 1 summarizes the specific analytical results for each state which lead us to believe sources of haze-causing air pollutants in your state contribute significantly to the regional haze experienced at Vermont's Class I area. Over the past three years MANE-VU has conducted a number of studies and used several accepted scientific methodologies to identify the sources of impacts on visibility at all of the Class I areas in the northeast. These have been collected into a technical document entitled "Contributions to Regional Haze in the Northeast and Mid-Atlantic United States" dated August 2006 (http://manevu.org). This information will be available along with other technical study results during our consultative process. All MANE-VU states have determined that they will participate in each of the consultation processes for each of the MANE-VU Class I areas. In that context, if your state is a member of MANE-VU, staff from your state will already be aware of the consultation that has been ongoing internally through committees and workgroups involved in MANE-VU RPO planning efforts.

If your state is not a member of MANE-VU, you are also invited and encouraged to send a representative to future consultation meetings which will be scheduled through contacts between our respective RPOs (MANE-VU, VISTAS, MRPO). These meetings will be held over a period of months in the near future. At the meetings, establishment of the 2018 RPGs for each of the Class I areas in the northeastern U.S. will be discussed and strategies intended to achieve the RPGs will be proposed and defined. Please send us the name, address and contact phone number and/or email address of the appropriate person within your organization to contact when details of the first consultation meeting have been finalized.

The Vermont contact for this consultation process is <u>Paul Wishinski</u>, <u>Air Quality Planning Chief</u> for the <u>Vermont Air Pollution Control Division</u>, <u>Phone</u>: 802-241-3862 <u>Fax</u>: 802-241-2590 <u>email</u>: <u>Paul.Wishinski@state.vt.us</u>. Please contact him if you have any questions about the regional haze planning consultation process that we are formally proposing with this letter.

Sincerely,

Justin Johnson, Deputy Commissioner Department of Environmental Conservation Vermont Agency of Natural Resources

TABLE 1

States to be Consulted on Establishing Vermont's Class I Area 2018 Reasonable Progress Goals and Strategies for Achieving Them

State Name Primary Haze-Causing Significant Impact⁽¹⁾ and/or Other Reason for Inclusion

Connecticut MANE-VU member
Delaware MANE-VU member
District of Columbia MANE-VU member

 $\begin{array}{lll} Georgia & Sources \ impact > 2\% \ Sulfate \ Contribution \\ Illinois & Sources \ impact > 2\% \ Sulfate \ Contribution \\ Indiana & Sources \ impact > 2\% \ Sulfate \ Contribution \\ Kentucky & Sources \ impact > 2\% \ Sulfate \ Contribution \\ \end{array}$

Maine MANE-VU member

 $\begin{array}{ll} \mbox{Maryland} & \mbox{Sources impact} > 2\% \mbox{ Sulfate Contribution} \\ \mbox{Massachusetts} & \mbox{Sources impact} > 2\% \mbox{ Sulfate Contribution} \\ \mbox{Michigan} & \mbox{Sources impact} > 2\% \mbox{ Sulfate Contribution} \\ \end{array}$

New HampshireMANE-VU memberNew JerseyMANE-VU member

 $\begin{array}{lll} \mbox{New York} & \mbox{Sources impact} > 2\% \ \mbox{Sulfate Contribution} \\ \mbox{North Carolina} & \mbox{Sources impact} > 2\% \ \mbox{Sulfate Contribution} \\ \mbox{Ohio} & \mbox{Sources impact} > 2\% \ \mbox{Sulfate Contribution} \\ \mbox{Pennsylvania} & \mbox{Sources impact} > 2\% \ \mbox{Sulfate Contribution} \\ \end{array}$

Rhode Island MANE-VU member

Tennessee Sources impact > 2% Sulfate Contribution
Virginia Sources impact > 2% Sulfate Contribution
West Virginia Sources impact > 2% Sulfate Contribution
Wisconsin Sources impact > 2% Sulfate Contribution
Sources impact > 2% Sulfate Contribution

⁽¹⁾ From the report entitled "Contributions to Regional Haze in the Northeast and Mid-Atlantic United States", prepared by NESCAUM for the Mid-Atlantic / Northeast Visibility Union (MANE-VU), August 2006. The primary criteria Vermont used to identify a state as having a significant impact on Vermont's Class I area was the modeled base-year 2002 state-wide sulfur oxide emission impacts on the ambient sulfate levels predicted at receptors in the Class I area. Any state with a modeled annual average sulfate ion impact greater than 2% of all modeled sulfate ion impacts was considered to have "significant impacts" for purposes of consultation on long-term strategies and reasonable progress goals.

MANE-VU Class I States' Resolution and MANE-VU Statements

Nonvoting Members

U.S. Environmental Protection Agency National Park Service U.S. Flsh and Wildlife Service U.S. Forest Service

MANE-VU Class I Areas

ACADIA NATIONAL PARK

BRIGANTINE WILDERNESS

GREAT GULF WILDERNESS

NH

LYE BROOK WILDERNESS

MOOSELLORN WILL BERNESS

MOOSEHORN WILDERNESS ME

PRESIDENTIAL RANGE DRY RIVER WILDERNESS

ROOSEVELT CAMPOBELLO INTERNATIONAL PARK ME/NB, CANADA Mid-Atlantic/Northeast Visibility Union

MANE-VU

Reducing Regional Haze for Improved Visibility and Health

RESOLUTION OF THE COMMISSIONERS OF STATES WITH MANDATORY CLASS I FEDERAL AREAS WITHIN THE MIDATLANTIC NORTHEAST VISIBILITY UNION (MANE-VU)
REGARDING PRINCIPLES FOR IMPLEMENTING THE REGIONAL HAZE RULE

- WHEREAS the Clean Air Act and EPA's Regional Haze Rules require all States to identify key sources of haze-causing air pollution, develop plans to reduce emissions from those sources, and submit those plans to EPA by December 2007; and
- WHEREAS pollutants that impair visibility also cause unhealthy levels of ozone and fine particle pollution, and both the types of emission sources and major individual emission sources that contribute to visibility impairment in mandatory Class I Federal areas also contribute to unhealthy levels of ozone and fine particle pollution in urban and suburban areas; and,
- WHEREAS implementing controls to improve visibility in national parks and wilderness areas that are mandatory Class I Federal areas will also improve air quality in areas that are not currently attaining the health-based standards for ozone and fine particle pollution; and,
- WHEREAS the Clean Air Scientific Advisory Committee (CASAC) and USEPA staff have recently reviewed the health protection adequacy of the fine particulate and ozone standards and recommended these standards be lowered to more protective levels, and that additional emission controls would be required in order to meet more stringent ambient air quality standards; and,
- WHEREAS all States are required to develop and submit State Implementation Plans (SIPs) to control fine particulates, ozone and Regional Haze with varying dates for attaining a health or welfare standard; and,

444 North Capitol Street, NW ~ Suite 638 ~ Washington, DC 20001 202.508.3840 p ~ 202.508.3841 f www.mane-vu.org

- Allow the regulated community to better plan for the future with greater certainty with regard to air pollution control measures and programs; and
- WHEREAS technical analysis conducted for MANE-VU has identified sulfur dioxide emissions from sources in twenty-three States in the eastern United States as contributing to visibility impairment in the baseline year of 2002 within the MANE-VU mandatory Class I Federal areas (see attached list); and,
- WHEREAS further technical analysis conducted for MANE-VU has identified sulfur dioxide emissions from stacks at key Electric Generating Units (EGUs) as the most significant source of sulfate at MANE-VU mandatory Class I Federal areas in the baseline year of 2002, and
- WHEREAS it is in the best interest of human health and the environment to achieve these reductions as soon as practicable and as required by the Regional Haze rule and Clean Air Act to meet the 2018 planning goal for regional haze:

THEREFORE, be it resolved, that the Commissioners of the States with mandatory Class I Federal areas within MANE-VU will implement the regional haze rule in accordance with a set of principles that set forth a path for a) achieving reasonable progress toward preventing any future, and remedying any existing, impairment of visibility in mandatory Class I Federal areas, and b) leveraging the multi-pollutant benefits that such actions may provide for enhanced public health and environmental protection; and

FURTHERMORE, that the set of principles for implementing the regional haze rule includes the following:

- 1. We will establish reasonable progress goals for the mandatory Class I Federal areas within our borders based upon an identification of existing sources affecting visibility, considering new, existing and planned emissions control measures, and reflecting the requisite 4-Factor Analysis conducted to determine reasonable measures that can be implemented by 2018; and these goals will achieve as much or more visibility improvement as would be achieved by the uniform rate of progress, and
- We invite all States identified as contributing to visibility impairment (listed below)in MANE-VU mandatory Class I Federal areas to review specific proposed measures identified as reasonable according to the 4-factor analysis required by the Regional Haze Rule, and

- 3. We will ask all States identified as contributing to visibility impairment in MANE-VU mandatory Class I Federal areas to make timely emissions reductions consistent with measures determined to be reasonable through the consultation process; and
- In setting our reasonable progress goals, we are assuming all measures determined to be reasonable by the Class I states are implemented in contributing states; and
- 5. Our reasonable progress goals will assume implementation of measures already deemed "reasonable" to meet other requirements of the Clean Air Act within the MANE-VU or Ozone Transport Commission States, and we will seek agreement from other contributing States and areas outside the OTC or MANE-VU regions to implement these measures as well; and
- 6. The invitation to contributing States to review the proposed reasonable measures includes an option of flexibility such that each contributing State could obtain its share of the emission reductions needed to meet the progress goals for the MANE-VU mandatory Class I Federal areas through implementation of other new or expanded rules or programs that will achieve a commensurate or equal level of emission reduction in their State and visibility benefit in the mandatory Class I Federal areas as would have been achieved through implementation of the reasonable measure in the same time frame requested by the MANE-VU States with mandatory Class I Federal areas, and
- 7. We call upon Federal Land Managers responsible for the air quality within our national parks and wilderness areas to identify any State's Regional Haze SIP submittal that is inconsistent with the reasonable progress goals set by Class I States, and to express concerns in writing to the affected States and to EPA during the 60-day SIP review period required by the Regional Haze rule, and
- 8. We call upon the US EPA to act on any inconsistencies between the reasonable progress goals set by the States with mandatory Class I Federal areas and the Regional Haze SIPs of contributing States and to resolve these discrepancies prior to approving the affected States' Regional Haze SIPs and to act on incomplete SIPs in the SIP review process, and
- 9. We will call upon the US EPA to implement any national or regional measures deemed "reasonable" through the consultation process through new or expanded federal rules, and
- 10. Through the consultation process, we will seek near-term commitments to implement new or expanded reasonable measures and long-term

resolve these discrepancies prior to approving the affected States' Regional Haze SIPs and to act on incomplete SIPs in the SIP review process, and

- 9. We will call upon the US EPA to implement any national or regional measures deemed "reasonable" through the consultation process through new or expanded federal rules, and
- 10. Through the consultation process, we will seek near-term commitments to implement new or expanded reasonable measures and long-term commitments in the 10 year or beyond time frame to reduce fine particle, nitrogen oxide, volatile organic compound and sulfur dioxide emissions, and
- 11. We commit to submitting the 5-year progress reports required by the Regional Haze rule as a revision to the initial SIP, and we will use these reports to review the status of measures committed to in initial SIPs, to address unresolved new control programs, to determine the availability and need for new reasonable measures and to adjust the Regional Haze SIP accordingly. The Class I states will rely on adequate Federal funding to comply with this Federal requirement.

Respectfully signed and committed,

The Commissioners of the States with mandatory Class I Federal areas in MANE-VU

New Hampshire

New Jersey

Vaine

22

States within MANE-VU and others Contributing at least 2% of Modeled Sulfate to 2002 Concentrations at MANE-VU mandatory Class I Federal areas

Maine

New Hampshire

Vermont

Massachusetts

Rhode Island

Connecticut

New York

New Jersey

Pennsylvania

Delaware

Maryland

District of Columbia

Michigan

Illinois

Indiana

Ohio

Wisconsin

Kentucky

West Virginia

Virginia

Tennessee

North Carolina

South Carolina

Georgia

Nonvoting Members U.S. Environmental Protection Agency National Park Service U.S. Fish and Wildlife Service U.S. Forest Service

MANE-VU Class I Areas

ACADIA NATIONAL PARK ME

BRIGANTINE WILDERNESS

GREAT GULF WILDERNESS NH

LYE BROOK WILDERNESS

MOOSEHORN WILDERNESS

PRESIDENTIAL RANGE DRY RIVER WILDERNESS

ROOSEVELT CAMPOBELLO INTERNATIONAL PARK ME/NB, CANADA

Mid-Atlantic/Northeast Visibility Union

MANE-VU

Improved Visibility and Health

STATEMENT OF THE MID-ATLANTIC/NORTHEAST VISIBILITY UNION (MANE-VU) CONCERNING A COURSE OF ACTION WITHIN MANE-VU TOWARD ASSURING REASONABLE PROGRESS

The federal Clean Air Act and Regional Haze rule require States that are reasonably anticipated to cause or contribute to impairment of visibility in mandatory Class I Federal areas to implement reasonable measures to reduce visibility impairment within the national parks and wilderness areas designated as mandatory Class I Federal areas. Most pollutants that affect visibility also cause unhealthy concentrations of ozone and fine particles. In order to assure protection of public health and the environment, any additional air pollutant emission reduction measures necessary to meet the 2018 reasonable progress goal for regional haze should be implemented as soon as practicable .

To address the impact on mandatory Class I Federal areas within the MANE-VU region, the Mid-Atlantic and Northeast States will pursue a coordinated course of action designed to assure reasonable progress toward preventing any future, and remedying any existing impairment of visibility in mandatory Class I Federal areas and to leverage the multi-pollutant benefits that such measures may provide for the protection of public health and the environment. This course of action includes pursuing the adoption and implementation of the following "emission management" strategies, as appropriate and necessary:

- timely implementation of BART requirements; and
- a low sulfur fuel oil strategy in the inner zone States (New Jersey, New York, Delaware and Pennsylvania, or portions thereof) to reduce the sulfur content of: distillate oil to 0.05% sulfur by weight (500 ppm) by no later than 2012, of #4 residual oil to 0.25% sulfur by weight by no later than 2012, of #6 residual oil to 0.3 0.5% sulfur by weight by no later than 2012, and to further reduce the sulfur content of distillate oil to 15 ppm by 2016; and
- a low sulfur fuel oil strategy in the outer zone States (the remainder of the MANE-VU region) to reduce the sulfur content of distillate oil to 0.05% sulfur by weight (500 ppm) by no later than 2014, of #4 residual oil to 0.25 0.5% sulfur by weight by no later than 2018, and of #6 residual oil to no greater than 0.5% sulfur by weight by no later than

444 North Capitol Street, NW ~ Suite 638 ~ Washington, DC 20001 202.508.3840 p ~ 202.508.3841 f www.mane-vu.org

2018, and to further reduce the sulfur content of distillate oil to 15 ppm by 2018, depending on supply availability; and

- A 90% or greater reduction in sulfur dioxide (SO₂) emissions from each of the electric generating unit (EGU) stacks identified by MANE-VU (Attachment 1- comprising a total of 167 stacks dated June 20, 2007) as reasonably anticipated to cause or contribute to impairment of visibility in each mandatory Class I Federal area in the MANE-VU region. If it is infeasible to achieve that level of reduction from a unit, alternative measures will be pursued in such State; and
- continued evaluation of other control measures including energy efficiency, alternative clean fuels, and other measures to reduce SO₂ and nitrogen oxide (NOx) emissions from all coal-burning facilities by 2018 and new source performance standards for wood combustion. These measures and other measures identified will be evaluated during the consultation process to determine if they are reasonable and cost-effective.

This long-term strategy to reduce and prevent regional haze will allow each state up to 10 years to pursue adoption and implementation of reasonable and cost-effective NOx and SO_2 control measures.

Adopted by the MANE-VU States and Tribes on 29 Tune 2007

David Littell, Commissioner - Maine Dept. of Environmental Protection

Chair

Nonvoting Members
U.S. Environmental
Protection Agency
National Park Service
U.S. Flsh and Wildlife
Service
U.S. Forest Service

ACADIA NATIONAL PARK
ME
BRIGANTINE WILDERNESS
NJ
GREAT GULF WILDERNESS
NH
LYE BROOK WILDERNESS
VT
MOOSEHORN WILDERNESS

MANE-VU Class I Areas

ME

PRESIDENTIAL RANGE DRY RIVER WILDERNESS

ROOSEVELT CAMPOBELLO INTERNATIONAL PARK ME/NB, CANADA

Improved Visibility and Health

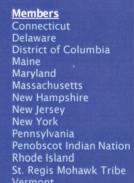
STATEMENT OF THE MID-ATLANTIC/NORTHEAST VISIBILITY UNION (MANE-VU) CONCERNING A REQUEST FOR A COURSE OF ACTION BY STATES OUTSIDE OF MANE-VU TOWARD ASSURING REASONABLE PROGRESS

The federal Clean Air Act and the Regional Haze rule require States that are reasonably anticipated to cause or contribute to impairment of visibility in mandatory Class I Federal areas to implement reasonable measures to reduce visibility impairment within the national parks and wilderness areas designated as mandatory Class I Federal areas. Most pollutants that affect visibility also cause unhealthy concentrations of ozone and fine particles. In order to assure protection of public health and the environment, air pollutant emission reductions required to meet the 2018 reasonable progress goal for regional haze should be achieved as soon as practicable.

To address the impact on mandatory Class I Federal areas within the MANE-VU region, the Mid-Atlantic and Northeast States request that States outside of the MANE-VU region that are identified as contributing to visibility impairment in the MANE-VU mandatory Class I Federal areas pursue a course of action designed to assure reasonable progress toward preventing any future, and remedying any existing, impairment of visibility in mandatory Class I Federal areas and to leverage the multi-pollutant benefits that such actions may provide for the protection of public health and the environment. This request for a course of action includes pursuing the adoption and implementation of the following control strategies, as appropriate and necessary:

- timely implementation of BART requirements; and
- A 90% or greater reduction in sulfur dioxide (SO₂) emissions from each of the electric generating unit (EGU) stacks identified by MANE-VU (Attachment 1- comprising a total of 167 stacks dated June 20, 2007) as reasonably anticipated to cause or contribute to impairment of visibility in each mandatory Class I Federal area in the MANE-VU region. If it is infeasible to achieve that level of reduction from a unit, alternative measures will be pursued in such State; and

444 North Capitol Street, NW ~ Suite 638 ~ Washington, DC 20001 202.508.3840 p ~ 202.508.3841 f www.mane-vu.org


- the application of reasonable controls on non-EGU sources resulting in a 28% reduction in non-EGU SO₂ emissions, relative to on-the-books, on-the-way 2018 projections used in regional haze planning, by 2018, which is equivalent to the projected reductions MANE-VU will achieve through its low sulfur fuel oil strategy; and
- continued evaluation of other measures including measures to reduce SO2 and nitrogen oxide (NOx) emissions from all coal-burning facilities by 2018 and promulgation of new source performance standards for wood combustion. These measures and other measures identified will be evaluated during the consultation process to determine if they are reasonable.

This long-term strategy to reduce and prevent regional haze will allow each state up to 10 years to pursue adoption and implementation, of reasonable NOx and SO₂ control measures.

Adopted by the MANE-VI States and Tribes on 24 June 2007

David Littell, Commissioner – Maine Dept. of Environmental Protection

Chair

Nonvoting Members U.S. Environmental Protection Agency National Park Service U.S. Flsh and Wildlife Service U.S. Forest Service

MANE-VU Class I Areas

ACADIA NATIONAL PARK

BRIGANTINE WILDERNESS

GREAT GULF WILDERNESS NH

LYE BROOK WILDERNESS

MOOSEHORN WILDERNESS

PRESIDENTIAL RANGE DRY RIVER WILDERNESS

ROOSEVELT CAMPOBELLO INTERNATIONAL PARK ME/NB, CANADA Mid-Atlantic/Northeast Visibility Union

MANE-VU

Reducing Regional Haze for Improved Visibility and Health

STATEMENT OF THE MID-ATLANTIC / NORTHEAST VISIBILITY UNION (MANE-VU) CONCERNING A REQUEST FOR A COURSE OF ACTION BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) TOWARD ASSURING REASONABLE PROGRESS

The US Clean Air Act and the EPA Regional Haze rule require States that are reasonably anticipated to cause or contribute to impairment of visibility in mandatory Class I Federal areas to implement reasonable measures to reduce visibility impairment within the national parks and wilderness areas designated as mandatory Class I Federal areas.

Most pollutants that affect visibility also cause unhealthy concentrations of ozone and fine particles, and contribute to other adverse environmental impacts. In order to assure protection of public health and the environment, air pollutant emission reductions required to meet the 2018 reasonable progress goal for regional haze should be achieved as soon as practicable.

MANE-VU assessments indicate that sulfur dioxide emissions from power plants in a broad region of the Eastern US are the most important contributor to regional haze at mandatory Class I Federal areas within MANE-VU.

By 2018, emissions from these plants will be substantially reduced under requirements of EPA's Clean Air Interstate Rule. This will result in improved visibility at MANE-VU Class I areas.

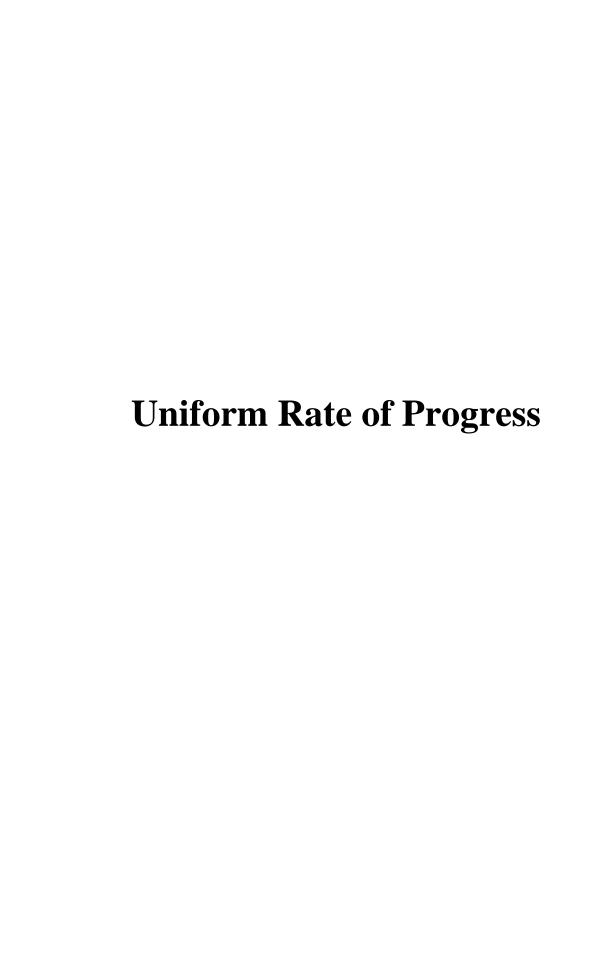
However, even after implementation of the CAIR rule, emissions from power plants will remain a substantial source of pollutants contributing to visibility impairment in MANE-VU Class I areas.

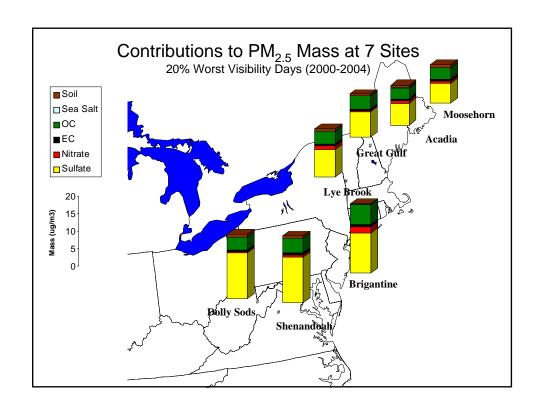
Furthermore, under more stringent national ambient air quality standards, these same pollutants will continue to contribute to ozone pollution and fine particle pollution in nonattainment areas within the region.

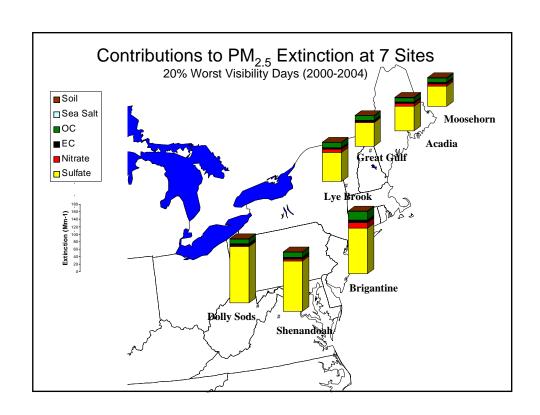
Therefore, it is an important responsibility of both EPA and the MANE-VU states to determine whether additional emissions reductions at power

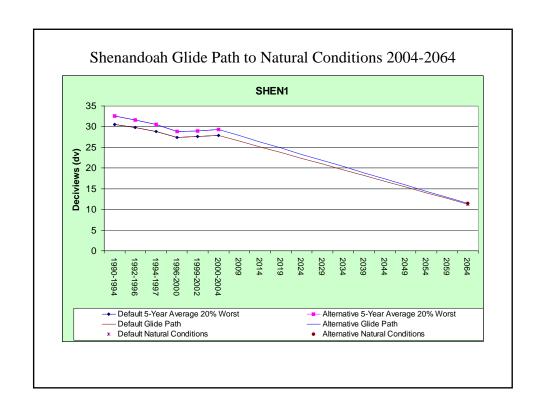
444 North Capitol Street, NW \sim Suite 638 \sim Washington, DC 20001 202.508.3840 p \sim 202.508.3841 f www.mane-vu.org

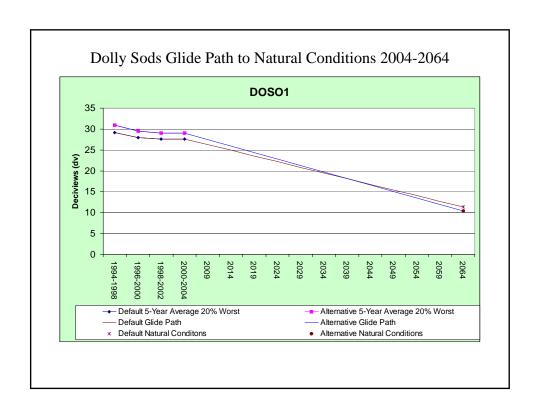
plants should be a part of a reasonably available strategy to improve visibility in the MANE-VU region.

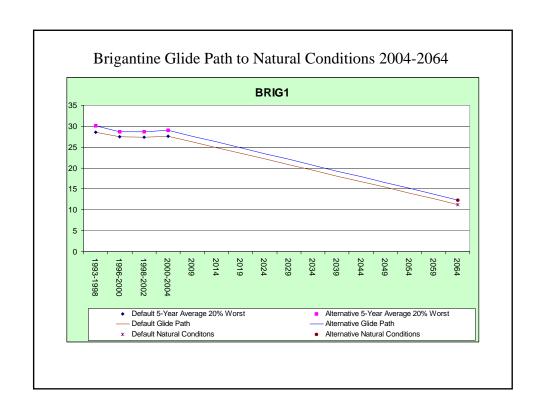

MANE-VU sponsored additional modeling using the Integrated Planning Model (IPM®). Results of this modeling indicate that an additional 18% emissions reduction in SO2 emissions beyond CAIR levels could be achieved by 2018 at a reasonable cost.

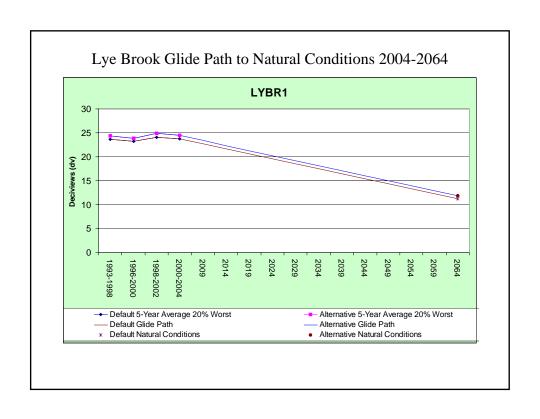

The MANE-VU states and tribes request that EPA work with the eastern Regional Planning Organizations to develop a proposal for tightening the CAIR program to achieve an additional 18% reduction in SO2 by no later than 2018.

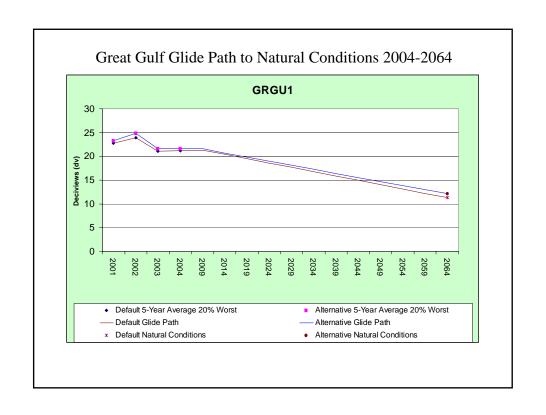

Adopted by the MANE-VU States and Tribes on June 20, 2007

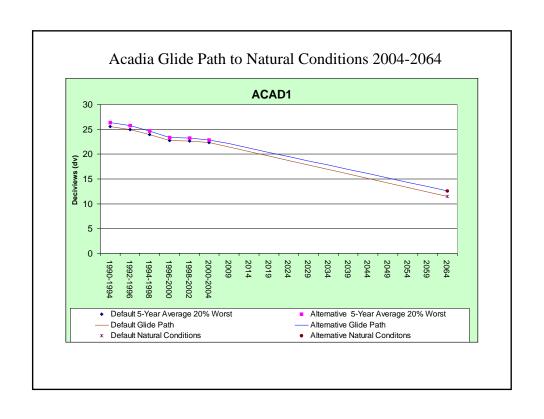

David Littell, Commissioner – Maine Dept. of Environmental Protection

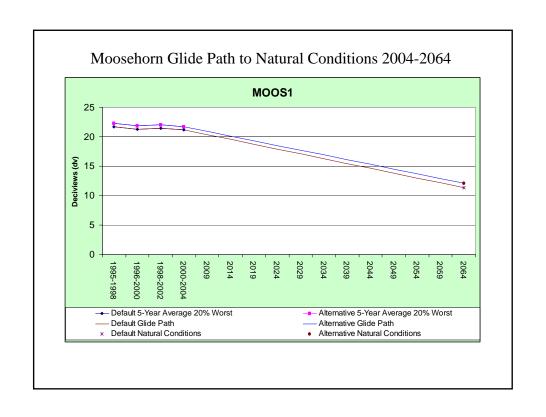

Chair

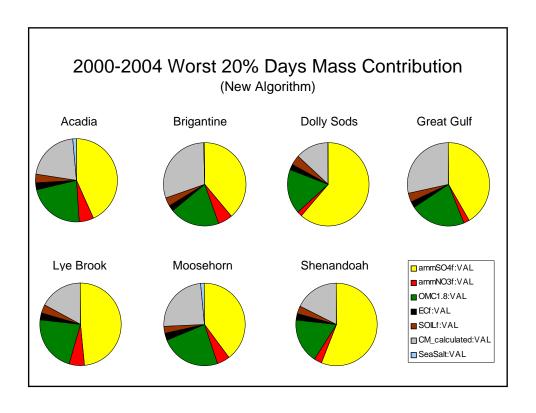


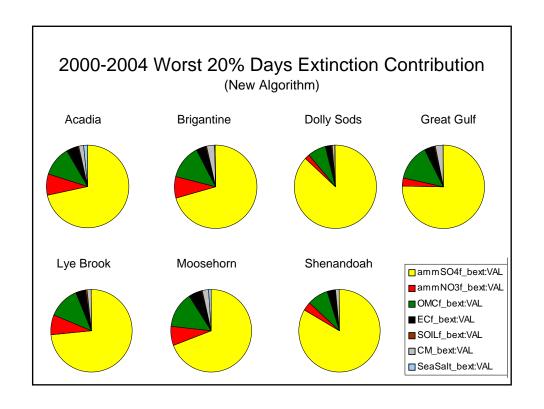


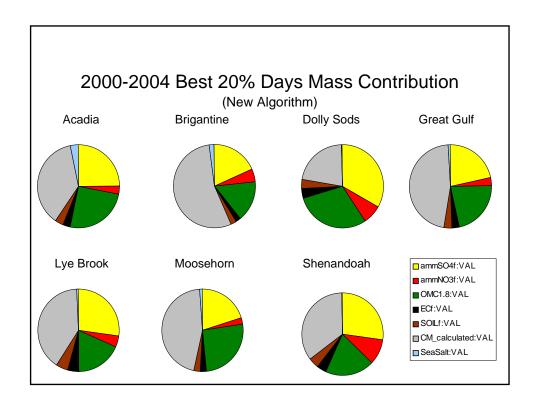


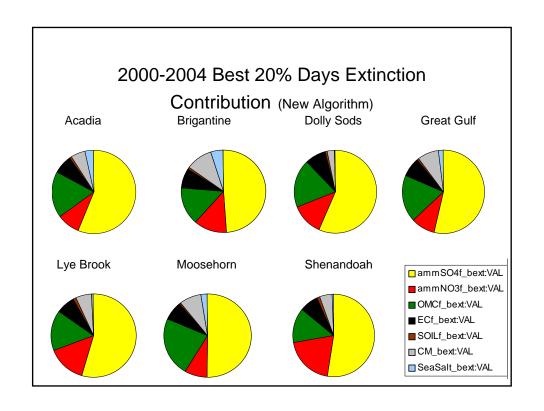


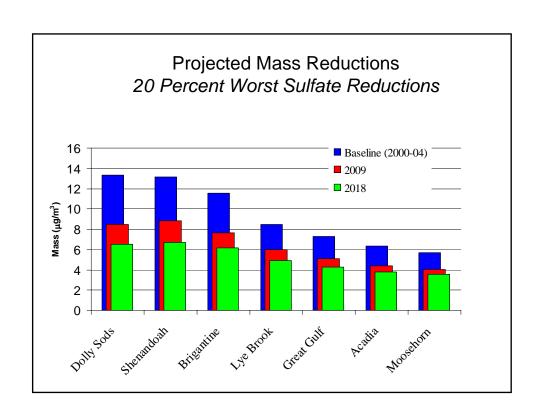


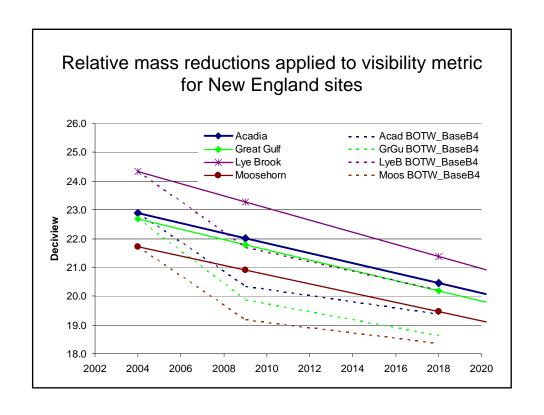


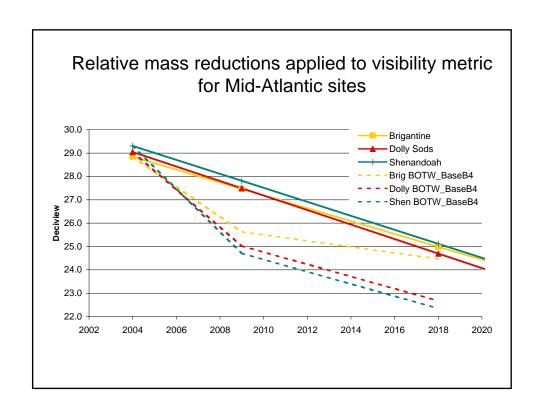


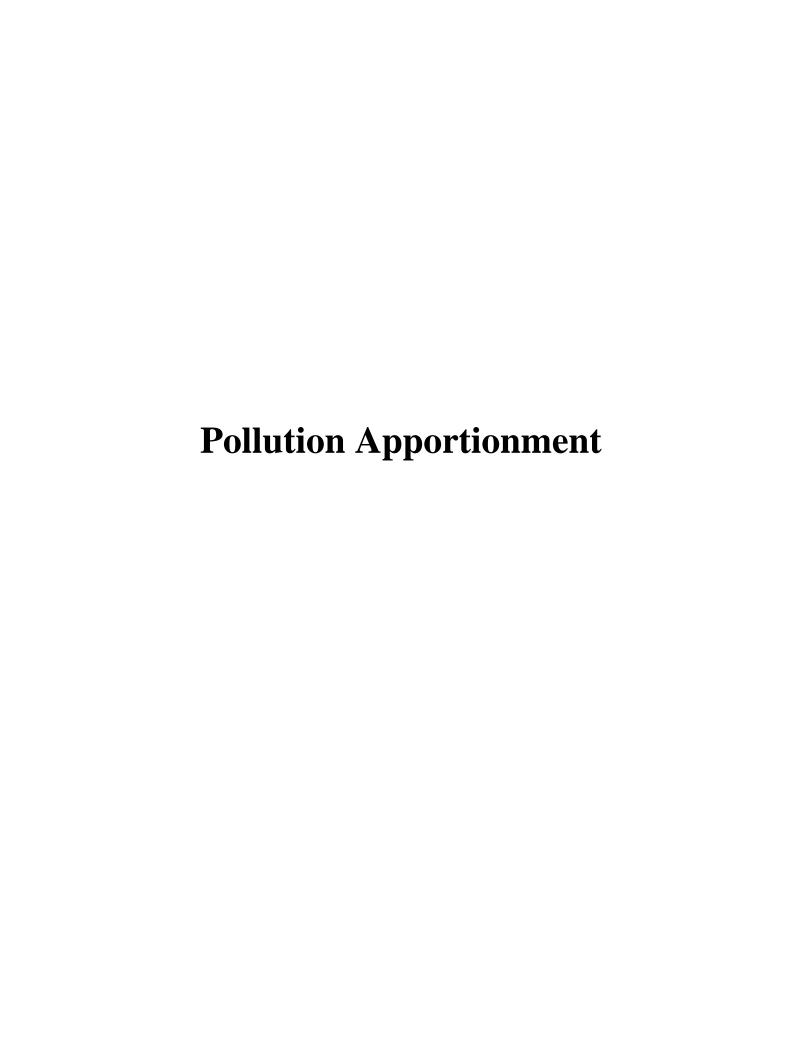


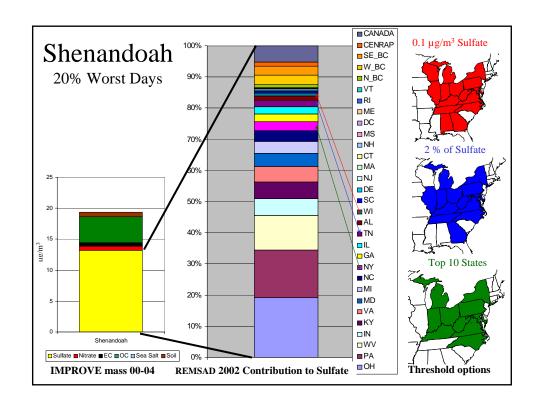


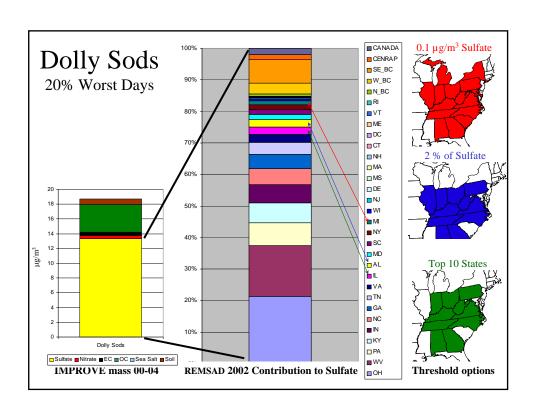


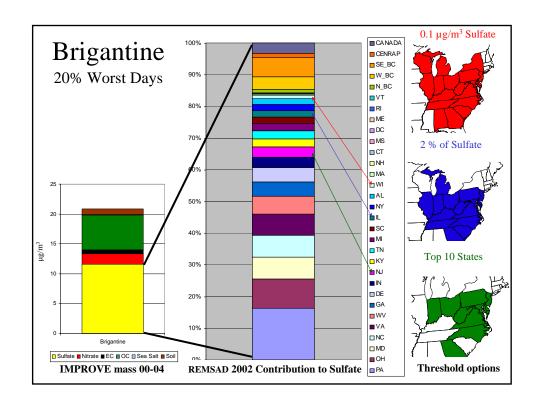


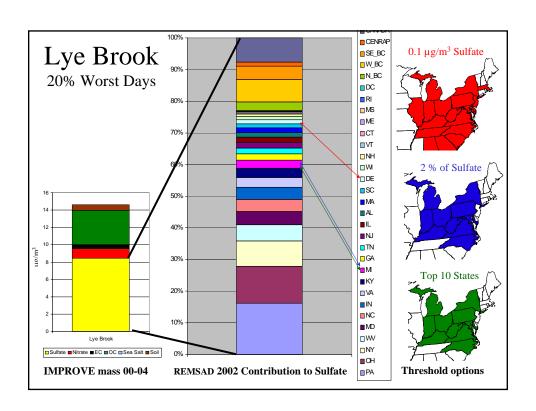


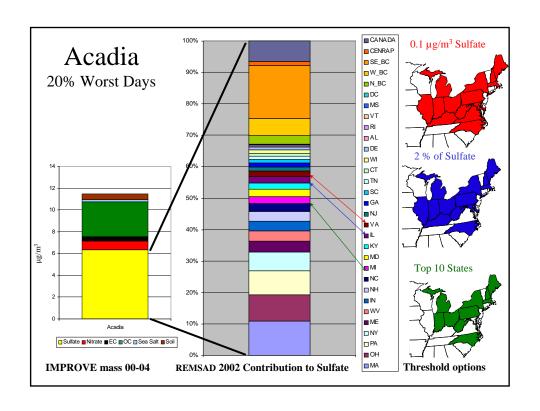


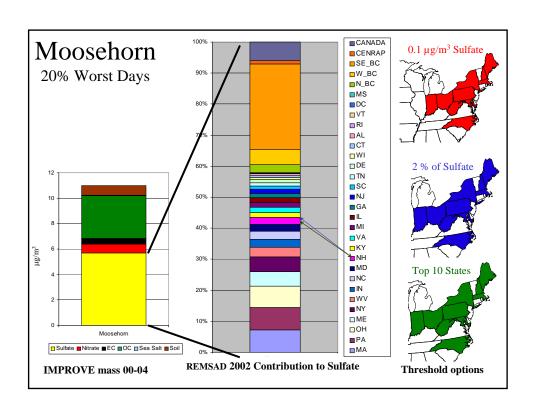


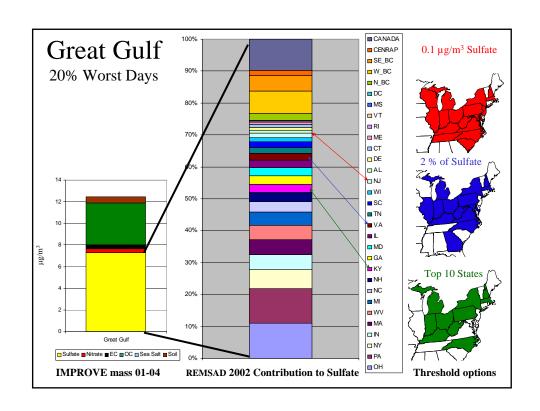


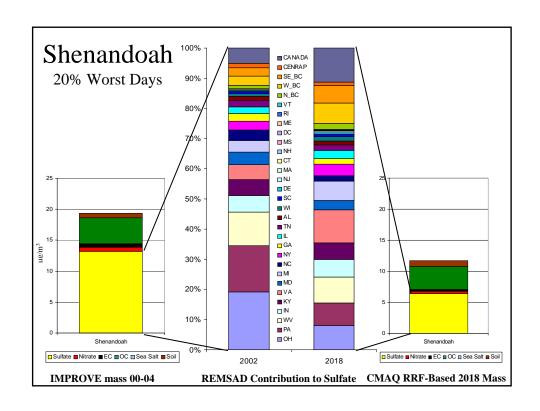

2002 Sulfate Attribution

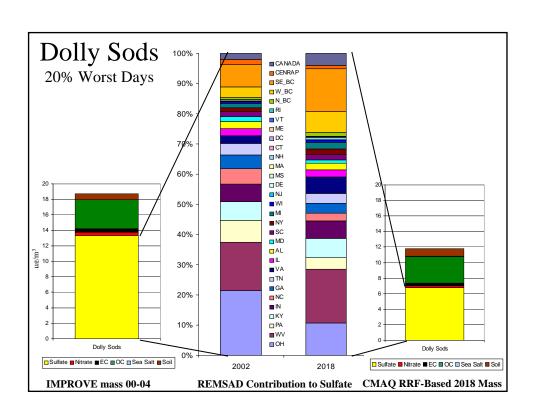

Contribution Thresholds Determined Three Ways

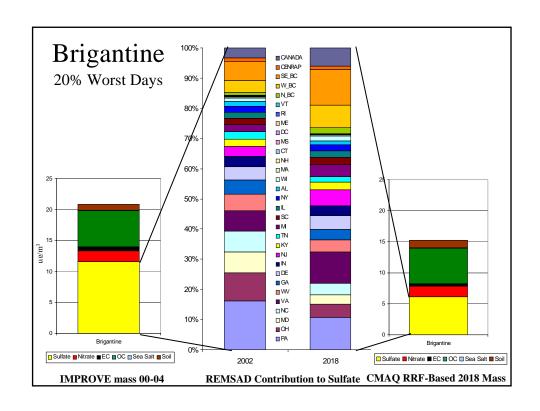

- Method 1: States/regions that contribute 0.1 ug/m3 sulfate or greater on 20% worst visibility days
- Method 2: States/regions that contribute at least 2% of total sulfate observed on 20% worst visibility days
- Method 3: Top ten contributing states on 20% worst visibility days

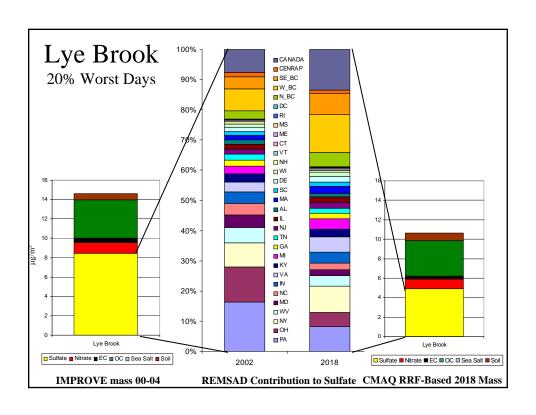




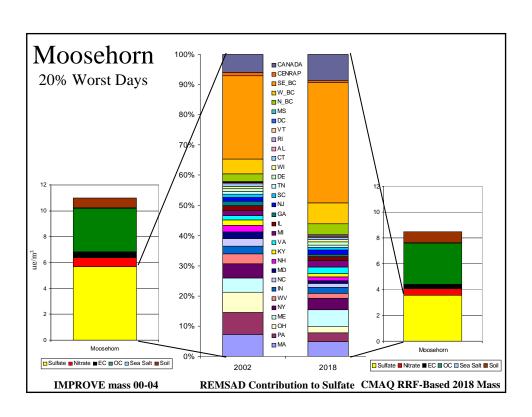


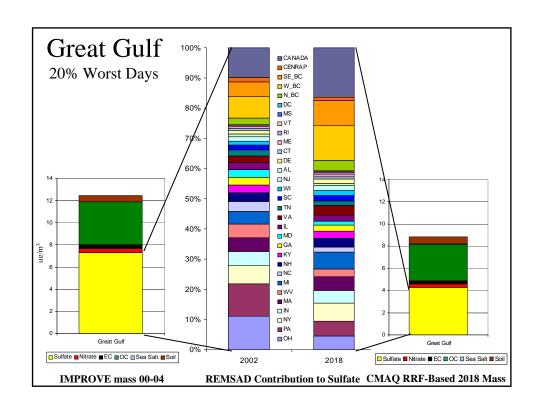


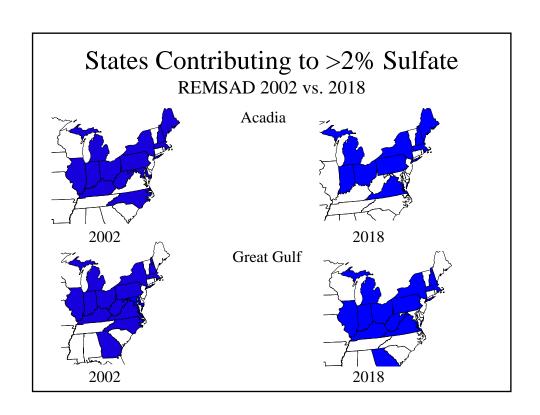


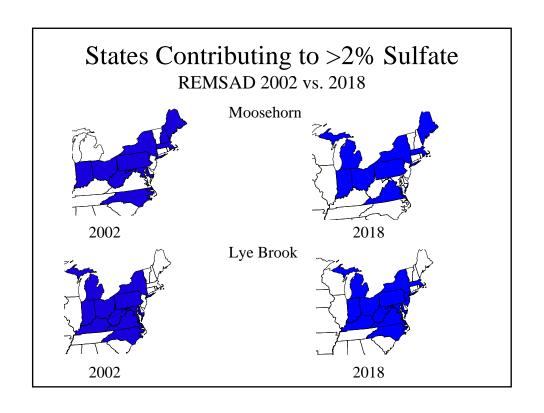


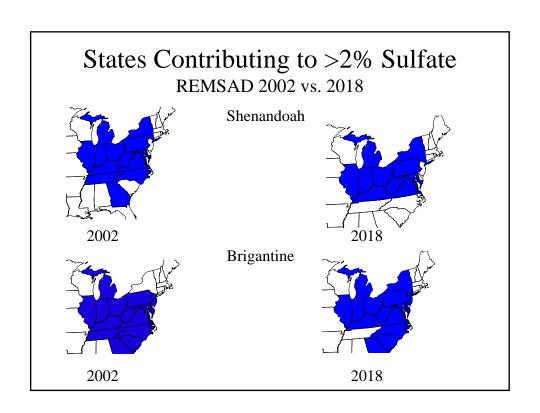

2002/2018 Sulfate Attribution

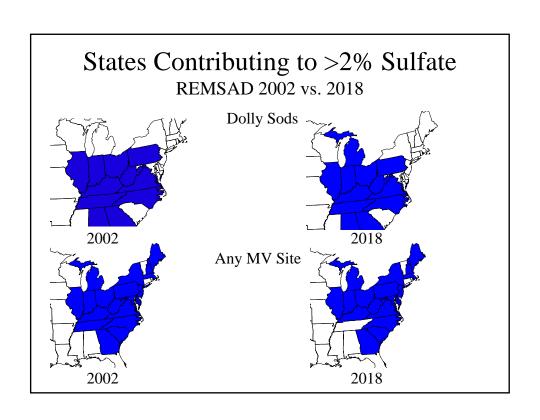












MANE-VU Approach to BART

BART-Eligible Source Identification

- MANE-VU developed preliminary list of BART-eligible EGUs based on review of Clean Air Markets Division databases (*A Basis for Control of BART-Eligible Sources*; http://www.nescaum.org/documents/a-basis-for-control-of-bart-eligible-sources/).
- MANE-VU developed preliminary list of BART-eligible non-EGUs based on review of state permit files (*Development of a list of BART-eligible sources in the MANE-VU region*; http://www.nescaum.org/documents/memo6-bart.pdf/).
- States reviewed preliminary lists and have developed their own final list of BART eligible sources

'Subject' to BART

- MANE-VU developed a preliminary demonstration that broad regions of the Eastern U.S. were likely to contribute to Baseline Regional Haze (*A Basis for Control of BART-Eligible Sources*; http://www.nescaum.org/documents/a-basis-for-control-of-bart-eligible-sources).
- MANE-VU refined and finalized an assessment of contributing sources to sulfate
 in the Eastern U.S. in their contribution assessment report (*Contributions to Regional Haze in the Northeast and Mid-Atlantic United States*;
 http://www.nescaum.org/documents/contributions-to-regional-haze-in-the-northeast-and-mid-atlantic--united-states/)
- In 2004, the MANE-VU Board adopted the approach proposed by EPA that allowed states to find all MANE-VU BART-eligible sources "subject" to BART supported by findings in the preceding two reports that emissions from all MANE-VU states contribute some degree of visibility impairment in Class I areas. (No exemption modeling was conducted)

BART Determinations

- MANE-VU conducted a control technology assessment for four primary source categories that were most common in our region. This report focused on available control options and costs for EGUs, Industrial Boilers, Paper and Pulp facilities and Cement Plants. (Assessment of Control Technology Options for BART-Eligible Sources; http://www.nescaum.org/documents/bart-control-assessment.pdf/).
- MANE-VU coordinated and surveyed a working group of state staff focused on BART issues. Out of this survey process, MANE-VU identified potential BART control options for several BART eligible sources across the region. This information was synthesized to develop a regional "first-order" five-factor analysis to guide states as they develop their own five-factor analysis for BARTeligible sources in their state. (Five Factor Analysis of BART-Eligible Sources; http://www.nescaum.org/documents/bart-memo-02-09-07.pdf/). This report provides a suggested approach for considering each of the five statutory BART factors including the degree of visibility improvement that may result from installation of controls. For this factor it was suggested that a weight be given

- such that no additional controls would be warranted for any source that has a current annual average contribution to visibility impairment at any Class I area of less than 0.1 delta deciview during 2002.
- Primary findings from this analysis are shown in the figure below and three
 attached tables. The analysis suggests that the majority of BART-eligible sources
 either do not warrant additional controls based on cost or visibility considerations
 or are being controlled already under other programs (e.g. CAIR) and that these
 controls will serve as BART.

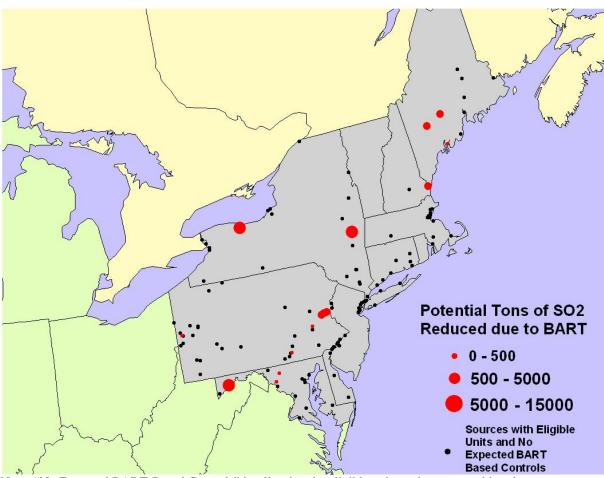


Figure 1: Potential Reductions from BART-Eligible Sources in the MANE-VU Region

Note: "No Expected BART-Based Controls" implies that the eligible units at that source either do not warrant additional controls based on cost or visibility considerations or are being controlled already under other programs (e.g. CAIR) and that these controls will serve as BART.

Table 1. Possible range of SO_2 controls and costs based on survey of state staff

Table 1. Tossible range of 50½ controls and costs based on survey of state starr									
Type of Source	Number of Sources	Control Strategies	Number of Emission Units Control Strategy May Apply	Total 2002 SO ₂ Emissions	Total Estimated Decrease in SO ₂ (tons/yr)	Estimated Cost (\$/Ton SO2)	Notes		
Chemical		SO2 Scrubber	1	24000	9600	400-8000	Mid Range (1)		
Manufacturer	3	Currently Controlled	2	80	NA	0	ma rango (1)		
Glass Fiber	6	Currently Controlled	6	17	0	0			
Coal	- ŭ	No Known Further	<u> </u>		Ů	Ŭ			
Cleaning	1	Controls	1	68	0	0			
		Dry Scrubber	4	58000	52600	200-500	Mid Range, assume 90% scrubber efficiency		
EGU/Coal	5	0.33 lb/MMBtu	1	4000	1200	NA			
		0.3% fuel sulfur limit	3	1400	340	0	Switch to 0.3% has already occurred for 3 boilers.		
		0.56 lb/MMBtu	1	85	NA	NA NA	ioi o bolicio.		
		2.0 % Fuel Sulfur Limit	1	600	300	NA NA			
		1.5% Fuel Sulfur Limit	1	5200	1300	NA NA			
		0.33 lb/MMBtu	1	4000	3100	NA			
EGU/Oil		3.0 lb/MWh	5	31000	NA	NA			
(Resid and		1.1-1.2 lb/MMBtu	2	480	NA	NA			
Dist)	17	Currently Controlled	3	1200	0	0			
Incinerator	2	Currently Controlled	2	84	0	0			
		No Further Controls							
		Warranted	5	2200	0	0			
Metal Production	7	Increased efficiency of the facility's wet scrubber	2	3000	300	Limited Cost	Low Range		
		FGD (SO ₂ Scrubber)	3	13000	11000	400-8000	Mid Range (1)		
		1.8% Fuel Oil	2	6050	3000	NA	3 ()		
		2.0% Fuel Oil	1	2800	1400	NA			
			I	2000	1400	INA			
Paper and		No Known further controls	3	10000	0	0			
Pulp	30	Currently Controlled	21	4000	0	0			
Portland Cement		Fuel switching: CE of SOx 10%	3	2300	230	NA			
		No Further Controls Warranted	5	3700	0	0			
		No Known Further Controls	7	300	0	0			
	25	SO₂ Scrubber	10	26000	19000	400-8000	Mid Range (1)		
		Refinery RACT	9	5400	NA	0			
		SO2 Scrubber	3	NA	NA	400-8000	Mid Range (1)		
Refinery	37	No Known Further Controls	25	NA	NA	0			

⁽¹⁾ Cost estimate from NESCAUM, 2005 for Industrial Boilers NA- No information currently available.

Table 2. Possible range of NO_X controls and costs based on survey of state staff

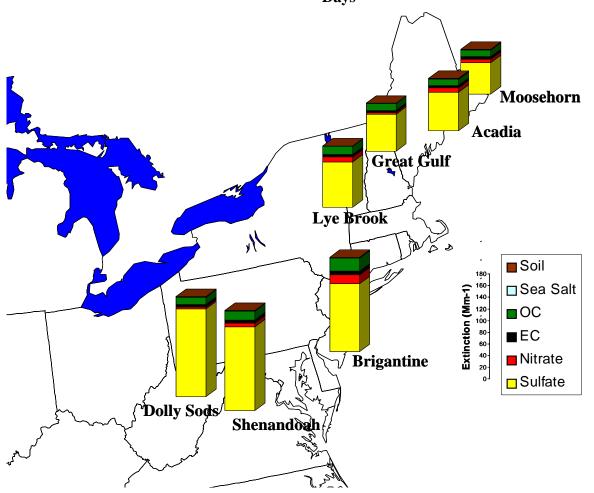
			Number of		T		
	Number		Emission	Total 2002	Total	Estimated	
Turn of		Control	Units Control	Total 2002	Estimated		
Type of Source	of	Control	Strategy May	NO _x	Decrease in	Cost (\$/Ton	Mataa
Source	Sources	Strategies	Apply	Emissions	NO _x (tons/yr)	NO _x)	Notes
Oh ami and		SCR	1	4900	3400	1300-10000	(2)
Chemical Manufacturer	3	Currently Controlled	2	5000	0	0	
Glass Fiber	6	Currently Controlled	6	180	0	0	
Coal Cleaning	1	Low NOx burners, CE of 15%	1	160	25	1-2 Million (capital cost)	Low Range
g	<u> </u>	Currently	·			(00.010.100.000.)	g
		Controlled	2	2900	820	0	
		SCR and 1.5 lb/MWh	2	9800	NA	1000-1500	Mid Range (1)
		NOx Budget & 1.5					
EGU/Coal	5	#/MWh	1	2300	NA	NA	
		Currently Controlled	6	3200	0	0	
		No Known Controls	3	390	0	0	
		NOx Budget	3	700	NA	NA	
		NOx Budget and	Ü				
		1.5 lb/MWh	4	5300	NA	NA	
EGU/Oil	17	SNCR, 1.5 lb/MWh	1	2400	NA	500-700	Mid Range (1)
		Currently					5 ()
Incinerator	1	Controlled	2	720	0	NA	
		Currently					
	2	Controlled	2	0	0	0	
Metal		No Further					
Production	5	Controls Warranted	5	110	0	0	
		005 01105					Mid to High Range
		SCR or SNCR	2	710	430	1300-10000	(2)
		No Known Further	40	4500	0	0	
		Controls	13	4500	0	0	
Paper and Pulp	30	Currently Controlled	15	4600	0	0	
r aper and r dip		Low NOx burners	3	2800	430	200-3000	Mid Range
		Low NO _x Burners	3	2000	430	200-3000	Wild Italige
		and Mid Kiln Firing,					
		40% Reduction	2	8500	3400	1200-10000	Mid Range (2)
		SCR, 65% Red.	1	740	480	1300-10000	(2)
		No Known Further					
		Controls	9	2000	0	0	
Portland		Currently Controlled	1	1700	0	0	
Cement	25	SNCR	9	7100	2900	900-1200	Mid Range
		Refinery RACT	9	2300	NA	NA	wiid realige
		No Known Further	<u> </u>	2000	IVA	INA	
		Controls	25	0	0	0	
		SCR	2	460	40	1300-10000	(2)
Refinery	37	SNCR	1	1000	560	1300-10000	(2)
,	\	nate from NESCAL					\-/

⁽¹⁾ Cost estimate from NESCAUM, 2005, EGU controls (2) Cost estimate from NESCAUM 2005, Industrial Boiler controls NA- No information currently available.

Table 3. Possible range of $PM_{10} \ controls$ and costs based on survey of state staff

No Known Further Controls 7 280 0 0			obsidic range of	10			J	
Currently				Emission Units Control Strategy	PM ₁₀	Estimated Decrease in PM ₁₀	Cost (\$/Ton	Notes
Coal Cleaning	Chemical						,	
Controls	Manufacturer	3	Controlled	3	200	0	0	
Currently								
EGU/Coal 10 ESP 7 2000 0 0 0	Coal Cleaning	1		1	46	0	0	
PM co-benefit reductions expected due to FGD-25-50% reduction 2 1500 370 0 0				-	0000			
EGU/Coal 10				/	2000	0	0	
EGU/Coal 10			reductions expected due to FGD-25-50%					
Controls information included with oil/coal boilers 2	F011/01	40						
EGU/Natural Gas 2 information included with oil/coal boilers 2 13 NA NA NA	EGU/Coal	10		1	1500	NA	\$50 M	Capital Cost
Controlled 13		2	information included with oil/coal boilers	2	13	NA	NA	
Total Properties				40	440	40	0	
EGU/Oil 18			Controlled	13	410	42	0	
Currently								
Controlled Fabric Filter	EGU/Oil	18		5	50	0	0	
Incinerator 2								
Glass Fiber 6	Incinorator	2		2	0	0	0	
Metal Production 7	incinerator			2	U	U	U	
Metal Production 7 Currently Controlled 7 41 0 0 Paper and Pulp 30 Currently Controls 7 280 0 0 0 Paper and Pulp 30 Current Controls 7 690 0 0 0 Paper and Pulp 30 Current Controls 7 670 0 NA Upgrade on current ESP, CE of 5% 3 210 11 Limited Cost No Known Further Controls 15 300 0 0 Currently Controlled 6 370 0 0 Baghouse or electric precipitator 1 4 NA NA	Glass Fiber	6		6	190	0	0	
Metal Production 7	0.0001.001	·		Ü	.00	Ů	·	
Lo baghouse, CE of 4% estimate	Metal Production	7		7	41	0	0	
Controls 7 280 0 0			to baghouse, CE of 4% estimate	2	180	7	\$15 M	Capital Cost
Currently Controlled (ESP, Venturi Scrubbers, Demister, or MultiCyclones) 9 690 0 0				7	000		0	
Paper and Pulp 30 Current Controls 7 670 0 NA			Currently Controlled (ESP, Venturi Scrubbers, Demister, or					
Upgrade on current ESP, CE of 5% 3 210 11 Limited Cost	Paper and Pulp	30						
ESP, CE of 5% 3 210 11 Limited Cost		- +		·	570		14/1	
No Known Further			ESP, CE of 5%	3	210	11	Limited Cost	
Portland Cement 25 Currently 6 370 0 0 Baghouse or electric precipitator 1 4 NA NA								
Portland Cement 25 Controlled 6 370 0 0 Baghouse or electric precipitator 1 4 NA NA				15	300	0	0	
Portland Cement 25 electric precipitator 1 4 NA NA			Controlled	6	370	0	0	
No Known Further	Portland Cement	25		1	4	NA	NA	
Controls 28 NA 0 0			No Known Further Controls	28	NA	0	0	
Refinery 37 Refinery RACT 9 270 NA NA	Refinerv	37	Refinery RACT	<u> </u>	270	NΔ	NΔ	

NA- No information currently available.

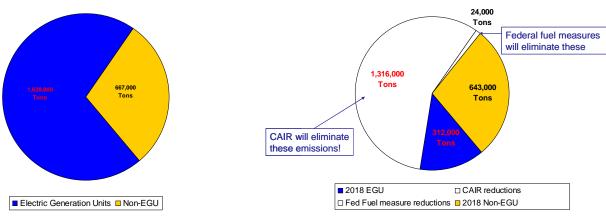

Technical Support for Reasonable Progress Goals and Long-Term Strategies

Technical Support for MANE-VU Statements -Control Option Assessment-

Focus on SO₂

- MANE-VU has conducted a contribution assessment and developed a conceptual
 model that indicates that the dominant contributor to visibility impairment at all
 sites during all seasons is particulate sulfate formed from emissions of SO₂.
 While other pollutants, including organic carbon, need to be addressed in order to
 achieve the national visibility goals, our technical assessments suggest that an
 early emphasis on SO₂ will yield the greatest near-term benefit. See Figure 1.
- Source region for SO₂ emissions is generally south and west (upwind) of MANE-VU Class I areas on worst visibility days.

Figure 1: Contribution of Sulfur to Visibility Impairment in the Eastern U.S. on 20% Worst Days



Wood combustion near Class I areas contributes to organic carbon. This
component of fine particle pollution also contributes to visibility impairment and
is observed at MANE-VU sites.

Inventory Analysis

- By 2018, implementation of CAIR is projected to reduce 1.3 million tons of MANE-VU SO₂ emissions annually. Relative to our current 2002 total of 1.6 million tons per year in the power sector, this represents a very significant reduction of over 80% of power sector emissions in the MANE-VU region.
- By contrast, non-EGU SO₂ emissions are projected to be reduced by federal programs (primarily through on-road and non-road fuel standards) in the MANE-VU region by only 24,000 tons. This would bring our current SO₂ emissions of 667,000 tons per year down to approximately 643,000 tons per year.
- Significant opportunities remain to further reduce the projected remaining 312,000 tons of annual EGU SO₂ emissions as well as the 643,000 tons of annual non-EGU SO₂ emissions. See **Figure 2**.

Figure 2: Potential Reduction Opportunities in the MANE-VU Region

2002 Emissions

2018 Emissions

EGUs

- MANE-VU remains interested in CAIR+ for SO₂ as a means of achieving PM_{2.5} NAAQS compliance and furthering regional haze progress in a reasonable (cost-effective) way.
- The MANE-VU four-factor analysis has identified several large EGUs (both within and outside MANE-VU) with significant impact on MANE-VU Class I visibility during 2002. Control options for these sources are being considered.

Non-EGU SO₂

• The 643,000 tons in non-EGU SO₂ emissions can be broken down into the following categories: Industrial Boilers (156,000 tons), Other oil combustion sources (206,000 tons), Other non-oil point sources (includes many BART emissions reduction candidates; 106,000 tons), Other area sources (100,000 tons), and other mobile sources (74,000 tons). See **Figure 3**.

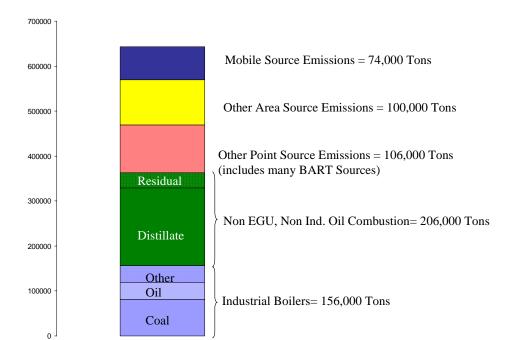
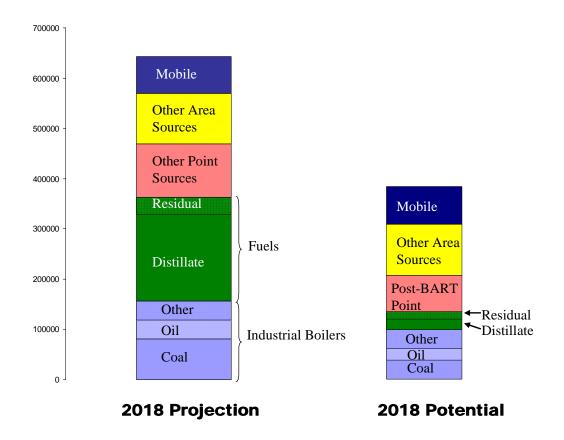



Figure 3: 2018 Projected Non-EGU SO₂ Emissions in the MANE-VU Region

- Coal burning industrial boilers have non-FGD control options including Hydrate Boiler Injection, and Lime Slurry Duct Injection. These methods have been shown to achieve between 20 and 60 percent and 35 to 90+ percent control at reasonable costs in the range of \$500 to \$1000 per ton of SO₂ removed. A conservative assumption of 50% control could achieve a 40,500 ton reduction.
- Limits on the fuel-sulfur content of oil-burning industrial boilers could also yield reductions on the order of 50% from this category by requiring the use of 0.5 percent S residual oil. Such a strategy might yield a 19,000 ton reduction.
- Low-sulfur fuel requirements would offer significant additional reduction from non-EGU, non-industrial boiler sources. Requiring 500 and/or 15 ppm distillate (relative to current 2000+ ppm baseline) could result in between 140,000 and 167,000 tons of SO₂ reduction annually.
- The use of 0.5 percent (5000 ppm) residual oil (relative to current residual oil that has sulfur content of 1 percent or higher) could result in ~19,000 tons reduction.
- Preliminary findings from our BART analysis suggest additional emissions reduction potential in the 35,000 ton range from several MANE-VU BARTeligible sources.
- The combined emission reduction of all these measures would result in nearly a 40 percent reduction in SO₂ emissions from the non-EGU sources in MANE-VU relative to projected 2018 levels. See **Figure 4**.
- The MANE-VU four-factor analysis has identified several large non-EGUs (both within and outside MANE-VU) with significant impact on MANE-VU Class I visibility during 2002. Control options for these sources are being considered.

Figure 4: 2018 Potential Non-EGU SO₂ Emission Reductions in the MANE-VU Region

Long-term Emissions Management Options for MANE-VU

MANE-VU is considering (1) a CAIR+ EGU program for SO₂, (2) measures to reduce non-EGU emissions in MANE-VU by up to 40 percent or 250,000 tons of SO₂, and (3) programs to reduce wood combustion-related emissions in MANE-VU.

Mid-Atlantic/Northeast Visibility Union

MANE-VU

MANE-VU Reasonable Progress Project Summary

PURPOSE

The Clean Air Act requires states to consider the following four factors to determine which emission control measures are needed to make reasonable progress in improving visibility: 1) costs of compliance, 2) time necessary for compliance, 3) energy and non-air quality environmental impacts of compliance, and 4) remaining useful life of any existing source subject to such requirements. The plan must include reasonable measures and identify the visibility improvement that will result from those measures (i.e., the reasonable progress goal).

EPA issued draft guidance for implementing the reasonable progress requirement (dated 11/28/2005). The guidance recommends the following process for developing reasonable progress goals: 1) identify pollutants and associated source categories affecting visibility in Class I areas, 2) list possible control measures for these pollutants and source categories, 3) apply the four statutory factors to each control measure for each source category, and 4) assess the visibility improvement resulting from various combinations of strategies and select the Reasonable Progress Goals.

MANE-VU has developed information about the pollutants and sources affecting visibility and has developed a list of possible control measures for consideration. In order to assist MANE-VU in applying the four statutory factors, in January 2007, MARAMA signed a contract with MACTEC Federal Programs Inc., to prepare a technical support document. The report MACTEC is preparing under this project summarizes MANE-VU's assessment of pollutants and associated source categories affecting visibility in Class I areas in and near MANE-VU, lists possible control measures for those pollutants and source categories, and develops the requisite four factor analysis. NESCAUM will assist MANE-VU by conducting air quality and visibility modeling to address the fourth step of the process described in EPA's guidance.

POLLUTANTS AND SOURCE CATEGORIES AFFECTING VISIBILITY

What Pollutants Affect Visibility?

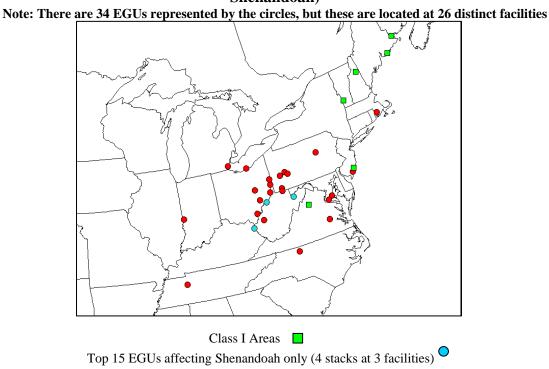
The MANE-VU Contribution Assessment (NESCAUM 2006) and the MANE-VU Conceptual Model for Fine Particles and Regional Haze Air Quality Problems (NESCAUM 2006) identify sulfate as the largest contributor to visibility impairment in Mid-Atlantic and Northeastern Class I areas. Organic carbon is typically the second-largest contributor to regional haze in the MANE-VU region.

What are the Major Source Categories of these Pollutants?

The largest source category of sulfur dioxide in the region is electric generating units (EGUs). Additional SO_2 source categories analyzed include oil-fired installations at residential, commercial, institutional, or industrial facilities; industrial, commercial, and institutional (ICI) boilers; and cement and lime kilns.

According to Appendix B of the MANE-VU Contribution Assessment (NESCAUM 2006), woodsmoke also contributes to visibility impairment, with contributions typically higher in rural areas than urban areas, winter peaks in northern areas from residential wood burning, and occasional large summer impacts at all sites from wildfires. The MANE-VU *Technical Support Document on Agricultural and Forestry Smoke Management in the MANE-VU Region* concluded that fire from land management activities was not a major contributor to regional haze in MANE-VU Class I areas, and that the majority of emissions from fires were from residential wood combustion.

Based on available information, the MANE-VU Reasonable Progress Workgroup selected the following source categories for analysis:


- Coal and oil-fired Electric Generating Units, (EGUs);
- Point and area source industrial, commercial and institutional boilers;
- Cement kilns;
- Lime kilns;
- The use of heating oil; and
- Residential wood combustion and open burning.

WHERE DO THESE POLLUTANTS ORIGINATE?

Specific EGUs are Important

Roughly 70% of the 2.3 million tons of SO₂ emission in the 2002 MANE-VU emissions inventory (2002 MANE-VU Emission Inventory Version 3) were from EGUs, making them the largest SO₂ source category in terms of visibility impairing emissions. Figure 1 shows the locations of 34 EGU stacks that have impacts on at least one Class I area in MANE-VU or Shenandoah (a nearby Class I area). Many of these EGUs are in MANE-VU but some are outside of the region.

Figure 1: Key EGUs affecting Class I area(s) (Moosehorn, Acadia, Great Gulf, Lye Brook, or Shenandoah)

Top 15 EGUs affecting any MANE-VU Class I area (30 stacks at 23 facilities)

Wood Smoke is More Local in Origin

Figure 2 is from Appendix B of the MANE-VU Contribution Assessment (NESCAUM 2006) and represents the results of source apportionment and trajectory analyses. It illustrates that the impacts of woodsmoke on MANE-VU Class I areas are more likely due to emissions from within MANE-VU and Canada. The green highlighted section of the map shows the woodsmoke source region for several MANE-VU Class I areas represented by the green stars. (Brigantine was not analyzed for this map.)

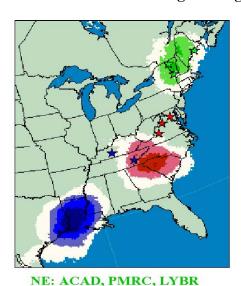


Figure 2: Woodsmoke Source Regional Aggregations

MA: WASH, SHEN, JARI

SE: GRSM, MACA

Defining the Area of Influence

In order to identify states where emissions are most likely to influence visibility in MANE-VU Class I areas, analyses such as represented in Figure 1 and 2 above as well as other analyses documented in the MANE-VU Contribution Assessment were considered.

The MANE-VU States concluded that it was appropriate to include in the area of influence all of the states participating in MANE-VU plus other states that modeling showed contributed at least 2% of the sulfate ion at MANE-VU Class I areas in 2002.

Figure 3 shows for Acadia, Brigantine, Lye Brook, and Great Gulf the modeled percent of sulfate ion impact from specific states. The state with the largest individual sulfate impact at that Class I area is shown at the bottom of the bar and the list to the right. The size of the bar slice is proportional to the modeled impact (using the REMSAD model). The percentages at the left of the bar refer to the percent of SO₄ impact within the modeling domain. Each of the states at and below the arrow contributes more than 2% of modeled sulfate ion to that Class I area.

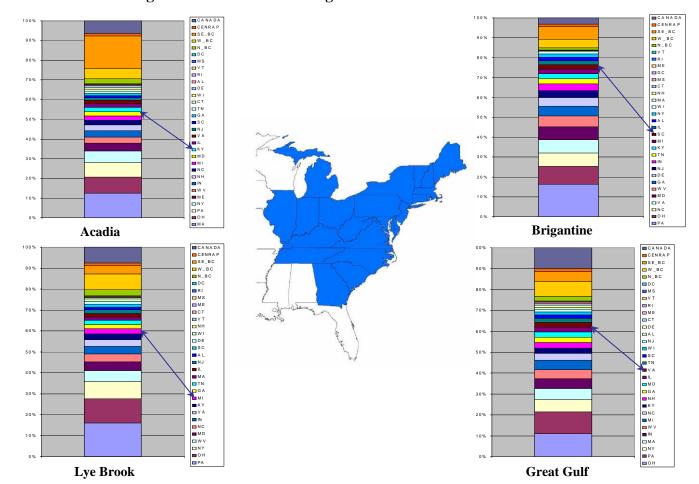


Figure 3: States Contributing to Sulfate in MANE-VU in 2002

Source: NESCAUM, MANE-VU Contribution Assessment 2006

POTENTIAL CONTROL MEASURES AND FOUR FACTOR ANALYSIS

In consultation with the MANE-VU Reasonable Progress Workgroup, MACTEC has developed a report that identifies potential control measures and assesses costs, time needed for compliance, energy and non-air quality impacts, and the remaining useful life of affected sources. Table 1 presents a summary of the four factor analysis for the source categories analyzed; more detailed information is available in the draft final report document, which may be found on MARAMA's website at http://www.marama.org/visibility/RPG/index.html

Table 1: Summary of Results from the Four Factor Analysis

Source Category	Primary Regional Haze Pollutant	Average Cost in 2006 dollars (per ton of pollutant reduction)	Compliance Timeframe	Energy and Non-Air Quality Environmental Impacts	Remaining Useful Life
Electric Generating Units	SO ₂	IPM* v.2.1.9 predicts \$775-\$1,690 \$170-\$5,700 based on available literature	2-3 years following SIP submittal	Fuel supply issues, potential permitting issues, reduction in electricity production capacity, wastewater issues	50 years or more
Industrial, Commercial, Institutional Boilers	SO ₂	\$130-\$11,000 based on available literature	2-3 years following SIP submittal	Fuel supply issues, potential permitting issues, control device energy requirements, wastewater issues	10-30 years
Cement and Lime Kilns	SO ₂	\$1,900-\$73,000 based on available literature	2-3 years following SIP submittal	Control device energy requirements, wastewater issues	10-30 years
Heating Oil	SO ₂	\$550-\$750 based on available literature. There is a high uncertainty associated with this cost estimate.	Currently feasible. Capacity issues may influence timeframe for implementation of new fuel standards	Increases in furnace/boiler efficiency, Decreased furnace/boiler maintenance requirements	18-25 years
Residential Wood Combustion	PM	\$0-\$10,000 based on available literature	Several years - dependent on mechanism for emission reduction	Reduce greenhouse gas emissions, increase efficiency of combustion device	10-15 years

^{*} EPA's Integrated Planning Model

MANE-VU invited all interested parties to submit comments on the draft report by May 4th to Angela Crenshaw at MARAMA (<u>acrenshaw@marama.org</u>). Additional comments will be considered if time permits.

THE MANE-VU REASONABLE PROGRESS WORKGROUP

This project is guided by MANE-VU's Reasonable Progress Workgroup, which reviewed draft documents and reports to MANE-VU's Technical Support Committee. The Workgroup met via conference call several times per month, with twelve calls in total. Regular participants include the MANE-VU states and tribes, VISTAS, LADCO, NESCAUM, OTC, the Environmental Protection Agency, the National Park Service, and the Forest Service. Workgroup minutes, and all related project documents are available on the MARAMA website: http://www.marama.org/visibility/RPG/index.html

CONTACT INFORMATION

Angela Crenshaw, MARAMA, <u>acrenshaw@marama.org</u>, 410-467-0170 Susan Wierman, MARAMA, <u>swierman@marama.org</u>, 410-467-0170 Art Werner, MACTEC, <u>aswerner@mactec.com</u>, 919-941-0333

MARAMA, 711 W. 40th Street Suite 312 Baltimore MD 21211

MANE-VU's Approach to Developing Regional Haze Control Measures for the 2018 Milestone

MANE-VU's approach towards deciding which control measures to pursue for regional haze is based on technical analyses documented in the following reports:

- Contributions to Regional Haze in the Northeast and Mid-Atlantic United States (called the Contribution Assessment),
- Comparison of CAIR and CAIR Plus Proposal using the Integrated Planning Model (called the CAIR+ Report), and
- Assessment of Reasonable Progress for Regional Haze in MANE-VU Class I Areas (callsed the Reasonable Progress Report).

Pollutants of Concern

Finalized in August 2006, the Contribution Assessment reflects "a conceptual model in which sulfate emerges as the most important single constituent of haze-forming fine particle pollution and the principle cause of visibility impairment across the region. Sulfate alone accounts for anywhere from one-half to two-thirds of total fine particle mass on the 20 percent haziest days at MANE-VU Class I sites." Organic carbon was shown to be the second largest contributor to haze. As a result of the dominant role of sulfate in the formation of regional haze in the Northeast and Mid-Atlantic region, the report states that "[T]hese findings suggest that an effective emissions management approach would rely heavily on broad-based regional SO₂ control efforts in the eastern United States."

Contributing Sources

The Contribution Assessment reviewed various modeling techniques, air quality data analysis, and emissions inventory analysis to identify source categories and states that contribute to visibility impairment in MANE-VU Class I areas. With respect to sulfate, emissions from within MANE-VU in 2002 were responsible for about 25-30 percent of the sulfate at MANE-VU Class I areas. Sources in the MRPO and VISTAS regions were responsible for about 15-25 percent each. Point sources dominated the inventory of SO₂ emissions. Biomass combustion was also identified by source apportionment analysis as a local source contributing to visibility impairment.

Identifying Potential Strategies

The process by which MANE-VU arrived at a set of proposed regional haze control measures to pursue for the 2018 milestone started in late 2005. OTC selected a contracting firm to assist with the analysis of ozone and regional haze control measure options. OTC provided the contractor with a "master list' of some 900 potential control measures, based on experience and previous state implementation plan work. With the help of an internal OTC control measure workgroup, the contractor identified reasonably

available regional haze control measures for MANE-VU's further consideration. MANE-VU then developed an interim list of control measures, which for regional haze included: beyond-CAIR sulfate reductions from EGUs, low-sulfur heating oil (residential and commercial), ICI boilers (both coal and oil-fired), lime and cement kilns, residential wood combustion, and outdoor burning (including outdoor wood boilers).

The next step in the regional haze control measure selection process was to further refine the interim list. The beyond-CAIR EGU strategy continued to stay on the list since EGU sulfate emissions have, by far, the largest impact on visibility in the MANE-VU Class I areas. Likewise, a low-sulfur oil strategy gained traction after a NESCAUM-initiated conference with refiners and fuel-oil suppliers concluded that such a strategy could realistically be implemented in the 2014 timeframe. Thus the low-sulfur heating oil and the oil-fired ICI boiler sector control measures merged into an overall low-sulfur oil strategy for #2, #4, and #6 residual oils for both the residential and commercial heating and oil-fired ICI boiler source sectors.

During MANE-VU's internal consultation meeting in March 2007, member states reviewed the interim list of control measures to make further refinements. States determined, for example, that there may be too few coal-fired ICI boilers in the MANE-VU states for that to be considered as a "regional" strategy, but could be a sector pursued by individual states. They also determined that lime and cement kilns, of which there are few in the MANE-VU region, would likely be handled via their BART determination process. Residential wood burning and outdoor wood boilers remain on the list for those states where localized visibility impacts may be of concern even though emissions from these sources are primarily organic carbon and direct particulate mater. Finally, outdoor wood burning was determined to also be better left as a sector to be examined further by individual states, due to issues of enforceability and penetration of existing state regulations.

The CAIR+ Report documents the analysis of the cost of additional SO_2 and NO_x controls at EGUs in the Eastern U.S. The Reasonable Progress Report documents the assessment of control measures for EGUs and the other source categories selected for analysis.

Determining What Is Reasonable

MANE-VU is guided by two primary principles in which regional control measures to pursue in reducing sulfate levels: 1) that the measures are "reasonable," and 2) that the measures are in place by 2018, the first milestone date in the Congressional goal of achieving natural visibility conditions by 2064. Reasonable progress towards meeting the 2064 goal is defined in section 169A of the Clean Air Act, and includes the mandatory consideration of four factors: 1) the cost of compliance, 2) the time necessary for compliance, 3) the energy and nonair quality environmental impacts of compliance, and 4) the remaining useful life of any existing source subject to such requirements.

Guided by these principles, MANE-VU has arrived at a suite of suggested control measures that the MANE-VU states will pursue as a region. The corollary is that the

MANE-VU Class I states (Maine, New Hampshire, Vermont, and New Jersey) will ask states outside of MANE-VU that contribute to visibility impairment to pursue similar strategies for reducing sulfate emissions from source sectors, or equivalent sulfate reductions if not from the source sectors that MANE-VU has identified for its own sulfate reductions. The guiding principle in MANE-VU's approach to consulting with states outside of MANE-VU is that we cannot ask for more equivalent reductions than we are willing to pursue ourselves.

The regional strategies to reduce SO₂ emissions that MANE-VU has identified as reasonable within and outside MANE-VU by 2018 are: 1) Best Available Retrofit Technology (BART) sulfate reductions from specific source sectors defined in the Clean air Act; and 2) a low-sulfur oil strategy for all sectors (commercial, industrial, and residential); and 3) an EGU strategy that targets a 90% sulfate reduction from each of the key stacks impacting any MANE-VU Class I area (comprising a total of 167 EGU stacks), or a reduction equivalent to that amount within each State. Individual states may also pursue additional strategies.

The strategies for reducing SO₂ emissions that MANE-VU has identified as potentially reasonable for states outside of the MANE-VU region to pursue by 2018 are: 1) Best Available Retrofit Technology (BART) sulfate reductions from specific source sectors defined in the Clean air Act); 2) an EGU strategy that targets a 90% sulfate reduction from each of the key stacks impacting any MANE-VU Class I area (comprising a total of 167 EGU stacks), or a reduction equivalent to that amount within each State; and 3) the application of reasonable controls on non-EGU sources resulting in a 28% reduction in non-EGU SO₂ emissions, relative to on-the-books, on-the-way 2018 projections used in regional haze planning, by 2018, which is comparable to the projected reductions MANE-VU will achieve through its low sulfur oil strategy.

MANE-VU has considered potential SO₂ reductions available from the coal-fired ICI sector, and has concluded that states outside of MANE-VU may find this to be a viable source sector for SO₂ reductions comparable to those obtained from oil-fired ICI boilers within MANE-VU. As noted above, additional reductions from this category within the MANE-VU region will be considered on a state-specific basis. MANE-VU states believe all contributing states should continue to seek viable and enforceable means to lower sulfur dioxide and nitrogen oxide emissions from all coal-burning facilities by 2018, relative to 2002. Finally, MANE-VU is considering how to best deal with residential wood combustion and outdoor wood boilers. Although neither have significant SO₂ emissions, both of these source categories emit volatile and semi-volatile organic carbon and direct particulate matter that also impact visibility. Regarding these and other source sectors, the contributing states should continue to evaluate additional control measures, including energy efficiency and alternative clean fuels, to determine if they are reasonable for implementation in the short or long term, including, but not limited to, new source performance standards for wood combustion.

Low-Sulfur Oil Strategy

The reasonable assumption underlying the low-sulfur fuel oil strategy is that refiners can, by 2018, produce home heating and fuel oils that contain 50% less sulfur for the heavier grades (#4 and #6 residual), and a minimum of 75% and maximum of 99.25% less sulfur in #2 fuel oil (also known as home heating oil, distillate, or diesel fuel) at an acceptably small increase in price to the end user. As much as 75% of the total sulfur reductions achieved by this strategy will come from using the low-sulfur #2 distillate for space heating in the residential and commercial sectors. While costs for these emissions reductions are somewhat uncertain, they are quite reasonable in comparison to costs of controlling other sectors as documented in the Reasonable Progres Report, estimated at \$550 to \$750 per ton.

MANE-VU is cognizant of the fact that the use of #2 distillate for residential, commercial, and industrial heating and process applications is primarily a Northeast state phenomenon. The MANE-VU Class I states would then ask other states outside of MANE-VU to pursue equivalent reasonable sulfur reductions from their industrial, commercial, and institutional facilities.

Some MANE-VU states are proceeding with rulemakings to impose low-sulfur oil regulations much sooner than 2018 in order to aid their $PM_{2.5}$ attainment efforts. However, all of the MANE-VU states agree that a low-sulfur oil strategy is both reasonable and achievable by 2018.

EGU Strategy

MANE-VU has recently identified emissions from 167 stacks at EGU facilities as having visibility impacts in MANE-VU Class I areas that make controlling emissions from those stacks crucial to improving visibility at MANE-VU Class I areaas. Unfortunately, when the Clean Air Interstate Rule (CAIR) is implemented (starting in 2010 for Phase I and 2015 for Phase II), there is no guarantee that sulfate emissions will be reduced at all of these units as generators have the legal option to forgo sulfur controls in favor of allowance purchases. MANE-VU's approach for this source sector is to pursue a 90% control level on SO₂ emissions from these stacks by 2018. MANE-VU has concluded that pursuing at least this level of sulfur reduction is both reasonable and cost-effective. Even though current wet scrubber technology can achieve sulfur reductions greater than 95%, historically a 90% sulfur reduction level includes lower average reductions from dry scrubbing technology. The cost for SO₂ emissions reductions will vary by unit, and the Reasonable Progress report summarizes the various control methods and costs available, ranging from \$170 to \$5,700 per ton.

BART

Imposition of BART on BART-eligible facilities and units in the MANE-VU states is up to each state in its BART-determination process. MANE-VU is expecting significant sulfur reductions from this mandated control measure. Since this is a very sector and

source-specific process, MANE-VU does not anticipate that the level of BART reductions achieved in one region will necessarily be the same as the level of BART reductions achieved in another region.

Notes on List of Top Electric Generating Emissions Points Contributing to Visibility Impairment in MANE-VU

A list of top stacks impacting MANE VU Class I areas was generated by MARAMA on June 12, 2007. The following approach was taken to develop that table.

As part of the MANE VU Contribution Assessment, CALPUFF modeling was performed to identify the top 100 stacks that impact three of the MANE VU Class I areas. These three areas are Acadia, Brigantine and Lye Brook. Details of the modeling are provided in Appendix D of the Contribution Assessment. The 100 top stacks for each Class I area are documented in Tables 10 and 20 from Appendix D "Dispersion Model Techniques" of the Contribution Assessment.

The modeling was performed by two independent modeling centers using two sets of meteorological data—the MM5 and the NWS observation-based meteorology. Because of the differences in meteorological input data, there are some differences in the results from the two modeling centers. The MM5 modeling identified some stacks as being in the top 100 impacting a MANE-VU Class I area that were not identified by the VTDEC modeling, and vice versa. For purposes of the table, all stacks on either list were included.

MARAMA combined the lists of the top 100 EGU stacks in Tables 10 and 20 from Appendix D of the Contribution Assessment. Because there were 100 stacks for each of the three Class I areas and there were two tables for each Class I area (one for MM5 meteorology and second table for (VTDEC) meteorology) there were 600 stacks in the initial file. There were many duplications of identical stacks, either because they impacted more than one Class I area or because they were identified by both modeling centers.

MARAMA eliminated the duplications. MARAMA also eliminated the stacks that were outside the consultation area previously identified. The consultation area includes states contributing at least 2% of the sulfate monitored at MANE-VU Class I areas in 2002. This resulted in 167 unique stacks impacting one or more MANE VU Class I areas.

The Appendix D tables did not identify the units or facilities that were modeled, only providing a CEMS Identification number. MARAMA used information contained in IPM input files to identify the plant name and type where the stack was located.

The modeling used 2002 emissions data from EPA's records of Continuous Emission Monitoring System (CEMS) data reported by the power companies. This hourly data represents actual emissions from the stack on which the CEMS is placed. A power plant may have several stacks. Each stack may vent emissions from one or more units at the plant.

Although the modeling was done on an hourly basis, the emissions data reported in the table represents the aggregate of all the hours in 2002 from a given stack. Each of the modeling centers summed hourly CEMS data over the year to get a total annual emission rate in units in tons per year (TPY). This summing exercise was performed independently as part of the two modeling efforts. Because of round-off error, the annual emission numbers generated by the two modeling efforts shown in the Contribution Assessment are slightly different. For this table, the two annual emission rates were averaged to provide a single annual emission rate for each stack.

Finally, MARAMA developed a composite ranking from the two modeling center results for the three Class I areas to get a single overall ranking for each stack. The impact of each stack on the three Class I areas using two different meteorological sets resulted in up to six impact rankings from 1 to 100, with the lowest rank being the greatest impact. These rankings were averaged to provide an average stack rank. The stacks were sorted from lowest to highest average rank and then an integer ranking ranging from 1 to 167 was assigned to each stack.

There are several differences between this list and lists distributed previously. In previous discussions, MARAMA had prepared a list of all units at each of the facilities identified as having one of the top 100 stacks by the VTDEC modeling. That list included units which may or may not be vented to the stacks that were identified in the top 100 stacks for each of the Class I areas. The previous list also included sources outside the MANE-VU consultation area, and it did not reflect sources on the list generated by the modeling center that used MM5 meteorological data.

For this list, MARAMA did not list units. As noted above, only stacks listed in the tables from the Contribution Assessment have been listed. This resulted in a list of 167 stacks, including 24 that were not previously included because they were only identified by the MM5 modeling, not the VTDEC modeling. The use of stacks rather than units or facilities was chosen as more consistent with the results of the modeling presented in the Contribution Assessment.

1 D009935		TOP ELI	ECTRI	IC GE	NERA	TING	EMISS	SION	POINTS CC	NTRIBUTI	NG TO VISIBILITY IMPAIRME	NT IN MANE-VU	- MODELED BY	BOTH VTDEC AND MM5
10006935 593 90 54 2,138 2,136 1EDGE MOOR O/G Steam Delaware 10 10 10 10 10 10 10 1	Row number SEMS Unit	DRIS ID	(cadia A	acadia 1	Srig MM.	Srig VTF.	YOUNGEC YOUNGE	// (/ / / / / / / / / / / / / / / / / /	MM5 2002 SOO T.	Q /		olant Type	State Name	State Code
20005941 594 95 3,742 21NDIAN RIVER Coal Steam Delaware 10 30005942 594 74 3,750 3,750 21NDIAN RIVER Coal Steam Delaware 10 30005943 594 64 44 4,686 4,682 21NDIAN RIVER Coal Steam Delaware 10 30005943 594 69 21 7,390 7,384 21NDIAN RIVER Coal Steam Delaware 10 30005943 594 69 21 7,390 7,384 21NDIAN RIVER Coal Steam Delaware 10 30005943 77 79 79 86 75 39,520 38,486 3BOWEN Coal Steam Georgia 13 7D007032LR 703 72 89 61 68 37,289 37,256 3BOWEN Coal Steam Georgia 13 38 38 39 39 39 39 39 3	1 D005935				90	54			2,138	2,136	1 EDGE MOOR			
4 D005943		594				95	ĺ		,		2 INDIAN RIVER	Coal Steam	Delaware	10
S DO05944													Delaware	
6 D007031LR	4 D005943	594			84	44	ĺ		4,686	4,682	2 INDIAN RIVER			10
TD007032LR	5 D005944	594			69				7,390		2 INDIAN RIVER		Delaware	10
8 D007033LR 703 71 99 74 64 63 94 43,067 43,029 3 BOWEN Coal Steam Georgia 13 13 15 D007034LR 703 69 95 66 58 60 89 41,010 40,974 3 BOWEN Coal Steam Georgia 13 15 D007034LR 709 84 75 89 71 47,591 47	6 D007031LR	703	79			86		75			3 BOWEN		Georgia	13
9 D007034LR	7 D007032LR	703	72		89		61	68	37,289	37,256	3 BOWEN	Coal Steam	Georgia	13
10 D00709C02 709	8 D007033LR	703	71	99	74	64	63	94	43,067	43,029	3 BOWEN	Coal Steam	Georgia	13
11 D00861C01 861 28 96 65 46 62 42,355 42,318 5 COFFEEN Coal Steam Illinois 17 12 D010011 1001 53 28,876 28,857 6 CAYUGA Coal Steam Indiana 18 18 18 19 D00983C01 983 52 19,922 7 CLIFTY CREEK Coal Steam Indiana 18 18 19 D00983C02 983 54 18,131 7 CLIFTY CREEK Coal Steam Indiana 18 18 19 D00983C02 983 54 18,131 7 CLIFTY CREEK Coal Steam Indiana 18 18 19 D00983C03 983 54 18,131 7 CLIFTY CREEK Coal Steam Indiana 18 18 D00983C03 6113 30 48 14 43 22 41 71,182 71,119 9 GIBSON Coal Steam Indiana 18 18 D06113C03 6113 30 48 14 43 22 41 71,182 71,119 9 GIBSON Coal Steam Indiana 18 19 D01008C01 1008 73 100 47 24,109 24,087 10 R GALLAGHER Coal Steam Indiana 18 18 D0611008C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 D06166C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 D06160C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 D06160C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 18 19 D06166C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 18 18 19 24 24 24 24 24 24 24 2	9 D007034LR	703	69	95	86	58	60	89	41,010	40,974	3 BOWEN	Coal Steam	Georgia	13
12 D010011 1001 95	10 D00709C02	709		84		75	89	71	47,591	47,549	4 HARLLEE BRANCH	Coal Steam	Georgia	13
13 D010012 1001 95	11 D00861C01	861	28	96		65	46	62	42,355	42,318	5 COFFEEN	Coal Steam	Illinois	17
14 D00983C01 983 52 19,922 7 CLIFTY CREEK Coal Steam Indiana 18 15 D00983C02 983 54 18,131 7 CLIFTY CREEK Coal Steam Indiana 18 16 D0099070 990 55 100 70 37 29,801 29,774 8 ELMER W STOUT O/G Steam Indiana 18 17 D06113C03 6113 30 48 14 43 22 41 71,119 9 GIBSON Coal Steam Indiana 18 18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 19 D01008C01 1008 73 100 47 24,007 10 R GALLAGHER Coal Steam Indiana 18 20 D01008C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 21 D06166C02 6166 62 44 30 81 35	12 D010011	1001			53				28,876	28,851	6 CAYUGA	Coal Steam	Indiana	18
14 D00983C01 983 52 19,922 7 CLIFTY CREEK Coal Steam Indiana 18 15 D00983C02 983 54 18,131 7 CLIFTY CREEK Coal Steam Indiana 18 16 D0099070 990 55 100 70 37 29,801 29,774 8 ELMER W STOUT O/G Steam Indiana 18 17 D06113C03 6113 30 48 14 43 22 41 71,119 9 GIBSON Coal Steam Indiana 18 18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 19 D01008C01 1008 73 100 47 24,007 10 R GALLAGHER Coal Steam Indiana 18 21 D06166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 22 D00988C03 988 1	13 D010012	1001	95		46	68			26,016	25,992	6 CAYUGA	Coal Steam	Indiana	18
16 D0099070 990 55 100 70 37 29,801 29,774 8 ELMER W STOUT O/G Steam Indiana 18 17 D06113C03 6113 30 48 14 43 22 41 71,182 71,119 9 GIBSON Coal Steam Indiana 18 18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 18 19 D01008C01 1008 73 100 47 24,109 24,087 10 R GALLAGHER Coal Steam Indiana 18 18 19 D01008C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 18 19 D016166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 18 18 18 18 19 D01008C03 988 777 774 775	14 D00983C01	983					52		19,922		7 CLIFTY CREEK		Indiana	18
17 D06113C03 6113 30 48 14 43 22 41 71,182 71,119 9 GIBSON Coal Steam Indiana 18 18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 19 D01008C01 1008 73 100 47 24,109 24,087 10 R GALLAGHER Coal Steam Indiana 18 20 D01008C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 21 D06166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 22 D00988C03 988 177 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 23 D00988U4 988 14 29 52 34 7 19 45,062 <t< td=""><td>15 D00983C02</td><td>983</td><td></td><td></td><td></td><td></td><td>54</td><td></td><td>18,131</td><td></td><td>7 CLIFTY CREEK</td><td>Coal Steam</td><td>Indiana</td><td>18</td></t<>	15 D00983C02	983					54		18,131		7 CLIFTY CREEK	Coal Steam	Indiana	18
18 D06113C04 6113 44 70 97 83 73 83 27,848 27,823 9 GIBSON Coal Steam Indiana 18 19 D01008C01 1008 73 100 47 24,109 24,087 10 R GALLAGHER Coal Steam Indiana 18 20 D01008C02 1008 98 55 23,849 10 R GALLAGHER Coal Steam Indiana 18 21 D06166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 22 D00988C03 988 1 77 15,946 12 TANNERS CREEK Coal Steam Indiana 18 23 D00988U4 988 14 29 52 34 7 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER<	16 D0099070	990		55	100	70		37	29,801	29,774	8 ELMER W STOUT	O/G Steam	Indiana	18
19 D01008C01 1008 73 100 47 24,109 24,087 10 R GALLAGHER Coal Steam Indiana 18	17 D06113C03	6113	30	48	14	43	22	41	71,182	71,119	9 GIBSON	Coal Steam	Indiana	18
20 D01008C02 1008 98 55 23,849 23,828 10 R GALLAGHER Coal Steam Indiana 18 21 D06166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 22 D00988C03 988 77 15,946 12 TANNERS CREEK Coal Steam Indiana 18 23 D00988U4 988 14 29 52 34 7 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER Coal Steam Indiana 18 25 D067054 6705 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C	18 D06113C04	6113	44	70	97	83	73	83	27,848	27,823	9 GIBSON	Coal Steam	Indiana	18
21 D06166C02 6166 62 44 30 81 33 57 51,708 51,663 11 ROCKPORT Coal Steam Indiana 18 22 D00988C03 988 14 29 52 34 7 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER Coal Steam Indiana 18 25 D067054 6705 34 60 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15	19 D01008C01	1008			73		100	47	24,109	24,087	10 R GALLAGHER	Coal Steam	Indiana	18
22 D00988C03 988 1 77 15,946 12 TANNERS CREEK Coal Steam Indiana 18 23 D00988U4 988 14 29 52 34 7 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER Coal Steam Indiana 18 25 D067054 6705 34 60 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,837 21,817 16 COOPER	20 D01008C02	1008			98			55	23,849	23,828	10 R GALLAGHER	Coal Steam	Indiana	18
23 D00988U4 988 14 29 52 34 7 19 45,062 45,022 12 TANNERS CREEK Coal Steam Indiana 18 24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER Coal Steam Indiana 18 25 D067054 6705 34 60 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 </td <td>21 D06166C02</td> <td>6166</td> <td>62</td> <td>44</td> <td>30</td> <td>81</td> <td>33</td> <td>57</td> <td>51,708</td> <td>51,663</td> <td>11 ROCKPORT</td> <td>Coal Steam</td> <td>Indiana</td> <td>18</td>	21 D06166C02	6166	62	44	30	81	33	57	51,708	51,663	11 ROCKPORT	Coal Steam	Indiana	18
24 D01010C05 1010 43 32 12 28 31 17 60,747 60,693 13 WABASH RIVER Coal Steam Indiana 18 25 D067054 6705 34 60 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentuc	22 D00988C03	988						77		15,946	12 TANNERS CREEK	Coal Steam	Indiana	18
25 D067054 6705 34 60 34 44 73 40,118 40,082 14 WARRICK Coal Steam Indiana 18 26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646	23 D00988U4	988	14	29	52	34	7	19	45,062	45,022	12 TANNERS CREEK	Coal Steam	Indiana	18
26 D06705C02 6705 92 75 96 27,895 14 WARRICK Coal Steam Indiana 18 27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK	24 D01010C05	1010	43	32	12	28	31	17	60,747	60,693	13 WABASH RIVER	Coal Steam	Indiana	18
27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	25 D067054	6705	34	60	34		44	73	40,118	40,082	14 WARRICK	Coal Steam	Indiana	18
27 D01353C02 1353 38 30 15 26 85 29 41,545 41,508 15 BIG SANDY Coal Steam Kentucky 21 28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	26 D06705C02	6705	92		75		96		27,895		14 WARRICK	Coal Steam	Indiana	18
28 D01384CS1 1384 22 58 21,837 21,817 16 COOPER Coal Steam Kentucky 21 29 D01355C03 1355 21 51 99 68 52 38,104 38,070 17 E W BROWN Coal Steam Kentucky 21 30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	27 D01353C02	1353	38	30	15	26	85	29		41,508	15 BIG SANDY	Coal Steam	Kentucky	21
30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	28 D01384CS1	1384	22						21,837	21,817	16 COOPER	Coal Steam	Kentucky	21
30 D060182 6018 83 39 12,083 18 EAST BEND Coal Steam Kentucky 21 31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	29 D01355C03	1355	21		51	99		52	38,104	38,070	17 E W BROWN	Coal Steam	Kentucky	21
31 D01356C02 1356 93 71 88 50 59 25,646 25,623 19 GHENT Coal Steam Kentucky 21 32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	30 D060182	6018	83						12,083		18 EAST BEND	Coal Steam	Kentucky	21
32 D060411 6041 61 18,375 20 H L SPURLOCK Coal Steam Kentucky 21 33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	31 D01356C02		93	71		88	50	59	25,646	25,623	19 GHENT		Kentucky	21
33 D060412 6041 53 91 98 20,491 20,473 20 H L SPURLOCK Coal Steam Kentucky 21	32 D060411	6041							18,375		20 H L SPURLOCK		Kentucky	21
					91			98		20,473				
34 D013644 1364 81 7,185 21 MILL CREEK Coal Steam Kentucky 21		1 1								,				
35 D013782					- 01		87							

Plants in Red are added as a result of MM5 met modeling. List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

		/	7	/	7		7	7 7		. / /			/ /
	/		/				/	/ /	/ ح	À /			/ /
	/	/	/ /	/	/ /	/ /	, ,	/ / /	Q /	ŷ / /	/		
	/	/	Acadia L	J_{E}^{Z}	/	/ ی		MM5 2002 SO2	^{VTDEC 2002} s	y / / o	/	/ "	
Row number CEMS Unit	/ 0	Acadia 14.	<u> </u>	Brig MMAS		Lye MMs	? / ¿	, UEC 15 2002 S	/ %	Plant Name	Plant Type	State Name	
1/2/2/2	ORIS ID	/ bi	' / ˈ&	' / 🏅	: / 5	`/\\$	/ 5	5 / 5	/ \(\frac{1}{2}\)	/ / 🛬	/ #	/	/ _{\(\phi\)}
\ \frac{Q}{10} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18	/ کي /	/ کی	/ B.	Brig.	/ 🕏 /	/ 3/		/ 5		/ / _a /	/ Ets	State
36 D013783	1378	76	100	11	84	55	42	46,701	46,660	22 PARADISE	Coal Steam	Kentucky	21
37 D015074	1507	78						1,170		23 WILLIAM F WYMAN	O/G Steam	Maine	23
38 D006021	602	90		38			100	20,014	19,996	24 BRANDON SHORES	Coal Steam	Maryland	24
39 D006022	602	99		29			99	19,280	19,263	24 BRANDON SHORES	Coal Steam	Maryland	24
40 D015521	1552			63				17,782	17,767	25 C P CRANE	Coal Steam	Maryland	24
41 D015522	1552			68				14,274	14,262		Coal Steam	Maryland	24
42 D01571CE2	1571	42	47	1	4	20	28	48,566	48,522	26 CHALK POINT	Coal Steam	Maryland	24
43 D01572C23	1572	73	79		45	69	32	32,188	32,159	27 DICKERSON	Coal Steam	Maryland	24
44 D015543	1554			77				10,084	10,075	28 HERBERT A WAGNER	O/G Steam	Maryland	24
45 D015731	1573	67	50	16	12	56	38	36,823	36,790	29 MORGANTOWN	Coal Steam	Maryland	24
46 D015732	1573	59	53	10	13	51	39	30,788	30,761	29 MORGANTOWN	Coal Steam	Maryland	24
47 D016191	1619	37	80					9,252	9,244	30 BRAYTON POINT	Coal Steam	Massachusetts	25
48 D016192	1619	35	66					8,889	8,881	30 BRAYTON POINT	Coal Steam	Massachusetts	25
49 D016193	1619	4	14	65	56	79		19,325	19,308	30 BRAYTON POINT	Coal Steam	Massachusetts	25
50 D015991	1599	5	36			65		13,014	13,002	2 31 CANAL	O/G Steam	Massachusetts	25
51 D015992	1599	7	27			74		8,980	8,971	31 CANAL	O/G Steam	Massachusetts	25
52 D016061	1606						48		5,249	32 MOUNT TOM	Coal Steam	Massachusetts	25
53 D016261	1626	85						3,430		33 SALEM HARBOR	Coal Steam	Massachusetts	25
54 D016263	1626	91	78					4,971	4,966	33 SALEM HARBOR	Coal Steam	Massachusetts	25
55 D016264	1626	32	25					2,880	2,878	33 SALEM HARBOR	O/G Steam	Massachusetts	25
56 D016138	1613	94						4,376		34 SOMERSET	Coal Steam	Massachusetts	25
57 D01702C09	1702						96		4,565	35 DAN E KARN	Coal Steam	Michigan	26
58 D01733C12	1733	49	24	80	80	45	22	46,081	46,040		Coal Steam	Michigan	26
59 D01733C34	1733	27	26		76	26	27	39,362	39,327	36 MONROE	Coal Steam	Michigan	26
60 D017437	1743		91						15,805		Coal Steam	Michigan	26
61 D017459A	1745					76	61	18,341	18,324		Coal Steam	Michigan	26
62 D023641	2364	2	57					9,356	9,348		Coal Steam	New Hampshire	33
63 D023642	2364	1	17			28	87	19,453	19,435		Coal Steam	New Hampshire	33
64 D080021	8002	45	74					5,033	5,028		O/G Steam	New Hampshire	33
65 D023781	2378		81		15			9,747	9,738	41 B L ENGLAND	Coal Steam	New Jersey	34
66 D024032	2403	63	97		50	40	44	,			O/G Steam	New Jersey	34
67 D024081	2408			95				8,076		43 MERCER	Coal Steam	New Jersey	34
68 D024082	2408			60				5,675		43 MERCER	Coal Steam	New Jersey	34
69 D02549C01	2549		64	41		42	72	25,343	25,320	44 C R HUNTLEY	Coal Steam	New York	36
70 D02549C02	2549					99		12,317		44 C R HUNTLEY	Coal Steam	New York	36
71 D024804	2480					71		7,720		45 DANSKAMMER	O/G Steam	New York	36

Plants in Red are added as a result of MM5 met modeling. List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

\$\frac{1}{2} \begin{align*}{ c c c c c c c c c c c c c c c c c c c			/	7		7	7	7	///		· / /			
Page		/		/				/	/ /	/ ج	À / /			/ /
T2 D025564C03 25564 33 35 36 36 37 30 30 30 30 30 30 30		/	/	/ /	/ , /	′ /	/ /	· /	/ / Æ		δ' / /			
72]D02594(03) 2556 33 51 62 27 51 30,151 30,155 49 (4) DUNKIRK (Coal Steam New York 36 74]D025276 2527 8 80 12,650 48] GREENIDGE Coal Steam New York 36 75]D025163 2516 96 7,359 49 NORTHPORT O/G Steam New York 36 75]D025163 2516 96 7,359 49 NORTHPORT O/G Steam New York 36 76]D025945 2594 76 91 14,086 17,477 50] OSWEGO O/G Steam New York 36 78]D02642CS2 2642 91 14,086 18,024 27 75]D025163 38,177 52 ROSETON O/G Steam New York 36 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8004 23 15 32 10 15 49 45,296 45,256 53]BELEWS CREEK Coal Steam North Carolina 37 83]D027133 2713 86 15	/ 6 / .	/	/	/ ري	¥ /	/	ر د	/	$\int \int \delta$	'/ &		/	/ "	
72]D02594(03) 2556 33 51 62 27 51 30,151 30,155 49 (4) DUNKIRK (Coal Steam New York 36 74]D025276 2527 8 80 12,650 48] GREENIDGE Coal Steam New York 36 75]D025163 2516 96 7,359 49 NORTHPORT O/G Steam New York 36 75]D025163 2516 96 7,359 49 NORTHPORT O/G Steam New York 36 76]D025945 2594 76 91 14,086 17,477 50] OSWEGO O/G Steam New York 36 78]D02642CS2 2642 91 14,086 18,024 27 75]D025163 38,177 52 ROSETON O/G Steam New York 36 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8006 88 2,840 25 ROSETON O/G Steam New York 36 8 78]D020062 8004 23 15 32 10 15 49 45,296 45,256 53]BELEWS CREEK Coal Steam North Carolina 37 83]D027133 2713 86 15		/ _	/ 🗧	<u> </u>	5/4	e / E	<u> </u>	/ 2	¥/ &	/ %		/ %	/ we	
72]D02594(03) 2256 33 51 62 27 51 30,151 30,155 49 (B)DNRIRK Coal Steam New York 36 73 (D025266) 2527 8 80 12,650 48 (B)CRENIDGE Coal Steam New York 36 75 (D025163) 2516 96 7,359 49 (NORTHPORT O'G Steam New York 36 75 (D025163) 2516 96 7,359 49 (NORTHPORT O'G Steam New York 36 76 (D025945) 2594 76 91 14,086 11,045 (D025945) 2594 76 91 14,086 11,045 (D025945) 2594 91 91 91 91 91 91 91		/ S	/ %	i / i		2 / أ	. / Ž	1 5	25/		/ / 🐉	/ ½	/ >	/ 6/
72]D02594(03) 2256 33 51 62 27 51 30,151 30,155 49 (B)DNRIRK Coal Steam New York 36 73 (D025266) 2527 8 80 12,650 48 (B)CRENIDGE Coal Steam New York 36 75 (D025163) 2516 96 7,359 49 (NORTHPORT O'G Steam New York 36 75 (D025163) 2516 96 7,359 49 (NORTHPORT O'G Steam New York 36 76 (D025945) 2594 76 91 14,086 11,045 (D025945) 2594 76 91 14,086 11,045 (D025945) 2594 91 91 91 91 91 91 91	Row CEN	/ 8	\	4ca(Brig	Brig	/ 🕏 /	/ ² / ₂ / ₆		/	P _{lan}	Plan	/ Staff	State
74 D025276 2527	72 D02554C03	2554	33	51	62		27	51	30,151	30,125	46 DUNKIRK			36
75,0025163	73 D02526C03	2526					78		14,929		47 WESTOVER	Coal Steam	New York	
T6 D026945C 2584 76 91	74 D025276	2527					80		12,650		48 GREENIDGE	Coal Steam	New York	
77 D02642CS22 2642 91		2516			96				7,359		49 NORTHPORT	O/G Steam	New York	
78 D080061 8006		2594		76						1,747	50 OSWEGO	O/G Steam	New York	
Top	77 D02642CS2	2642					91		14,086					
80 D080421 8042 13 12 18 5 10 34 57,820 57,769 53 BELEWS CREEK Coal Steam North Carolina 37 37 81 D080422 8042 23 15 32 10 15 49 45,296 45,256 53 BELEWS CREEK Coal Steam North Carolina 37 82 D027215 2721 98 45 87 39 97 85 19,145 19,128 54 CliFFSIDE Coal Steam North Carolina 37 83 D027133 2713 61	78 D080061	8006						93		3,817	52 ROSETON	O/G Steam	New York	36
81 D080422 8042 23 15 32 10 15 49 45,296 45,256 53 BELEWS CREEK Coal Steam North Carolina 37 82 D027215 2721 98 45 87 39 97 85 19,145 19,128 54 CLIFFSIDE Coal Steam North Carolina 37 37 37 37 37 37 37 3	79 D080062	8006						88		2,840	52 ROSETON	O/G Steam	New York	36
Rec D027215 Z721 98 45 87 39 97 85 19,145 19,128 54 CLIFFSIDE Coal Steam North Carolina 37 83 D027133 Z713 61	80 D080421	8042	13	12	18	5	10	34	57,820	57,769	53 BELEWS CREEK	Coal Steam	North Carolina	37
83 D027133 2713 61	81 D080422	8042	23	15	32	10	15	49	45,296	45,256	53 BELEWS CREEK	Coal Steam	North Carolina	37
83 D027133	82 D027215	2721								19,128	54 CLIFFSIDE			
84 D027093 2709 97	83 D027133	2713		61					·	14,460	55 L V SUTTON			37
86 D027274 2727 89 39 83 51 66 82 27,308 27,284 57 MARSHALL Coal Steam North Carolina 37 87 D06250C05 6250 60 59 35 37 27,395 27,371 58 MAYO Coal Steam North Carolina 37 89 D027122 2712 82 41 54 23 94 29,337 29,310 59 ROXBORO Coal Steam North Carolina 37 90 D02712C03 2712 56 37 57 24 21 78 30,776 30,749 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 47 22,962 29,962	84 D027093	2709				97				9,390	56 LEE	Coal Steam	North Carolina	37
86 D027274 2727 89 39 83 51 66 82 27,308 27,284 57 MARSHALL Coal Steam North Carolina 37 87 D06250C05 6250 60 59 35 37 27,395 27,371 58 MAYO Coal Steam North Carolina 37 89 D027122 2712 82 41 54 23 94 29,337 29,310 59 ROXBORO Coal Steam North Carolina 37 90 D02712C03 2712 56 37 57 24 21 78 30,776 30,749 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 47 22,962 29,962	85 D027273	2727	100	40		48	75	84	26,329		57 MARSHALL		North Carolina	
87 D06250C05 6250 60 59 35 37 27,395 27,371 58 MAYO Coal Steam North Carolina 37 88 D027121 2712 59 12,031 12,020 59 ROXBORO Coal Steam North Carolina 37 99 D02712C03 2712 56 37 57 24 21 78 30,776 30,749 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 92 D0283612 2836 55 20 48 89 29 35 41,432 41,395 60 AVON LAKE Coal Steam Ohio 39 94 D028282 2828 29 31 30 24 8 37,307 37	86 D027274	2727	89	39	83	51		82	27,308	27,284	57 MARSHALL	Coal Steam	North Carolina	37
89 D027122 2712 82 41 54 23 94 29,337 29,310 59 ROXBORO Coal Steam North Carolina 37 90 D02712C03 2712 56 37 57 24 21 78 30,776 30,749 59 ROXBORO Coal Steam North Carolina 37 91 D02712C04 2712 88 72 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 92 D0283612 2836 55 20 48 89 29 35 41,432 41,395 60 AVON LAKE Coal Steam Ohio 39 93 D028281 2828 29 9 31 30 24 8 37,307 37,274 61 CARDINAL Coal Steam Ohio 39 94 D028282 2828 80 15,372 61 CARDINAL Coal Steam Ohio 39 95 D028404 2840 3 1 62 2 3 87,801	87 D06250C05	6250	60			35	37			27,371	58 MAYO	Coal Steam	North Carolina	37
90 D02712C03	88 D027121	2712				59			12,031	12,020	59 ROXBORO	Coal Steam	North Carolina	37
91 D02712C04 2712 88 72 47 47 22,962 22,941 59 ROXBORO Coal Steam North Carolina 37 92 D0283612 2836 55 20 48 89 29 35 41,432 41,395 60 AVON LAKE Coal Steam Ohio 39 93 D028281 2828 29 9 31 30 24 8 37,307 37,274 61 CARDINAL Coal Steam Ohio 39 94 D028282 2828 56 20,598 20,598 20,598 61 CARDINAL Coal Steam Ohio 39 95 D028283 2828 58 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,801 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 105 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 107 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 107 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 107 D0287	89 D027122	2712	82	41	54	23	94		29,337	29,310	59 ROXBORO	Coal Steam	North Carolina	37
92 D0283612 2836 55 20 48 89 29 35 41,432 41,395 60 AVON LAKE Coal Steam Ohio 39 93 D028281 2828 29 9 31 30 24 8 37,307 37,274 61 CARDINAL Coal Steam Ohio 39 94 D028282 2828 56 20,598 20,580 61 CARDINAL Coal Steam Ohio 39 95 D028283 2828 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 <t< td=""><td>90 D02712C03</td><td>2712</td><td>56</td><td>37</td><td>57</td><td>24</td><td>21</td><td>78</td><td>30,776</td><td>30,749</td><td>59 ROXBORO</td><td>Coal Steam</td><td>North Carolina</td><td>37</td></t<>	90 D02712C03	2712	56	37	57	24	21	78	30,776	30,749	59 ROXBORO	Coal Steam	North Carolina	37
92 D0283612 2836 55 20 48 89 29 35 41,432 41,395 60 AVON LAKE Coal Steam Ohio 39 93 D028281 2828 29 9 31 30 24 8 37,307 37,274 61 CARDINAL Coal Steam Ohio 39 94 D028282 2828 56 20,598 20,580 61 CARDINAL Coal Steam Ohio 39 95 D028283 2828 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 <t< td=""><td>91 D02712C04</td><td>2712</td><td>88</td><td>72</td><td></td><td>47</td><td>47</td><td></td><td>22,962</td><td>22,941</td><td>59 ROXBORO</td><td>Coal Steam</td><td>North Carolina</td><td>37</td></t<>	91 D02712C04	2712	88	72		47	47		22,962	22,941	59 ROXBORO	Coal Steam	North Carolina	37
93 D028281 2828 29 9 31 30 24 8 37,307 37,274 61 CARDINAL Coal Steam Ohio 39 94 D028282 2828 56 20,598 20,580 61 CARDINAL Coal Steam Ohio 39 95 D028283 2828 80 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,801 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 105 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 105 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39 107 D02876C01				20	48	89	29	35		41,395				
94 D028282 2828 56 20,598 20,580 61 CARDINAL Coal Steam Ohio 39 95 D028283 2828 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,801 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39		2828		9									Ohio	
95 D028283 2828 80 15,372 61 CARDINAL Coal Steam Ohio 39 96 D028404 2840 3 1 6 2 2 3 87,801 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502														
96 D028404 2840 3 1 6 2 2 3 87,724 62 CONESVILLE Coal Steam Ohio 39 97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal St									ŕ					
97 D02840C02 2840 84 73 81 63 22,791 22,771 62 CONESVILLE Coal Steam Ohio 39 98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio <td></td> <td></td> <td>3</td> <td>1</td> <td>6</td> <td>2</td> <td>2</td> <td></td> <td>87,801</td> <td></td> <td>62 CONESVILLE</td> <td></td> <td></td> <td></td>			3	1	6	2	2		87,801		62 CONESVILLE			
98 D028375 2837 86 56 35 70 35,970 35,938 63 EASTLAKE Coal Steam Ohio 39 99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART <				73										
99 D081021 8102 23 71 59 95 18,207 18,191 64 GEN J M GAVIN Coal Steam Ohio 39 100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam														
100 D081022 8102 78 12,333 12,322 64 GEN J M GAVIN Coal Steam Ohio 39 101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 K						71								
101 D028501 2850 36 67 39 53 45 30,798 30,771 65 J M STUART Coal Steam Ohio 39 102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39														
102 D028502 2850 24 65 40 49 98 46 28,698 28,673 65 J M STUART Coal Steam Ohio 39 103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39			36	67	39			45						
103 D028503 2850 26 72 62 27,968 27,944 65 J M STUART Coal Steam Ohio 39 104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39														
104 D028504 2850 20 77 45 52 88 54 27,343 27,319 65 J M STUART Coal Steam Ohio 39 105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39														
105 D060312 6031 67 77 90 19,517 19,500 66 KILLEN STATION Coal Steam Ohio 39 106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39				77			88	54						
106 D02876C01 2876 40 7 3 9 30 10 72,593 72,529 67 KYGER CREEK Coal Steam Ohio 39														
			40	7			30							
	107 D028327	2832		28			48					Coal Steam	Ohio	39

Plants in Red are added as a result of MM5 met modeling. List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

			/	.50/	/FC			/		ų į	Ž. 700 100 100 100 100 100 100 100 100 100			
Row number	CEMS Unit	ORIS ID	Acadia 1	Acadia	Brig MM	Brig IVTO	/ 3/	(1/9 NZ)		MDEC 2002	Plant Name	Plant Type	State Name	Siate Code
108 DC	02832C06	2832				60	43	64	23,694	23,673	68 MIAMI FORT	Coal Steam	Ohio	39
109 DC		2872	74	92			90	36		30,052	69 MUSKINGUM RIVER	Coal Steam	Ohio	39
	02872C04	2872	6	19		6	19	15	83,134	83,060	69 MUSKINGUM RIVER	Coal Steam	Ohio	39
	02864C01	2864	70	56		63	49	24	35,193	35,162	70 R E BURGER	Coal Steam	Ohio	39
	07253C01	7253		89		57		33	30,977	30,949			Ohio	39
113 DC		2866		82				53	19,796	19,779	72 W H SAMMIS	Coal Steam	Ohio	39
114 DC	028667	2866	57	16	42	41	41	16	33,601	33,572	72 W H SAMMIS	Coal Steam	Ohio	39
115 DC	02866C01	2866	97	54		96	92	30	24,649	24,627	72 W H SAMMIS	Coal Steam	Ohio	39
116 D0	02866C02	2866		69	92			50	26,022	25,999	72 W H SAMMIS	Coal Steam	Ohio	39
117 DC	02866M6A	2866		85				58	19,564	19,546	72 W H SAMMIS	Coal Steam	Ohio	39
118 D0	060191	6019		93		72		60		21,496	73 W H ZIMMER	Coal Steam	Ohio	39
119 DC	028306	2830	46	38	70	40	12	69	30,466	30,439	74 WALTER C BECKJORD	Coal Steam	Ohio	39
120 DC	031782	3178	77	63				81	16,484	16,469	75 ARMSTRONG	Coal Steam	Pennsylvania	42
121 DC	031403	3140	31	34	9	46	18	18	38,801	38,767	76 BRUNNER ISLAND	Coal Steam	Pennsylvania	42
122 DC	03140C12	3140	52	46	49	69	25	23	29,736	29,709	76 BRUNNER ISLAND	Coal Steam	Pennsylvania	42
123 DC	082261	8226	25	21	33	42	36	9	40,268	40,232	77 CHESWICK	Coal Steam	Pennsylvania	42
124 DC	03179C01	3179	16	10	5	8	5	4	79,635	79,565	78 HATFIELD'S FERRY	Coal Steam	Pennsylvania	42
125 DC	031221	3122	11	6	26	38	17	14	45,754	45,714	79 HOMER CITY	Coal Steam	Pennsylvania	42
126 DC	031222	3122	9	4	37	92	13	11	55,216	55,167	79 HOMER CITY	Coal Steam	Pennsylvania	42
127 DC	031361	3136	8	2	4	14	6	1	87,434	87,357	80 KEYSTONE	Coal Steam	Pennsylvania	42
128 DC	031362	3136	18	3	8	19	8	2	62,847	62,791	80 KEYSTONE	Coal Steam	Pennsylvania	42
129 DC	03148C12	3148			71		84		17,214		81 MARTINS CREEK	Coal Steam	Pennsylvania	42
130 DC	031491	3149	19	8	35	7	1	6	60,242	60,188	82 MONTOUR	Coal Steam	Pennsylvania	42
131 DC	031492	3149	15	5	21	20	3	5	50,276	50,232	82 MONTOUR	Coal Steam	Pennsylvania	42
132 DC	031131	3113			82				9,674		83 PORTLAND	Coal Steam	Pennsylvania	42
133 DC	031132	3113			36		93		14,294		83 PORTLAND	Coal Steam	Pennsylvania	42
134 DC	03131CS1	3131	54	31	79		32	65	22,344	22,324	84 SHAWVILLE	Coal Steam	Pennsylvania	42
135 DC	033193	3319				100				11,045	85 JEFFERIES	O/G Steam	South Carolina	45
136 DC	033194	3319		90		87				11,838	85 JEFFERIES	O/G Steam	South Carolina	45
137 DC	03297WT1	3297		68		61				17,671	86 WATEREE	Coal Steam	South Carolina	45
)3297WT2	3297		83		73				17,199		Coal Steam	South Carolina	45
139 DC	03298WL1	3298		35		37			25,170	25,148		Coal Steam	South Carolina	45
140 DC	062491	6249		58		82				17,920		Coal Steam	South Carolina	45
	03403C34	3403			85				20,314	, -	89 GALLATIN	Coal Steam	Tennessee	47
	03405C34	3405	39						19,368		90 JOHN SEVIER	Coal Steam	Tennessee	47
	03406C10	3406	10	11	27	33	4	43	104,523	104,431	91 JOHNSONVILLE	Coal Steam	Tennessee	47

Plants in Red are added as a result of MM5 met modeling. List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

Row number CEMS Unit	QI SINO ON STATE	Acadia MM5	Acadia VVDEC	Brig MM5		230 WW 9(7) 67 67	2 / May 17 / 19 / 19 / 19 / 19 / 19 / 19 / 19 /	MM5 2002 SO2	V70EC 2002.SC		Plant Name	Plant Type	Siate Name	State Code
144 D03407C15 145 D03407C69		64 48	98		66 91	82	76 91	37,308 38,645	37,274 38,611		KINGSTON KINGSTON	Coal Steam Coal Steam	Tennessee	47
145 D03407C69	3803	48	98		55	ŏΖ	91	38,645	9,493		CHESAPEAKE	Coal Steam Coal Steam	Tennessee Virginia	51
147 D038034	3803	_	94		16				10,806		CHESAPEAKE	Coal Steam	Virginia	51
148 D037974	3797		94		90				9,293		CHESTERFIELD	Coal Steam	Virginia	51
149 D037975	3797		88	44	27	86		19,620	19,602		CHESTERFIELD	Coal Steam	Virginia	51
150 D037976		66	18	7	3	34	66	40,570	40,534		CHESTERFIELD	Coal Steam	Virginia	51
151 D03775C02		47	10			34	00	16,674	40,004		CLINCH RIVER	Coal Steam	Virginia	51
151 D03773C02	3809	47	52	64	29			10,477	10,468		YORKTOWN	Coal Steam	Virginia	51
153 D03809CS0		96	43	19	17	62		21,219	21,201		YORKTOWN	Coal Steam	Virginia	51
154 D039423	3942	30	70	13	- ' '	02	79	21,213	10,126		ALBRIGHT	Coal Steam	West Virginia	54
155 D039431		51	23	20	32	16	13	42,385	42,348		FORT MARTIN	Coal Steam	West Virginia	54
156 D039432		50	22	22	31	14	12	45,850	45,809		FORT MARTIN	Coal Steam	West Virginia	54
157 D039353		41	33	28	11	64	26	42,212	42,174		JOHN E AMOS	Coal Steam	West Virginia	54
158 D03935C02		17	42	43	1	11	21	63,066	63,010		JOHN E AMOS	Coal Steam	West Virginia	54
159 D03947C03		86	62	55	\dashv	57	25	38,575	38,541		KAMMER	Coal Steam	West Virginia	54
160 D03936C02	3936				98			15,480	15,467		KANAWHA RIVER	Coal Steam	West Virginia	54
161 D03948C02		58	13	17	36	9	7	55,405	55,356		MITCHELL	Coal Steam	West Virginia	54
162 D062641		75	49	50	18	77	40	42,757	42,719		MOUNTAINEER	Coal Steam	West Virginia	54
163 D03954CS0		68		24	25	23	67	20,130	20,112		MT STORM	Coal Steam	West Virginia	54
164 D0393851	3938				79		97	12,948	12,936		PHILIP SPORN	Coal Steam	West Virginia	54
165 D03938C04	3938				94			26,451	26,427		PHILIP SPORN	Coal Steam	West Virginia	54
166 D060041	6004			66		83	31	21,581	21,562	105	PLEASANTS	Coal Steam	West Virginia	54
167 D060042	6004			88			92	20,550	20,532	105	PLEASANTS	Coal Steam	West Virginia	54

Mid-Atlantic/Northeast Visibility Union

PROJECT RESULTS EVALUATION OF TIGHTER FEDERAL EMISSIONS CAPS FOR ELECTRIC GENERATING UNITS

June 4, 2007

BACKGROUND

- <u>Purpose</u>: This project evaluated an emission control strategy for Electric Generating Units (EGUs) that further reduced emissions beyond current federal requirements throughout the eastern US via a tighter regional cap and trade program. Emissions reductions and costs were estimated in comparison to the federal program.
- Why EGUs: Emissions from EGUs contribute to regional haze in Class I areas throughout the eastern US. Therefore, states must evaluate strategies for reducing emissions from EGUs as part of their efforts to achieve reasonable progress in improving visibility at Class I areas.
- Which Model: To predict future emissions from EGUs, the Mid-Atlantic/Northeast Visibility Union (MANE-VU) and other Regional Planning Organizations have followed the example of the US Environmental Protection Agency (EPA) in using the Integrated Planning Model (IPM®), an integrated economic and emissions model. IPM projects energy supply based on various assumptions and develops a least-cost solution to generating needed electricity within specified emissions targets.
- <u>Strategy</u>: EPA's Clean Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will reduce SO₂ and NO_x emissions in the eastern US. This project evaluated an emission control strategy for EGUs that tightened CAIR throughout the eastern US. Emissions reductions and costs were estimated.
- Model Runs: IPM runs are defined by numerous economic and engineering assumptions.
 - EPA developed Base Case v.2.1.9 using IPM to evaluate the impacts of CAIR and the Clean Air Mercury Rule (CAMR). (Recently, EPA updated their input data and developed Base Case v.3.0. Due to timing, all of the following runs used EPA Base Case v.2.1.9 with some updates and corrections.)
 - VISTAS CAIR Base Case. The Regional Planning Organizations collaborated with each other to update EPA Base Case v.2.1.9 using more current data about EGUs with more realistic fuel prices, creating an IPM run called VISTAS PC_1f. This VISTAS IPM implementation is the one that has been used in regional air quality modeling for ozone and haze state implementation plans.
 - MARAMA CAIR Base Case. MANE-VU, through MARAMA, contracted with ICF to prepare two new IPM runs. The MARAMA CAIR Base Case run was based on the VISTAS PC_1f run and underlying EPA Base Case v.2.1.9, with some of the information

- updated, (e.g., fuel prices, control constraints, etc.) to better reflect current information. The MARAMA CAIR Base Case run is also sometimes called MARAMA 5c.
- MARAMA CAIR Plus Run. The MARAMA CAIR Plus run was also based on VISTAS PC_1f run and the underlying EPA Base Case v.2.1.9, but using lower NO_x emission caps and higher SO₂ retirement ratios. Consistent with the MARAMA CAIR Base Case Run, the CAIR Plus Run also updated some of the information used in the VISTAS run (e.g., fuel prices, control constraints, etc.) to better reflect current information. The MARAMA CAIR Plus run is also sometimes referred to as MARAMA_4c.

ASSUMPTIONS

- The assumptions for and results of the MARAMA CAIR Base Case run and the MARAMA CAIR Plus run are summarized in the final draft ICF report titled "Comparison of CAIR and CAIR Plus Proposal using the Integrated Planning Model (IPM), May 30 2007.
- For purposes of this analysis, the CAIR region included all states included in any part of the EPA CAIR annual or seasonal program as well as all New England states. Figure 1 below from the final draft ICF report is a U.S. map with the states affected by CAIR and CAIR Plus policies as implemented in the MARAMA CAIR and CAIR Plus IPM runs.

Figure 1: States affected by CAIR and MARAMA CAIR Plus Policies

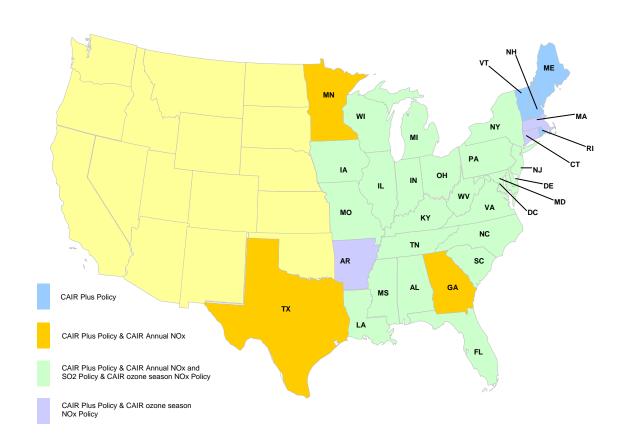


 Table 3 below from the final draft ICF report summarizes the NO_x budgets implemented in the MARAMA Base Case and MARAMA CAIR Plus IPM Policy runs. This shows the overall reduction in NO_x emissions to be achieved through the implementation of CAIR Plus as compared to CAIR.

Table 3: NO_x Budgets in the CAIR/CAIR Plus Region (Thousand Tons)

	NO _x Ozone Se	ason Budget	NO _x Annua	al Budget
Year	MARAMA Base Case	MARAMA CAIR Plus Policy Case	MARAMA Base Case	MARAMA CAIR Plus Policy Case
		ŕ		
2009	568	623	1,722*	1,553*
2010	568	623	1,522	1,353
2012	568	415	1,522	902
2015	518	395	1,370	858
2018	485	382	1,268	829

^{*}Includes NO_x Compliance Supplement Pool of 199,997 tons included in 2009.

Note: The 2015 budgets as modeled in IPM are the average of the budgets over the period 2013-2017. The actual ozone season NO_x budgets proposed are 485 thousand tons in CAIR and 382 thousand tons in CAIR plus for 2015. The actual annual NO_x budgets proposed are 1,268 thousand tons in CAIR and 829 thousand tons in CAIR plus for 2015.

 As shown below in Table 4 from the final draft ICF report, the CAIR Plus run required a greater number of SO₂ allowances be retired for each ton of pollution discharged. This effect of this was to reduce the total amount of SO₂ emissions allowed within the CAIR Plus region.

Table 4: SO₂ Allowance Retirement Ratios in the CAIR/CAIR Plus Region

	SO ₂ Allowance	e Retirement Ratio
Year	MARAMA	MARAMA
	Base Case	CAIR Plus
		Policy Case
2009	1.00	1.00
2010	2.00	2.50
2012	2.00	2.94
2015	2.52	3.32
2018	2.86	4.16

Note: The 2015 retirement ratios as modeled in IPM are the average of the retirement ratios over the period 2013-2017. The actual retirement ratios are 2.86 for CAIR and 3.57 for CAIR Plus for 2015.

RESULTS

- Strengthening CAIR would achieve significant emission reductions, increase the use of natural gas, decrease the use of coal, and drive the construction of new, cleaner plants.
- The final draft ICF report projects that CAIR Plus would reduce national SO₂ emissions in 2018 from all fossil and non-fossil fuel-fired Electric Generating Units (EGUs) by 845,300 tons per year, from 4,785,600 to 3,940,300 tons per year, an 18% reduction.
 - SO₂ emissions in 2018 from all fossil and non-fossil fuel-fired EGUs are projected to decline by 31% in the MANE-VU region, 12% in the Midwest, 29% in the Southeast, and 15% in the Central States. The CAIR Plus strategy would not apply in the West, so emissions there would grow by 5%. (See report, Table 8.)

- The report also projects that CAIR Plus would reduce national NO_x emissions in 2018 from all fossil and non-fossil fuel-fired Electric Generating Units (EGUs) by 480,500 tons per year, from 2,065,600 to 1,585,100 tons per year, a 23% national reduction (27% in MANE-VU) (Table 9).
- The report projects that the annualized incremental cost of the CAIR Plus policy (over and above the cost of the CAIR program) would be \$2.57 Billion (1999\$) in 2018 (Table 5). This includes the annualized capital costs of new control equipment and new plants, fuel costs, and variable and fixed operation and maintenance costs. This is a 2% increase (Table A5.8).
- The report projects that the marginal cost of SO₂ emission reductions as manifested in the projected SO₂ allowance prices would increase from \$1,106 (1999\$/ton) in 2018 with CAIR to \$1,392 (1999\$/ton) with CAIR Plus, a 26% increase (Table 6).
- The report estimates that with CAIR Plus, in the US an additional 17 gigawatts (GWs) of coal
 plant capacity would be controlled by SO₂ scrubbers and an additional 65 GW controlled by
 SCR (for NO_x) as compared to the projected controls under CAIR (Table 7).
- The costs and benefits listed above reflect that in comparison to the CAIR base case,
 - more new plants would be built under a CAIR Plus strategy, and more older plants would be retired; newer plants would have lower emissions (pp. 15-17);
 - the generation mix would change towards lower emission intensive fuel and plant types, including more IGCCs (pp. 16-17); and
 - natural gas-fired generation would increase and generation from coal steam EGUs would decrease in all years except 2012. Increased installation of controls and an increase in coal generation occur in 2012, the first year when the SCR and SO₂ scrubber feasibility constraints were no longer applied in the CAIR Plus strategy. In years after 2012, the CAIR Plus SO₂ and NO_x policies continue to become more stringent resulting in an increase in natural gas-based generation. (See p. 15.)

MORE INFORMATION

- The final draft ICF report summarizing the results of the MARAMA CAIR and CAIR Plus runs is available at www.manevu.org under Publications—Reports. It is also posted at www.marama.org under regional haze, projects, MANE-VU future year emissions inventories.
- Information about the VISTAS CAIR Base Case run is summarized in an appendix to the report. More information is also posed at www.ladco.org under regional air quality planning, G. IPM Emissions Summaries.

TECHNICAL OVERSIGHT COMMITTEE

Representatives from each MANE-VU state have participated in reviewing draft materials prepared under this project. Team members include:

New Hampshire: Andy Bodnarik, Liz Nixon, Jeff Underhill

Connecticut: David Wackter

Delaware: David Fees, Mohammed Majeed District of Columbia: Stan Tracey, Ram Tangirala

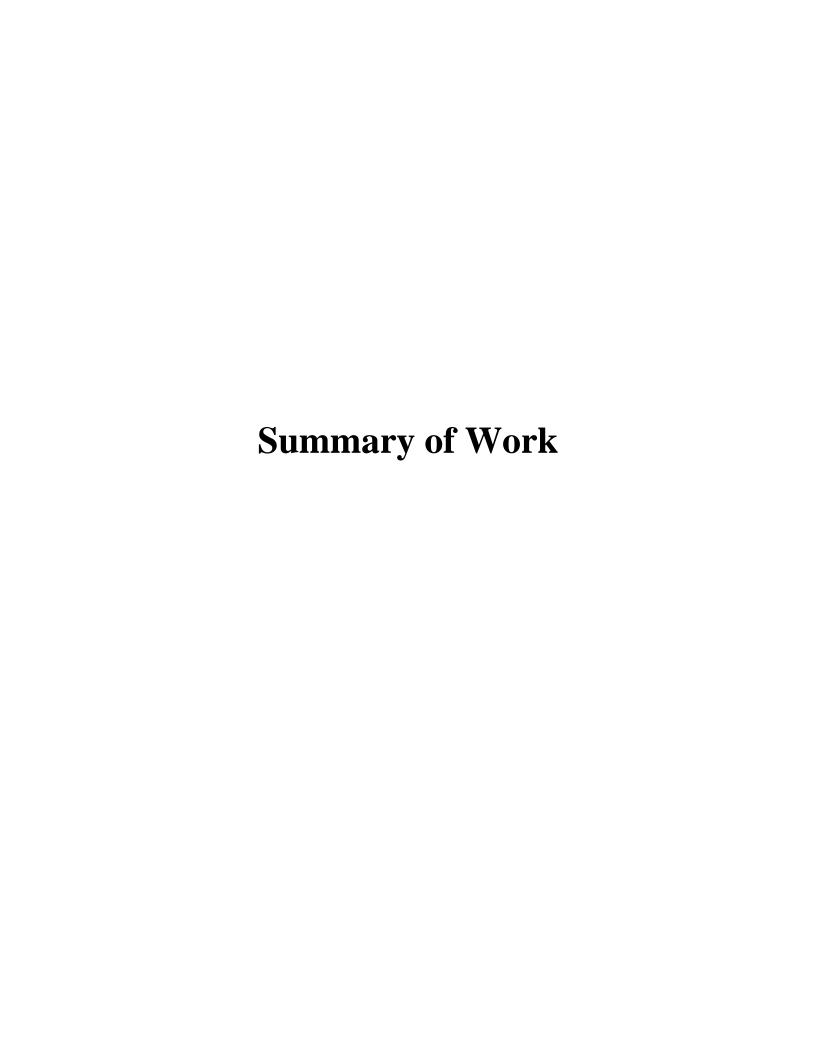
Maine: Tom Downs

Maryland: Tad Aburn, Diane Franks, Brian Hug

MARAMA: Susan Wierman, Patrick Davis, Julie McDill

New Jersey: Chris Salmi, Ray Papalski

New York: Ron Stannard, Gopal Sistla, John Kent Pennsylvania: Dean Van Orden, Wick Havens


Rhode Island: Karen Slattery

OTC: Chris Recchia, Anna Garcia, Doug Austin

Massachusetts: Stephen Dennis

Vermont: Paul Wishinski

CONTACT INFORMATION: Susan Wierman or Julie McDill, MARAMA (swierman@marama.org or jmcdill@marama.org)

Baseline, Natural Conditions, and Uniform Rate

1) Baseline and Natural Background Visibility Conditions
Considerations and Proposed Approach to the Calculation
of Baseline and Natural Background Visibility Conditions
at MANE-VU Class I Areas, 21 pages
http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=0
2) The Nature of the Fine Particle and Regional Haze Air

2) The Nature of the Fine Particle and Regional Haze Air
Quality Problems in the MANE-VU Region:
A Conceptual Description, 92 pages
http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=0

MANE-VU Emissions Inventory Data and Documentation - June 2007

I. 2002 Emissions Inventory

MANE-VU

Contractor: Pechan – Randy Strait

Documentation and Database files can be found at ftp.marama.org

Subdirectory 2002 Version 3

Username: mane-vu Password: exchange

- Version 3 of the 2002 MANE-VU Inventory
- Summaries for biogenic, Area, Point, Non-Road, and Onroad sectors of Version 3 of 2002 MANE-VU Inventory.
- Technical Support Document (TSD)

Midwest RPO

Contractor: Alpine – Greg Stella

• BaseK Emission Inventory conversion to SMOKE-ready format.

II. Non-EGU Future Year Emissions Inventory

MANE-VU

Contractor: MACTEC – Ed Sabo

Database files can be found at **ftp.marama.org**

Username: future Password: emissions

Documentation can be found at

www.marama.org/visibility/Inventory%20Summary/FutureEmissionsInventory.htm

• OTB/OTW 2009/12/18 MANE-VU Inventory

"On the books/On the Way" (OTB/OTW) Emissions inventories in both NIF and IDA format for Non-EGU, Point, Area, and Non-Road.

BOTW 2009/12/18 MANE-VU Inventory

"Beyond On the Way" (BOTW) Emissions inventories in both NIF and IDA format for non EGU Point, Area, and Non-Road were developed based on the OTC control measures matrix. For regional haze purposes, except for SO2 controls, the BOTW controls are assumed in place by 2018.

• Technical Support Document (TSD)

Midwest RPO

Contractor: Alpine – Greg Stella

• BaseK 2009/12/18 OTB/OTW Growth and Control Factors Conversion to produce SMOKE-ready input files for all source categories.

III. EGU Future Year Emissions Inventory

IPM Modeling of EGU emissions for future years

Contractor: ICF – Boddu Venkatesh & Alpine – Greg Stella

Database files can be found at **ftp.marama.org**

Subdirectory 2.1.9 EGUs Username: mane-vu Password: exchange

Documentation for this IPM run is not available

• VISTAS 2.1.9 IPM 2009/12/18 CAIR Inventory. (ICF – Boddu Venkatesh)

"ICF completed an IPM 2.1.9 modeling run based on the VISTAS PC_1f inventory. This run was headed by VISTAS, but has input from all RPOs. *This is the IPM run MANE-VU is using for all of our base case CMAQ modeling.*

- 2009/12/18 VISTAS 2.1.9 IPM output was converted into NIF and IDA format for CMAQ modeling by Alpine (Greg Stella)
- 2009 Non-Fossil EGU IDA Conversion of non-Fossil EGU data into an IDA format for CMAQ modeling. All MANE-VU states were asked to submit a list of their non-fossil EGU units in the 2009 inventory. (Alpine Greg Stella)

IV. MANE VU Inventories for Sensitivity Analysis

• MANE-VU Fuel Oil sulfur content sensitivity Inventories. (Ongoing)
Contractor: Alpine – Greg Stella

No documents yet available for posting online.

Two 2018 sensitivity modeling inventories (S-1 and S-1) are being developed for use in REMSAD modeling. They will be based on the MANE-VU 2018 BOTW Emissions Inventory. The sulfur content of the #2/4/6 fuel oils will be restricted for all SCCs that use these fuels, except EGUs. EGUs are excluded because the sulfur in fuels burning in EGUs is subject to emissions trading. Therefore

restrictions on the sulfur content of these fuels would free up allowances in the market that would be used elsewhere, resulting in no net emissions decrease. The sulfur content for fuel oil is restricted as follows:

```
Sensitivity Inventory - 2018 S-1
       Home heating and #2 Distillate Oil - 500 ppm S (0.05%)
       #4 Distillate/Residual Oil
                                          2500 ppm S (0.25%)
       #6 Residual Oil
                                          5000 ppm S (0.5%)
              (Except parts of CT & NY)
       #6 Residual Oil
                                          3000 ppm S (0.3%)
              (For parts of CT & NY)
Sensitivity Inventory - 2018 S-2
       Home heating and #2 Distillate Oil - 15 ppm S (0.0015%)
       #4 Distillate/Residual Oil
                                          2500 ppm S (0.25%)
       #6 Residual Oil
                                          5000 ppm S (0.5%)
              (Except parts of CT & NY)
       #6 Residual Oil
                                          3000 ppm S (0.3%)
              (For parts of CT & NY)
```

Alpine is tasked with developing the Growth and Control packets that can be applied to the MANE-VU 20018 BOTW Inventory to develop the S-1 and S-2 inventories.

MANE-VU Additional Limits on EGU NOx and SOx Sensitivity IPM Modeling Run Comparing CAIR with CAIR+

Contractor: ICF – Boddu Venkatesh Database files are not yet available.

o 2.1.9 IPM 2009/12/18 MANE-VU Base Case EGU Inventory S.T.E.T.

This IPM run is known as the MANE-VU Base Case or MARAMA_5c. It was developed by MANE-VU based on the VISTAS 2.1.9 framework with updated natural gas prices and a few other adjustments to the input specifications. This Base Case was run to allow a comparison to the MANE-VU CAIR+ run described below. It has not been used for regional air quality modeling.

State level results are available for this run. 2009/12/18 NIF and IDA files are available.

o 2.1.9 IPM 2009/12/18 MANE-VU CAIR+ Inventory S.T.E.T.

This IPM run is known as the MANE-VU CAIR+ or MARAMA_4c. It was developed by MANE-VU based on the VISTAS 2.1.9 framework with updated natural gas prices and a few other adjustments to the input specifications. The results of this CAIR+ can be compared to the to the MANE-VU Base Case run described above. It has not been used for regional air quality modeling.

State level results are available for this run.

IV. Inter-RPO EI Warehouse System

Contractor: ERG – Grace Kitzmiller/William Gerber

Warehouse can be found at:

http://app2.erg.com:8080/rpoapp/

MARAMA has uploaded the Version 3 2002 MANE-VU Emissions Inventory. VISTAS has also uploaded data. Problems with the uploaded data and the warehouse system are currently being worked out.

V. Additional Data

Contractor: EH Pechan

OMNI

Documentation and Database files can be found at http://www.marama.org/visibility/ResWoodCombustion/

MARAMA has provided two updates of the National Emissions Inventory for residential wood combustion. Some states have chosen to use some of these results in preparing their 2002 inventories. In general, these updates are part of an ongoing process to refine information about this source category as it is a large source of emissions with very uncertain emission estimates.

BART

1) Five-Factor Analysis of BART-Eligible Sources:	2/2007
Survey of Options for Conducting BART Determinations	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
<pre>_documents/atct_topic_view?b_start:int=0</pre>	
2) BART Resource Guide, 34 pages	8/2006
http://www.nescaum.org/documents/bart-resource-guide	
3) Assessment of Control Technology	3/2005
Options for BART-Eligible Sources, 102 pages	
http://www.nescaum.org/documents/bart-resource-guide	
4) Development of a List of BART-Eligible Sources in the	5/2003
MANE-VU Region: Interim Report, 74 pages	
http://www.nescaum.org/documents/bart-resource-guide	
5) A Basis for Control of BART-Eligible Sources, 168 pages	7/2001
http://www.nescaum.org/documents/bart-resource-guide	

Areas of Influence

1) Contributions to Regional Haze in the Northeast and 8/2006	
Mid-Atlantic United States, 122 pages + Appendices A-D	
http://www.nescaum.org/documents/contributions-to-regional-haze-in-the-northe	east-
and-mid-atlanticunited-states	
2) Regional Aerosol Intensive Network (RAIN), 5/2006	
Preliminary Data Analysis, 63 pages	
www.manevu.org/document.asp?FView+reports#	
3) UMD Data Analysis Subcontract: Manuscripts on Data from 2/2006	
the 2002 MANE-VU UMD Flights	
www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
4) Upper Air Balloon Study – Millersville, PA, Winter 2004 2/2006	
www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
5) Source Apportionment Analysis of Air Quality Monitoring Data: 3/2005	
Phase II, 102 pages	
http://www.marama.org/visibility/SA_phase2/index.html	
6) Wintertime Tethered Balloon Measurements of Meteorological 1/2005	
Variables and Aerosol Characterization in Support of MANE-VU, 17 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
7) Review of Speciation Trends Network and IMPROVE 3/2003	
Chemically Speciated Data, Technical Memo #7, 71 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
8) REMSAD Platform Intercomparison Experiments, 2/2002	
Technical Memo #5, 25 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	

Areas in the MANE-VU Region, Technical Memo #3, 32 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct topic view?b start:int=50 10) REMSAD Modeling Exercises, Technical Memo #2, 44 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct topic view?b start:int=50 11) GIS Mapping of Regional Haze-Related Data in the MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct topic view?b start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50	9) Trajectory Analysis of Potential Source Regions Affecting Class I	2/2002
documents/atct_topic_view?b_start:int=50 10) REMSAD Modeling Exercises, Technical Memo #2, 44 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 11) GIS Mapping of Regional Haze-Related Data in the MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze- http://www.nescaum.org/topics/regional-haze/regional-haze-	Areas in the MANE-VU Region, Technical Memo #3, 32 pages	
10) REMSAD Modeling Exercises, Technical Memo #2, 44 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 11) GIS Mapping of Regional Haze-Related Data in the MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze- http://www.nescaum.org/topics/regional-haze/regional-haze-	http://www.nescaum.org/topics/regional-haze/regional-haze-	
http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct topic view?b start:int=50 11) GIS Mapping of Regional Haze-Related Data in the	documents/atct_topic_view?b_start:int=50	
documents/atct_topic_view?b_start:int=50 11) GIS Mapping of Regional Haze-Related Data in the MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	10) REMSAD Modeling Exercises, Technical Memo #2, 44 pages	2/2002
11) GIS Mapping of Regional Haze-Related Data in the MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 12/1999	http://www.nescaum.org/topics/regional-haze/regional-haze-	
MANE-VU Region, Technical Memo #4, 41 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, 2/2002 Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: 2/2002 Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	documents/atct_topic_view?b_start:int=50	
http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, 2/2002 Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: 2/2002 Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	11) GIS Mapping of Regional Haze-Related Data in the	2/2002
documents/atct_topic_view?b_start:int=50 12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages <a atct_topic_view?b_start:int='50"' href="http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atc</td><td>MANE-VU Region, Technical Memo #4, 41 pages</td><td></td></tr><tr><td>12) Updated Visibility Statistics for the MANE-VU Region, Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 12/1999	http://www.nescaum.org/topics/regional-haze/regional-haze-	
Technical Memo #1, 50 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: 2/2002 Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 12/1999	<pre>documents/atct_topic_view?b_start:int=50</pre>	
http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: 2/2002 Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages 1/2002 http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	12) Updated Visibility Statistics for the MANE-VU Region,	2/2002
documents/atct_topic_view?b_start:int=50 13) Source Apportionment Analysis of Air Quality Monitoring Data: 2/2002 Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 12/1999	Technical Memo #1, 50 pages	
13) Source Apportionment Analysis of Air Quality Monitoring Data: Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/ 12/1999	http://www.nescaum.org/topics/regional-haze/regional-haze-	
Phase 1, 110 pages http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-documents/ 12/1999	<pre>documents/atct_topic_view?b_start:int=50</pre>	
http://www.marama.org/visibility/SA_report/ 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	13) Source Apportionment Analysis of Air Quality Monitoring Data:	2/2002
 14) Meteorological Data Archive Feasibility Assessment, 3 pages http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze- 	Phase 1, 110 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze- documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	http://www.marama.org/visibility/SA_report/	
documents/atct_topic_view?b_start:int=50 15) Determination of Fine Particle and Coarse Particle Concentrations 12/1999 in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	14) Meteorological Data Archive Feasibility Assessment, 3 pages	1/2002
15) Determination of Fine Particle and Coarse Particle Concentrations in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze/	http://www.nescaum.org/topics/regional-haze/regional-haze-	
in the Northeast United States, 1995, 85 pages http://www.nescaum.org/topics/regional-haze/regional-haze-	<pre>documents/atct_topic_view?b_start:int=50</pre>	
http://www.nescaum.org/topics/regional-haze/regional-haze-	15) Determination of Fine Particle and Coarse Particle Concentrations	12/1999
	in the Northeast United States, 1995, 85 pages	
documents/atct_topic_view?b_start:int=50	http://www.nescaum.org/topics/regional-haze/regional-haze-	
	<pre>documents/atct_topic_view?b_start:int=50</pre>	

Reasonable Progress and Long Term Strategy

1) Reasonable Progress Goal Project Summary, 5 pages	4/2007
http://www.marama.org/visibility/RPG/index.html#products	
2) Assessing Reasonable Progress for Regional Haze in the Mid-Atlantic North E	Eastern
Class I Areas Draft Final Report, 140 pages	4/2007
http://www.marama.org/visibility/RPG/index.html#products	
3) Assessing Reasonable Progress for Regional Haze in the Mid-Atlantic North E	Eastern
Class I Areas (Revised Draft Final Technical Memorandum #3), 129 pages	3/2007
http://www.marama.org/visibility/RPG/index.html#products	
4) Methods for Evaluations Technical Memorandum #2 Final, 5 pages	2/2007
http://www.marama.org/visibility/RPG/index.html#products	
5) Control Scenarios Technical Memorandum #1 Final, 4 pages	2/2007
http://www.marama.org/visibility/RPG/index.html#products	
6) Final Work Plan, 11 pages	1/2007
http://www.marama.org/visibility/RPG/index.html#products	

Communications and Outreach

1) MANE-VU Newsletter	Fall 2006
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
2) MANE-VU's Comments on EPA / Bill Harnett Memorandum	8/2006
entitled "Process for Interstate Consultation on Regional Haze	
SIP Development," 3 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
3) MANE-VU's Comments on Proposed IMPROVE Network	8/2006
Reduction Plan, 7 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
4) Final Consultation Framework as approved by the MANE-VU Board	5/2006
on May 10, 2006, 6 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
5) MANE-VU Newsletter	Spring 2006
http://www.manevu.org/document.asp?fview=Fact%20Sheets#6) MANE-VU's Comments on EPA's "Draft Guidance for Setting	1/2006
Reasonable Progress Goals Under the Regional Haze Program," 9 page	es
http://www.manevu.org/document.asp?fview=Correspondence#	
7) MANE-VU's Comments on Proposed BART Trading Rule, 5 pages	9/2005
http://www.manevu.org/document.asp?fview=Correspondence#	
8) MANE-VU Newsletter	Fall 2005
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
9) MANE-VU Newsletter	Spring 2005
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
10) Regional Haze – A Resource Guide for Journalists, 33 pages	5/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
<pre>documents/atct_topic_view?b_start:int=0</pre>	
11) Regional Haze Reduces Visibility (Tri-fold brochure)	3/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	

12) Haze Communication Using CAMNET and IMPROVE Archives:	1/2005
Case Study at Acadia National Park, 13 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
13) About Regional Haze: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
14) The Health Effects of Regional Haze: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
15) About MANE-VU: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
16) MANE-VU's Comments on Proposed BART Rule, 27 pages	7/2004
http://www.manevu.org/document.asp?fview=Correspondence#	
17) Scoping Study on Regional Haze, Initial Communications	12/2002
and Outreach Framework, 52 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	

Miscellaneous

1) TSD on Measures to Mitigate the Visibility Impacts of	10/2006
Construction Activities in the MANE-VU Region, 13 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
2) TSD on Agricultural and Forestry Smoke Management	9/2006
in the MANE-VU Region, 18 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
3) EPA Checklist for Regional Haze SIPs Submitted Under	8/2006
40 CFR 51.308, 14 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
4) 2006 Interim Report, 21 pages	5/2006
http://www.manevu.org/document.asp?Fview=Reports#	
5) Draft Regional Haze SIP/TIP Template, 42 pages	1/2005
http://www.manevu.org/document.asp?Fview=Reports	
6) MANE-VU Technical Work Plan, 20 pages	3/2003
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
7) Regional Haze and Visibility in the Northeast and Mid-Atlantic	1/2001
States, 265 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	